

Miskolc Mathematical Notes Vol. 20 (2019), No. 2, pp. 773–780

⊕−SUPPLEMENTED LATTICES

ÇIĞDEM BIÇER AND CELIL NEBIYEV

Received 15 January, 2019

Abstract. In this work, \oplus -supplemented and strongly \oplus -supplemented lattices are defined and investigated some properties of these lattices. Let *L* be a lattice and $1 = a_1 \oplus a_2 \oplus ... \oplus a_n$ with $a_1, a_2, ..., a_n \in L$. If $a_i/0$ is \oplus -supplemented for each i = 1, 2, ..., n, then *L* is also \oplus -supplemented. Let *L* be a distributive lattice and $1 = a_1 \oplus a_2 \oplus ... \oplus a_n$ with $a_1, a_2, ..., a_n \in L$. If $a_i/0$ is strongly \oplus -supplemented for each i = 1, 2, ..., n, then *L* is also strongly \oplus -supplemented for each i = 1, 2, ..., n, then *L* is also strongly \oplus -supplemented. A lattice *L* has (*D*1) property if and only if *L* is amply supplemented and strongly \oplus -supplemented.

2010 *Mathematics Subject Classification:* 06C05; 06C15 *Keywords:* lattices, small elements, supplemented lattices, complemented lattices

1. INTRODUCTION

Throughout this paper, all lattices are complete modular lattices with the smallest element 0 and the greatest element 1. Let L be a lattice, $a, b \in L$ and a < b. A sublattice $\{x \in L | a \le x \le b\}$ is called a *quotient sublattice*, denoted by b/a. An element a' of a lattice L is called a *complement* of a in L if $a \wedge a' = 0$ and $a \vee a' = 1$, this case we denote $1 = a \oplus a'$ (a and a' also is called *direct summands* of L). L is called a *complemented lattice* if each element has at least one complement in L. An element a of L is said to be *small* or *superfluous* and denoted by $a \ll L$ if b = 1for every element b of L such that $a \lor b = 1$. The meet of all the maximal elements $(\neq 1)$ of a lattice L is called the *radical* of L and denoted by r(L). An element c of L is called a supplement of b in L if it is minimal for $b \lor c = 1$. a is a supplement of b in a lattice L if and only if $a \lor b = 1$ and $a \land b \ll a/0$. A lattice L is said to be supplemented if every element of L has a supplement in L. We say that an element b of L lies above an element a of L if $a \leq b$ and $b \ll 1/a$. L is said to be hollow if every element $(\neq 1)$ is superfluous in L, and L is said to be *local* if L has the greatest element ($\neq 1$). An element a of L is called a *weak supplement* of b in L if $a \lor b = 1$ and $a \wedge b \ll L$. A lattice L is said to be *weakly supplemented*, if every element of L has a weak supplement in L. We say that an element $a \in L$ has ample supplements in L if for every $b \in L$ with $a \lor b = 1$, a has a supplement b' in L with b' < b. L is called an *amply supplemented lattice*, if every element of L has ample supplements

© 2019 Miskolc University Press

in *L*. It is clear that every supplemented lattice is weakly supplemented and every amply supplemented lattice is supplemented. A lattice *L* is said to be *distributive* if $a \land (b \lor c) = (a \land b) \lor (a \land c)$ for every $a, b, c \in L$. Let *L* be a lattice. It is defined β_* relation on the elements of *L* by $a\beta_*b$ with $a, b \in L$ if and only if for each $t \in L$ such that $a \lor t = 1$ then $b \lor t = 1$ and for each $k \in L$ such that $b \lor k = 1$ then $a \lor k = 1$.

Let L be a lattice. Consider the following conditions.

(D1) For every element a of L, there exist $a_1, a_2 \in L$ such that $1 = a_1 \oplus a_2$, $a_1 \in a/0$ and $a_2 \wedge a \ll a_2/0$.

(D3) If a_1 and a_2 are direct summands of L and $1 = a_1 \lor a_2$, then $a_1 \land a_2$ is also a direct summand of L.

More details about (amply) supplemented lattices are in [1,2] and [5]. More results about (amply) supplemented modules are in [4] and [9]. Some important properties of \oplus -supplemented modules are in [6] and [7]. The definition of β_* relation on lattices and some properties of this relation are in [8]. The definition of β^* relation on modules and some properties of this relation are in [3].

In this paper, we generalize some properties of \oplus -supplemented modules to lattices. We constitute relationships between \oplus -supplemented quotient sublattices and \oplus -supplemented lattices by Lemma 11 and Corollary 2. We also constitute relationships between lattices which has (*D*1) property and strongly \oplus -supplemented lattices by Proposition 4. We give some examples at the end of this paper.

Lemma 1. Let *L* be a lattice and $a, b, c \in L$ with $a \leq b$. If *c* is a supplement of *b* in *L*, then $a \lor c$ is a supplement of *b* in 1/a.

Proof. Similar to proof of [5, Proposition 12.2(7)].

Lemma 2 ([5, Lemma 7.4]). Let L be a lattice, $a, b \in L$ and $a \leq b$. If $a \ll b/0$ then $a \ll L$.

Lemma 3 ([5, Lemma 7.5]). In a lattice L let $c' \ll c/0$ and $d' \ll d/0$. Then $c' \lor d' \ll (c \lor d)/0$.

Lemma 4 ([5, Lemma 7.6]). *If* $a \ll L$, *then* $a \leq r(L)$.

Lemma 5 ([5, Exercise 7.3]). If L is a lattice and $a \in L$, then $r(a/0) \le r(L)$.

Lemma 6 ([5, Lemma 12.3]). *In any modular lattice* $[(c \lor d) \land b] \leq [c \land (b \lor d)] \lor [d \land (b \lor c)]$ *holds for every* $b, c, d \in L$.

Lemma 7. Let L be a lattice, $a, b \in L$ and $a \leq b$. Then b lies above a if and only if $a\beta_*b$.

Proof. (\Longrightarrow) See [8, Theorem 3].

(\Leftarrow) Let $b \lor t = 1$ with $t \in 1/a$. Since $a\beta_*b$, $a \lor t = 1$ and since $a \le t$, t = 1. Hence $b \ll 1/a$ and b lies above a.

Lemma 8 ([8, Lemma 2]). Let *L* be a lattice and $a, b, c \in L$. If $a \lor b = 1$ and $(a \land b) \lor c = 1$, then $a \lor (b \land c) = b \lor (a \land c) = 1$.

2. \oplus -supplemented lattices

Definition 1. Let L be a lattice. L is called a \oplus -supplemented lattice, if every element of L has a supplement that is a direct summand of L.

Clearly we see that every \oplus -supplemented lattice is supplemented and every complemented lattice is \oplus -supplemented. We also clearly see that hollow and local lattices are \oplus -supplemented.

Proposition 1. Let *L* be a lattice. Then *L* is \oplus -supplemented if and only if for every $b \in L$, there exists a direct summand *c* of *L* such that $b \lor c = 1$ and $b \land c \ll c/0$.

Proof. Clear from definition.

Proposition 2. Let L be a lattice. If every element of L has a weak supplement that is a direct summand of L, then L is \oplus -supplemented.

Proof. Let *a* be a weak supplement of *b* in *L* and *a* be a direct summand of *L*. Since *a* is a weak supplement of *b* in *L*, $a \wedge b \ll L$ and since *a* is a direct summand of *L*, $a \wedge b \ll a/0$. Hence *a* is a supplement of *b* in *L* and *L* is \oplus -supplemented. \Box

Lemma 9. Let L be a lattice, and $a, b \in L$. If x is a supplement of $a \lor b$ in L and y is a supplement of $a \land (x \lor b)$ in a/0 then $x \lor y$ is a supplement of b in L.

Proof. Since x is a supplement of $a \lor b$ in L and y is a supplement of $a \land (x \lor b)$ in a/0, then $1 = a \lor b \lor x$, $(a \lor b) \land x \ll x/0$, $a = [a \land (x \lor b)] \lor y$ and $(x \lor b) \land y = a \land (x \lor b) \land y \ll y/0$. Here $1 = a \lor b \lor x = [a \land (x \lor b)] \lor y \lor b \lor x = b \lor x \lor y$. By Lemma 6, $(x \lor y) \land b \le [(y \lor b) \land x] \lor [(x \lor b) \land y] \le [(a \lor b) \land x] \lor [(x \lor b) \land y] \ll (x \lor y)/0$. Hence $x \lor y$ is a supplement of b in L.

Lemma 10. Let L be a lattice and $a_1, a_2 \in L$ where $a_1/0$ and $a_2/0$ are \oplus -supplemented and $1 = a_1 \oplus a_2$. Then L is \oplus -supplemented.

Proof. Let x be any element of L. Then $1 = a_1 \lor a_2 \lor x$ and $a_1 \lor a_2 \lor x$ has a supplement 0 in L. Since $a_2/0$ is \oplus -supplemented, $a_2 \land (a_1 \lor x)$ has a supplement y that is a direct summand in $a_2/0$. By Lemma 9, y is a supplement of $a_1 \lor x$ in L. Since $a_1/0$ is \oplus -supplemented, $a_1 \land (x \lor y)$ has a supplement z that is a direct summand in $a_1/0$. By Lemma 9, $y \lor z$ is a supplement of x in L. Since y is a direct summand of $a_2/0$ and z is a direct summand of $a_1/0$, by $1 = a_1 \oplus a_2$, $y \lor z = y \oplus z$ is a direct summand of L. Finally, L is \oplus -supplemented.

Corollary 1. Let L be a lattice, $a_1, a_2, ..., a_n \in L$ and $1 = a_1 \oplus a_2 \oplus ... \oplus a_n$. If $a_i/0$ is \oplus -supplemented for every i = 1, 2, ..., n, then L is \oplus -supplemented.

Proof. Clear from Lemma 10.

Lemma 11. Let *L* be a lattice, $a \in L$ and $a = (a \land a_1) \oplus (a \land a_2)$ for every $a_1, a_2 \in L$ with $1 = a_1 \oplus a_2$. If *L* is \oplus -supplemented, then 1/a is also \oplus -supplemented.

Proof. Let $x \in 1/a$. Since *L* is \oplus -supplemented, there exist $y, z \in L$ such that $1 = x \lor y, x \land y \ll y/0$ and $1 = y \oplus z$. Since *y* is a supplement of *x* in *L* and $a \le x$, by Lemma 1, $a \lor y$ is a supplement of *x* in 1/a. Since $1 = y \oplus z$, by hypothesis, $a = (a \land y) \oplus (a \land z)$. Then $(a \lor y) \land (a \lor z) = [(a \land y) \lor (a \land z) \lor y] \land [(a \land y) \lor (a \land z) \lor z] = [y \lor (a \land z)] \land [(a \land y) \lor z] = (a \land y) \lor [(y \lor (a \land z)) \land z] = (a \land y) \lor [(y \land z) \lor (a \land z)] = (a \land y) \lor (0 \lor (a \land z)) = (a \land y) \lor (a \land z) = a$. Hence 1/a is \oplus -supplemented.

Corollary 2. Let *L* be a distributive lattice. If *L* is \oplus -supplemented, then 1/a is \oplus -supplemented for every $a \in L$.

Proof. Clear from Lemma 11.

Lemma 12. Let *L* be a supplemented lattice and a/0 is a quotient sublattice such that $a \wedge r(L) = 0$. Then every element of a/0 is a direct summand of a/0.

Proof. Let $x \in a/0$. Since *L* is supplemented, there exists an element *y* of *L* with $1 = x \lor y$ and $x \land y \ll y/0$. Since $1 = x \lor y$ and $x \le a, a = x \lor (a \land y)$. Since $x \land y \ll y/0$, by Lemma 4, $x \land y \le r(L)$. Then $x \land (a \land y) = a \land x \land y \le a \land r(L) = 0$ and $a \land x \land y = 0$. Hence $a = x \oplus (a \land y)$ in a/0 and *x* is a direct summand of a/0.

Corollary 3. Let *L* be a supplemented lattice and a/0 is a quotient sublattice such that $a \wedge r(L) = 0$. Then a/0 is complemented.

Proof. Clear from Lemma 12.

Proposition 3. Let *L* be $a \oplus$ -supplemented lattice. Then there exist $a_1, a_2 \in L$ such that $1 = a_1 \oplus a_2$, $r(a_1/0) \ll a_1/0$ and $r(a_2/0) = a_2$.

Proof. Since L is \oplus -supplemented, there exist $a_1, a_2 \in L$ such that $1 = r(L) \lor a_1 = a_1 \oplus a_2$ and $r(L) \land a_1 \ll a_1/0$. Then by Lemma 5, $r(a_1/0) \le r(L) \land a_1 \ll a_1/0$.

Assume x be a maximal $(\neq a_2)$ element of $a_2/0$. Since $1/(a_1 \lor x) = (a_1 \oplus a_2)/(a_1 \lor x) = (a_1 \lor x \lor a_2)/(a_1 \lor x) \cong a_2/[a_2 \land (a_1 \lor x)] = a_2/[(a_2 \land a_1) \lor x] = a_2/x$, $a_1 \lor x$ is a maximal element $(\neq 1)$ of L and since $1 = r(L) \lor a_1 \le a_1 \lor x$, this is a contradiction. Hence $r(a_2/0) = a_2$.

Definition 2. Let L be a lattice. L is called a completely \oplus -supplemented lattice, if every quotient sublattice a/0 such that a is a direct summand of L is \oplus -supplemented.

Theorem 1. Let *L* be a \oplus -supplemented lattice with (D3). Then *L* is completely \oplus -supplemented.

Proof. Let *u* be a direct summand of *L* and $x \in u/0$. Since *L* is \oplus -supplemented, then there exists a direct summand *y* of *L* such that $1 = x \lor y$ and $x \land y \ll y/0$.

776

Because of $1 = x \lor y$, $u \lor y = 1$ and because of *L* has (*D*3), $u \land y$ is a direct summand of *L* and hence $u \land y$ is a direct summand of u/0. Since $1 = x \lor y$ and $x \le u$, $u = x \lor (u \land y)$. By $x \land u \land y = x \land y \ll y/0$, $x \land u \land y \ll L$. By $x \land u \land y \le u \land y$ and $u \land y$ is a direct summand of *L*, $x \land u \land y \ll u \land y$. Thus u/0 is \oplus -supplemented.

Definition 3. Let *L* be a supplemented lattice. *L* is called a strongly \oplus -supplemented lattice if every supplement element in *L* is a direct summand of *L*.

Clearly we see that every strongly \oplus -supplemented lattice is \oplus -supplemented and every complemented lattice is strongly \oplus -supplemented. Hollow and local lattices are strongly \oplus -supplemented.

Lemma 13. Let a be a supplement of b in L and $x, y \in a/0$. Then y is a supplement of x in a/0 if and only if y is a supplement of $b \lor x$ in L.

Proof. (\implies) Let y be a supplement of x in a/0 and $b \lor x \lor z = 1$ with $z \le y$. Because of $x, y \in a/0$ and $z \le y, x \lor z \le a$. Since a is a supplement of b in L, $a = x \lor z$. Since y is a supplement of x in a/0, z = y. Hence y is a supplement of $b \lor x$ in L.

(\Leftarrow)Let y be a supplement of $b \lor x$ in L. So, $b \lor x \lor y = 1$ and $(b \lor x) \land y \ll y/0$. Since $x \lor y \le a$ and a is a supplement of b in L, $x \lor y = a$ and $x \land y \le (b \lor x) \land y \ll y/0$. Hence y is a supplement of x in a/0.

Lemma 14. Let L be a strongly \oplus -supplemented lattice. Then for every direct summand a of L, the quotient sublattice a/0 is strongly \oplus -supplemented.

Proof. Let $1 = a \oplus b$ with $b \in L$, $x, y \in a/0$ and y be supplement of x in a/0. By Lemma 13, y is a supplement of $b \lor x$ in L. Since L is strongly \oplus -supplemented, every supplement element is a direct summand of L and y is a direct summand of L. Here there exists $z \in L$ such that $1 = y \oplus z$. By modularity, $a = a \land 1 = a \land (y \oplus z) = y \oplus (a \land z)$. Thus y is a direct summand of a/0.

Corollary 4. Every strongly \oplus -supplemented lattice is completely \oplus -supplemented.

Proof. Clear from Lemma 14.

Lemma 15. Let *L* be a distributive lattice and $a_1, a_2 \in L$ with $1 = a_1 \oplus a_2$. If $a_1/0$ and $a_2/0$ are strongly \oplus -supplemented, then *L* is also strongly \oplus -supplemented.

Proof. Let *a* be a supplement of *b* in *L*. Since *L* is distributive, $a = a \land 1 = a \land (a_1 \oplus a_2) = (a \land a_1) \oplus (a \land a_2)$ holds. By Lemma 13, $a \land a_1$ is a supplement of $(a \land a_2) \lor b$ in *L*. We can also see that $a \land a_1$ is a supplement of $a_1 \land ((a \land a_2) \lor b)$ in $a_1/0$. Since $a_1/0$ is strongly \oplus -supplemented, $a \land a_1$ is a direct summand of $a_1/0$. Similarly we can see that $a \land a_2$ is a direct summand of $a_2/0$. Since $1 = a_1 \oplus a_2$ and $a = (a \land a_1) \oplus (a \land a_2)$, *a* is a direct summand of *L*. Hence *L* is strongly \oplus -supplemented.

Corollary 5. Let L be a distributive lattice, $a_1, a_2, ..., a_n \in L$ and $1 = a_1 \oplus a_2 \oplus ... \oplus a_n$. If $a_i/0$ is strongly \oplus -supplemented for every i = 1, 2, ..., n, then L is strongly \oplus -supplemented.

Proof. Clear from Lemma 15.

Lemma 16. Let L be a supplemented lattice. The following statements are equivalent.

(*i*) L is strongly \oplus -supplemented.

(ii) Every supplement element of L lies above a direct summand in L.

(iii)(a) For every nonzero supplement element a in L, a/0 contains a nonzero direct summand of L.

(b) For every nonzero supplement element a in L, a/0 contains a maximal direct summand of L.

Proof. $(i) \Longrightarrow (ii)$ Clear, since every element of L lies above itself.

 $(ii) \implies (iii)$ Let *a* be a nonzero supplement element in *L*. Assume *a* is a supplement of *b* in *L*. By hypothesis, there exists a direct summand *x* of *L* such that *a* lies above *x* in *L*. By Lemma 7, $a\beta_*x$ and since $a \lor b = 1$, $x \lor b = 1$. Since *a* is a supplement of *b* in *L* and $x \le a$, a = x and *a* is a nonzero direct summand of *L*.

 $(iii) \Longrightarrow (i)$ Let *a* be a supplement of *b* in *L* and *x* be a maximal direct summand of *L* with $x \le a$. Assume $1 = x \oplus y$ with $y \in L$. Then $a = a \land 1 = a \land (x \oplus y) = x \oplus (a \land y)$ and by Lemma 13, $a \land y$ is a supplement of $b \lor x$ in *L*. If $a \land y$ is not zero, then by hypothesis, $(a \land y)/0$ contains a nonzero direct summand *c* of *L*. Here $x \oplus c$ is a direct summand of *L* and $x \oplus c \le a$. This contradicts the choice of *x*. Hence $a \land y = 0$ and a = x. Thus *a* is a direct summand of *L* and *L* is strongly \oplus -supplemented.

Proposition 4. Let L be a lattice. The following statements are equivalent.

(*i*) *L* has (D1) property.

(*ii*) Every element of L lies above a direct summand in L.

(*iii*) *L* is amply supplemented and strongly \oplus -supplemented.

Proof. (*i*) \implies (*ii*) Let $a \in L$. Since *L* has (*D*1) property, there exist $a_1, a_2 \in L$ such that $1 = a_1 \oplus a_2$, $a_1 \leq a$ and $a_2 \wedge a \ll a_2/0$. Let $a \lor t = 1$ with $t \in 1/a_1$. Since $a_1 \leq a$ and $1 = a_1 \oplus a_2$, $a = a \land 1 = a \land (a_1 \oplus a_2) = a_1 \oplus (a \land a_2)$. Then $1 = a \lor t = a_1 \lor (a \land a_2) \lor t = (a \land a_2) \lor t$ and since $a \land a_2 \ll L$, t = 1. Hence $a \ll 1/a_1$ and *a* lies above a_1 .

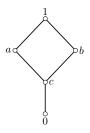
 $(ii) \implies (iii)$ Let $a \lor b = 1$ with $a, b \in L$. By hypothesis, $a \land b$ lies above a direct summand in *L*. Here there exist $x, y \in L$ such that $1 = x \oplus y$ and $a \land b$ lies above *x*. Since $1 = x \oplus y$ and $x \le b, b = b \land 1 = b \land (x \lor y) = x \lor (b \land y)$. Then $1 = a \lor b = a \lor x \lor (b \land y) = a \lor (b \land y)$. By hypothesis, $b \land y$ lies above a direct summand in *L*. Here there exist $x_1, y_1 \in L$ such that $1 = x_1 \oplus y_1$ and $b \land y$ lies above x_1 . By Lemma 7, $(b \land y) \beta_* x_1$ and since $1 = a \lor (b \land y), 1 = a \lor x_1$ holds.

Let $(a \land x_1) \lor t = 1$ with $t \in L$. By $a \land x_1 \le a \land b \land y$, $(a \land b \land y) \lor t = 1$ holds. Here $y = y \land 1 = y \land ((a \land b \land y) \lor t) = (a \land b \land y) \lor (y \land t)$ and $1 = x \lor y = x \lor (a \land b \land y) \lor (y \land t) = x \lor (a \land b) \lor (y \land t)$. Since $a \land b$ lies above x, by Lemma 7, $(a \land b) \beta_* x$. Then $1 = x \lor (a \land b) \lor (y \land t) = x \lor (y \land t)$ and since y is a supplement of x in L and $y \land t \le y$, $y \land t = y$ and $y \le t$. Hence $1 = (a \land b \land y) \lor t = t$ and $a \land x_1 \ll L$. Since x_1 a direct summand of L, $a \land x_1 \ll x_1/0$ and x_1 is a supplement of a in L. Moreover, $x_1 \le b$. Hence L is amply supplemented. By Lemma 16, L is strongly \oplus -supplemented.

 $(iii) \implies (i)$ Let *a* be any element of *L*. By hypothesis, *a* has a supplement *b* in *L*. Here $1 = a \lor b$ and $a \land b \ll b/0$. Since *L* is amply supplemented, *b* has a supplement *x* in *L* with $x \le a$. By hypothesis, *x* is a direct summand of *L* and there exists an element *y* of *L* such that $1 = x \oplus y$. Let $(a \land y) \lor t = 1$ with $t \in L$. Since $1 = x \lor y = a \lor y$, by Lemma 8, $a \lor (y \land t) = 1$. Since $1 = x \lor b$ and $x \le a$, $a = a \land 1 = a \land (x \lor b) = x \lor (a \land b)$. Then $1 = a \lor (y \land t) = x \lor (a \land b) \lor (y \land t)$ and since $a \land b \ll L$, $1 = x \lor (y \land t)$. Since $1 = x \lor (y \land t)$ and *y* is a supplement of *x* in *L*, $y \land t = y$ and $y \le t$. Then $1 = (a \land y) \lor t = t$ and $a \land y \ll L$. Since *y* is a direct summand of *L*, $a \land y \ll y/0$. Hence *L* has (*D*1) property.

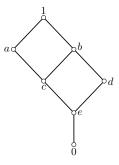
Corollary 6. Let L be a lattice with (D1) property. Then L is \oplus -supplemented. *Proof.* Clear from Proposition 4 and Corollary 4.

Example 1. Consider the lattice $L = \{0, a, b, c, 1\}$ given by the following diagram.



Then *L* is supplemented but not \oplus -supplemented.

Example 2. Consider the lattice $L = \{0, a, b, c, d, e, 1\}$ given by the following diagram.



Then *L* is supplemented but not \oplus -supplemented.

Example 3. Consider the interval [0,1] with natural topology. Let *P* be the set of all closed subsets of [0,1]. *P* is complete modular lattice by the inclusion (See [1, Example 2.10]). Here $\bigwedge C_i = \bigcap_{i \in I} C_i$ and $\bigvee C_i = \overline{\bigcup C_i}$ for every $C_i \in P$ $(i \in I)$ $\left(\overline{\bigcup C_i}$ is the closure of $\bigcup C_i$). Let $X \in P$ and $X \lor Y = [0,1]$ with $Y \in P$. Then $[0,1] - X \subset Y$ and since *Y* is closed $\overline{[0,1]} - \overline{X} \subset Y$. Let $X' = \overline{[0,1]} - \overline{X}$. Then $X' \in P$, $X \lor X' = X \cup X' = [0,1]$ and $X' \subset Y$ for every $Y \in P$ with $X \lor Y = [0,1]$. Hence *X* has ample supplements in *P* (here $X' = \overline{[0,1]} - \overline{X}$ is the only supplement of *X* in *P*) and *P* is amply supplemented. Let $A = [0,a] \in P$ with 0 < a < 1. Here $A' = \overline{[0,1]} - \overline{A} = [a,1]$ is the only supplement of *A* in *P*. Let $A' \lor B = A' \cup B = [0,1]$ with $B \in P$. Since $A' \cup B = [0,1]$, $[0,a) = [0,1] - A' \subset B$ and since *B* is closed, $[0,a] \subset B$. This case $a \in B$ and since $a \in A'$, $A' \land B = A' \cap B \neq \emptyset$. Hence A' is not a direct summand of *P* and *P* is not \oplus -supplemented.

REFERENCES

- R. Alizade and E. Toksoy, "Cofinitely weak supplemented lattices," *Indian Journal of Pure and Applied Mathematics*, vol. 40:5, pp. 337–346, 2009.
- [2] R. Alizade and S. E. Toksoy, "Cofinitely supplemented modular lattices," Arabian Journal for Science and Engineering, vol. 36, no. 6, p. 919, 2011.
- [3] G. F. Birkenmeier, F. T. Mutlu, C. Nebiyev, N. Sökmez, and A. Tercan, "Goldie*supplemented modules," *Glasgow Mathematical Journal*, vol. 52A, pp. 41–52, 2010, doi: 10.1017/S0017089510000212.
- [4] J. Clark, C. Lomp, N. Vanaja, and R. Wisbauer, *Lifting Modules: Supplements and Projectivity in Module Theory (Frontiers in Mathematics)*, 2006th ed. Basel: Birkhäuser, 8 2006.
- [5] G. Călugăreanu, Lattice Concepts of Module Theory. Kluwer Academic Publisher, 2000.
- [6] A. Harmanci, D. Keskin, and P. Smith, "On ⊕-supplemented modules," Acta Mathematica Hungarica, vol. 83, no. 1-2, pp. 161–169, 1999, doi: 10.1023/A:1006627906283.
- [7] A. Idelhadj and R. Tribak, "On some properties of ⊕- supplemented modules," *International Journal of Mathematics and Mathematical Sciences*, vol. 2003, no. 69, pp. 4373–4387, 2003, doi: 10.1155/S016117120320346X.
- [8] C. Nebiyev and H. H. Ökten, "β* relation on lattices," *Miskolc Mathematical Notes*, vol. 18, no. 2, 2017, doi: 10.18514/MMN.2017.1782.
- [9] R. Wisbauer, Foundations of Module and Ring Theory. Philadelphia: Gordon and Breach, 1991.

Authors' addresses

Çiğdem Biçer

Ondokuz Mayıs University, 55270, Kurupelit, Atakum, Samsun, Turkey *E-mail address:* cigdem_bicer184@hotmail.com

Celil Nebiyev

Ondokuz Mayıs University, 55270, Kurupelit, Atakum, Samsun, Turkey *E-mail address:* cnebiyev@omu.edu.tr