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Abstract. Farthest point problem states that “Must every uniquely remotal set in a Banach space
be singleton?” In this paper we introduce the notion of partial ideal statistical continuity of a
function which is way weaker than continuity of a function. We give an example to show that
partial ideal statistical continuity is weaker than continuity. In this paper we use Ideal summab-
ility to give some answers to FPP problem which improves the result in [13]. We prove that if
E is a non-empty, bounded, uniquely remotal subset in a real Banach space X such that E has
a Chebyshev center ¢ and the farthest point map F : X — E restricted to [c, F(c)] is partially
ideal statistically continuous at ¢ then FE is singleton.
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1. INTRODUCTION

Let X be a real Banach space and E be a nonempty, bounded subset of X. For any
x € X, the farthest distance of x from the set £ is denoted by D(x, E) and is defined
by

D(x,E)= sup{||x—e| :e€ E}.
The farthest distance from x to E may or may not attained by some elements of E.
If the distance is attained then the collection of all such points of E is denoted by
F(x,E)ie
F(x,E)={e€E:||x—e| =D(x,E)}.
We say that F is remotal if F'(x, E) # ¢ V x € X and E is said to be uniquely remotal
if F(x, E) is singleton for each x € X.

The FPP was proposed by Motzkin, Starus and Valentine [11] in context of the
Euclidean space E™. The problem was considered in the setting of Banach spaces by
Klee [9] where he proved that every compact uniquely remotal subset of a Banach
space is singleton. In [1], Asplund solved the FPP in the affirmation in any finite
dimensional Banach space with respect to a norm which is not necessarily symmetric.
The study of remotal and uniquely remotal sets has attracted many researchers in the
last few decades due to its connection to the geometry of Banach spaces. One can
see [2, 12, 15] for further details.
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Chebyshev centers of sets have played a major role in the study of uniquely remotal
sets. Recall that a chebyshev center of a subset E of a normed space X is an element
¢ € X such that D(c, E) = infyex D(x, E). Astaneh in 1983 proved that in an inner
product space X, every closed and bounded set has a Chebyshev center. But it is still
unknown that whether every closed and bounded subset of a normed space X has a
center or not.

The idea of convergence of a real sequence has been extended to statistical con-
vergence by Fast [0] and Steinhaus [19] and later on re-introduced by Schoenberg
[18] independently and is based on the notion of asymptotic density of the subset
of natural numbers. However, the first idea of statistical convergence (by different
name) was given by Zygmund [20] in the first edition of his monograph published in
Warsaw in 1935. Later on it was further investigated from the sequence space point
of view and linked with summability theorem by Fridy [7], Connor [3], Salat [16],
Das et. al. [4, 5], Fridy and Orhan [8]. If N denotes the set of natural numbers and
K C N then K(m,n) denotes the cardinality of the set K N [m,n]. The upper and
lower natural density of the subset K is defined by

d(K) = tim sup 28" o4 d(K) = tim inf L")

n—>o0 n n—00 n

If d (K) = d(K), then we say that the natural density of K exists, and it is denoted
simply by
K(1,
d(K) = tim K1)

n—o00 n

A sequence {x,},en of real numbers is said to be statistically convergent to a real
number x if for each ¢ > 0, the set K = {n € N : |x,, — x| > &} has natural density

) S
zero and we write x, — x.
The following definitions and notions will be needed.

Definition 1 ([10]). A family 4 C 2N of subsets of N (where N denotes the set
of all non-negative integers ) is said to be an ideal in N provided that the following
conditions holds:

D¢ ed,
(ii)A,Bed = AUB e,
(iii)Aed,BC A= Bed.

Definition 2 ([10]). An ideal 4 is said to be non-trivial if 4 # {¢} and proper if
N ¢ 4. A proper ideal J in N is said to be admissible if {n} € J for each n € N.

Throughout this paper 4 will denote a non-trivial, proper, admissible ideal.

Definition 3 ([17]). Let d be a non-trivial, proper, admissible ideal. A sequence
{Xn}neN of real numbers is said to be J-statistically convergent to a real number x if
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for every &,8 > 0,
1
{n eN:=|{k<n:|x—x|> el 35} ed.
n

In [13] it was proved that if E is a uniquely remotal subset of a normed space,
admitting a center ¢ and if the farthest point map F : X — F restricted to [c, F(c)]
is continuous at ¢ then E is singleton.

In a natural way, in this paper we first introduce the notion of partial ideal statistical
continuity of a function via ideal summability and we give an example to show that
this notion of partial ideal statistical continuity is much weaker than continuity and
also weaker than partial continuity introduced by Sababheh et al. in [14]. We prove
that if E is a non-empty, bounded, uniquely remotal subset in a real Banach space X
such that £ has a Chebyshev center ¢ and the farthest point map F : X — E restricted
to [c, F(c)] is partially ideal statistically continuous at ¢ then F is singleton.

2. RESULTS
We first recall the definition of partial continuity of a function from [14] as follows.

Definition 4. Let X be real Banach space and A be a nonempty subset of X. The
function F : A — X is said to be partially continuous at a € X if there exists a non
constant sequence {x,},eN C A4 such that x, — a and F(x,) — F(a) asn — oo.

Now we like to introduce the definition of partial ideal statistical continuity of a
function as follows.

Definition 5. Let 4 be a non-trivial, proper, admissible ideal. Let X be a real
Banach space and A be a nonempty subset of X. The function F : A — X is said to be
partially ideal statistically continuous at a € X if there exists a non constant sequence
{Xn}nen C A such that {x,},eN is d-statistically convergent to a and {F(x,)},eN
is d-statistically convergent to F(a).

Now we give an example to show that this notion of partial ideal statistical con-
tinuity is much weaker than partial continuity introduced by Sababheh et al. [14].

Example 1. Let 4 be a non-trivial, proper, admissible ideal. A function f :[—1,0] —
R be defined by f(x) = [x],x € [-1,0]. It is easy to check that this function is not
partially continuous (also not continuous) at the point x = 0. Now we show that this
function is partially ideal statistically continuous at the point x = 0.
Let us define a sequence {x; },en in [—1,0] by
_)oifn#m?*VmeN

Xn = .
—% if n = m? for some m € N.

Now the natural density of the set K = {m? :m € N} is 0. Let & > 0.
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As {nelN:lxn—O|ze}C{nel]\l:nzmzforsomemel]\l},so

1
lim —‘{k <n:|xp—x| 28}‘ =0.
n—oon

This shows that the sequence {x, },eN is statistically convergent to 0. Let § > 0. Then
1
{ne |N:—|{k§n:|xk—x|ze}|28} cd
n

since d is admissible. So {x,},eN is d-statistically convergent to 0.
Now the sequence { f(x,)}nen is defined by

Oifn#Am?>VmeN
—1if n = m? for some m € N,

fxn) = {

Now it is easy to check that the sequence { f(x5)}nen is J-statistically convergent
to f(0) = 0. This shows that this function is partially ideal statistically continuous at
the point x = 0. So the notion of partial ideal statistical continuity is much weaker
than partial continuity.

Theorem 1. Let d be a non-trivial, proper, admissible ideal. Let E be nonempty,
bounded subset of a real Banach space X. If E is uniquely remotal such that E has
Chebyshev center ¢ and the farthest point map F : X — E restricted to [c, F(c)] is
partially ideal statistically continuous at ¢ then E is singleton.

Proof. Since E is uniquely remotal so for each x € X there exists unique e €
E such that |x —e| = D(x, E) and the farthest point map F : X — FE defined by
F(x)=F(x,E), V¥ x € X is well defined. We assume that £ has Chebyshev center
atc =0.

Now suppose E is not singleton. So we have F(0) # 0.

It is given that the farthest point map F : X — F restricted to [0, F(0)] is partially
ideal statistically continuous at 0. So there exist a non constant sequence {Xy }neN
in [0, F(0)] such that {x,},en is d-statistically convergent to 0 and {F (x;)}neN is
J-statistically convergent to F(0).

So we have x, = u, F(0) with u, >0, V n € N and u, is J-statistically con-
vergent to 0. Now for each n € N there exists ¥, € X* such that ¥, (F (x,) — x,) =

I F (xn) = Xnll and || || = 1.

VUn(xn) = Yn(F(xn)) — ¥ (F(xn) — Xn)
< Il F Cen) | = 11 (xn) — xn |
= [|F(xn) | = [F (xn) —xn |
= | F (xn) = Ol = | F (xn) — Xull
= D(0.E)—D(xp,E)



A NOTE ON FARTHEST POINT PROBLEM IN BANACH SPACES 1241

< 0. (As 0 is the Chebyshev center)

So

Yu(xy) <0VneN

= Yn(un F(0)) =0V neN

= Un¥n(F(0)) =0V neN
= VYn(F(0) <0V neNaspu, >0.

Now the sequence { F(x,) —Xxn }neN is d-statistically convergent to F'(0). So for each
£,6 >0,

n e Ntk <n s 1 F () — 3~ FO) = 6 28} €.
Now we have
IF ()=l = [FO)| < 1 F(s) 5t~ FO)I.
Let ¢ > 0. So we have
fe=n:{IFG0) sl = IFOI| 2 6] € {k <0 1F () —xi = FO)] 2 ¢f.

This implies that for every § > 0,
1
fren:—lfk<n: |IFe -l - IFOI| = ¢f| = 5} €

nen: %Hk <nt | F (o) —xe— FO)] = e 2 ).

Since the set on the right belongs to the ideal J so
1
fnen:—Ne<n: |IFo—xil ~IFO)| z e} | = 8] € 4.
n

So the sequence {|| F(xg)— x|l }k N is J-statistically convergent to || F(0)]|.
€

Now we have

Un (F(xn) —Xn) = ¥n(F(0)) = ¥ (F(xn) — xn — F(0))
< [l F(xn) —xn — FO)
= || F (xn) —xn — F(0)].
The sequence in the right is dJ-statistically convergent to 0. So the sequence
{Un(F(0))},en is J-statistically convergent to || F(0)|. But this is possible only

when F(0) = 0. This is a contradiction. This proves that the uniquely remotal set
E is singleton. O
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Corollary 1. Let d be a non-trivial, proper, admissible ideal. Let E be nonempty,
bounded subset of a real Banach space X. If E is remotal such that E has Chebyshev
center ¢ and the extracted farthest point map F : X — E restricted to [c, F(c)] is
partially ideal statistically continuous at ¢ then E is singleton.

Theorem 2. Let J be a non-trivial, proper, admissible ideal in N. Let X be a
real Banach space and E be non-empty, bounded, uniquely remotal set admitting a
Chebysheyv center c. If E is not singleton then the farthest point map F, restricted to
(c, F(c)] is not partially ideal statistically continuous at c.

Proof. The uniquely remotal set £ has a Chebyshev center c¢. Let x € (c, F(c)].
Then x =tc+ (1 —1)F(c) for some ¢ € [0, 1).
Now
[x—=F)ll = llte + A =0)F(c) = F(x)]
=|tc—tF(x)+(1—=)F(c)—(A—t)F(x)|
<tle=FX)|+A=0)[F(c)—F)|
<tle=F()l+ A=) F()—Fx)|
<tlx=FQ@)[+A=0)[F(c)=F)|
= [[F(x)=F) =z lx=F)| = llc=F(c)| =r.
If we choose ||c — F(c)|| = r > 0 and a sequence {x, },eN in (c, F(c)], d-statistically
convergent to ¢ but we have

1
—{k<n:|F(xx)—F(c)|=r}| =1foralln € N.
n
Let 0 < § < 1. Then we have
1
neN:—tk<n:||F(xxp)—F(c)||=r}|=8=N¢d.
n
This shows that The farthest point map F' is not partially ideal statistically con-
tinuous at c¢. This completes the proof. U
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