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Abstract. In this work,˚�supplemented and strongly˚�supplemented lattices are defined and
investigated some properties of these lattices. Let L be a lattice and 1 D a1˚ a2˚ :::˚ an

with a1;a2; :::;an 2 L. If ai=0 is ˚�supplemented for each i D 1;2; :::;n, then L is also
˚�supplemented. Let L be a distributive lattice and 1D a1˚a2˚ :::˚an with a1;a2; :::;an 2

L. If ai=0 is strongly˚�supplemented for each i D 1;2; :::;n, thenL is also strongly˚�supple-
mented. A lattice L has .D1/ property if and only if L is amply supplemented and strongly
˚�supplemented.
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1. INTRODUCTION

Throughout this paper, all lattices are complete modular lattices with the smallest
element 0 and the greatest element 1. Let L be a lattice, a;b 2 L and a � b. A
sublattice fx 2 Lja � x � bg is called a quotient sublattice, denoted by b=a. An
element a0 of a lattice L is called a complement of a in L if a^a0D 0 and a_a0D 1,
this case we denote 1 D a˚ a

0

(a and a
0

also is called direct summands of L). L
is called a complemented lattice if each element has at least one complement in L.
An element a of L is said to be small or superfluous and denoted by a� L if b D 1
for every element b of L such that a_b D 1. The meet of all the maximal elements
.¤ 1/ of a lattice L is called the radical of L and denoted by r.L/. An element c of
L is called a supplement of b in L if it is minimal for b_ c D 1. a is a supplement
of b in a lattice L if and only if a_b D 1 and a^b� a=0. A lattice L is said to be
supplemented if every element of L has a supplement in L. We say that an element
b of L lies above an element a of L if a � b and b� 1=a. L is said to be hollow if
every element .¤ 1/ is superfluous in L, and L is said to be local if L has the greatest
element .¤ 1/. An element a of L is called a weak supplement of b in L if a_b D 1
and a^b� L. A lattice L is said to be weakly supplemented, if every element of L
has a weak supplement in L. We say that an element a 2 L has ample supplements
in L if for every b 2 L with a_b D 1, a has a supplement b0 in L with b0 � b. L is
called an amply supplemented lattice, if every element of L has ample supplements
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in L. It is clear that every supplemented lattice is weakly supplemented and every
amply supplemented lattice is supplemented. A lattice L is said to be distributive if
a^.b_ c/D .a^b/_.a^ c/ for every a;b;c 2L. LetL be a lattice. It is defined ˇ�
relation on the elements of L by aˇ�b with a;b 2L if and only if for each t 2L such
that a_ t D 1 then b_ t D 1 and for each k 2 L such that b_k D 1 then a_k D 1.

Let L be a lattice. Consider the following conditions.
.D1/ For every element a of L, there exist a1;a2 2 L such that 1 D a1˚ a2,

a1 2 a=0 and a2^a� a2=0.
.D3/ If a1 and a2 are direct summands of L and 1D a1_a2, then a1^a2 is also

a direct summand of L.
More details about (amply) supplemented lattices are in [1,2] and [5]. More results

about (amply) supplemented modules are in [4] and [9]. Some important properties
of ˚�supplemented modules are in [6] and [7]. The definition of ˇ� relation on
lattices and some properties of this relation are in [8]. The definition of ˇ� relation
on modules and some properties of this relation are in [3].

In this paper, we generalize some properties of ˚�supplemented modules to lat-
tices. We constitute relationships between˚�supplemented quotient sublattices and
˚�supplemented lattices by Lemma 11 and Corollary 2. We also constitute rela-
tionships between lattices which has .D1/ property and strongly ˚�supplemented
lattices by Proposition 4. We give some examples at the end of this paper.

Lemma 1. Let L be a lattice and a;b;c 2 L with a � b. If c is a supplement of b
in L, then a_ c is a supplement of b in 1=a.

Proof. Similar to proof of [5, Proposition 12.2(7)]. �

Lemma 2 ([5, Lemma 7.4]). Let L be a lattice, a;b 2 L and a � b. If a� b=0

then a� L.

Lemma 3 ([5, Lemma 7.5]). In a lattice L let c0 � c=0 and d 0 � d=0. Then
c0_d 0� .c_d/=0.

Lemma 4 ([5, Lemma 7.6]). If a� L, then a � r.L/.

Lemma 5 ([5, Exercise 7.3]). If L is a lattice and a 2 L, then r.a=0/� r.L/.

Lemma 6 ([5, Lemma 12.3]). In any modular lattice Œ.c_d/^b�� Œc^ .b_d/�_
Œd ^ .b_ c/� holds for every b;c;d 2 L.

Lemma 7. Let L be a lattice, a;b 2 L and a � b. Then b lies above a if and only
if aˇ�b.

Proof. .H)/ See [8, Theorem 3].
.(H/ Let b_ t D 1 with t 2 1=a. Since aˇ�b, a_ t D 1 and since a � t , t D 1.

Hence b� 1=a and b lies above a. �

Lemma 8 ([8, Lemma 2]). Let L be a lattice and a;b;c 2 L. If a_ b D 1 and
.a^b/_ c D 1, then a_ .b^ c/D b_ .a^ c/D 1.
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2. ˚�SUPPLEMENTED LATTICES

Definition 1. Let L be a lattice. L is called a ˚�supplemented lattice, if every
element of L has a supplement that is a direct summand of L.

Clearly we see that every˚�supplemented lattice is supplemented and every com-
plemented lattice is ˚�supplemented. We also clearly see that hollow and local
lattices are˚�supplemented.

Proposition 1. Let L be a lattice. Then L is ˚�supplemented if and only if for
every b 2L, there exists a direct summand c ofL such that b_cD 1 and b^c� c=0.

Proof. Clear from definition. �

Proposition 2. Let L be a lattice. If every element of L has a weak supplement
that is a direct summand of L, then L is˚�supplemented.

Proof. Let a be a weak supplement of b in L and a be a direct summand of L.
Since a is a weak supplement of b inL, a^b�L and since a is a direct summand of
L, a^b� a=0. Hence a is a supplement of b in L and L is˚�supplemented. �

Lemma 9. Let L be a lattice, and a;b 2L. If x is a supplement of a_b in L and
y is a supplement of a^ .x_b/ in a=0 then x_y is a supplement of b in L.

Proof. Since x is a supplement of a_b in L and y is a supplement of a^ .x_b/
in a=0, then 1D a_b_x, .a_b/^x� x=0, aD Œa^.x_b/�_y and .x_b/^yD
a^.x_b/^y� y=0. Here 1D a_b_xD Œa^.x_b/�_y_b_xD b_x_y. By
Lemma 6, .x_y/^b � Œ.y_b/^x�_ Œ.x_b/^y�� Œ.a_b/^x�_ Œ.x_b/^y��
.x_y/=0. Hence x_y is a supplement of b in L. �

Lemma 10. Let L be a lattice and a1;a2 2 L where a1=0 and a2=0 are ˚�
supplemented and 1D a1˚a2. Then L is˚�supplemented.

Proof. Let x be any element of L. Then 1 D a1_ a2_x and a1_ a2_x has a
supplement 0 in L. Since a2=0 is ˚�supplemented, a2^ .a1_x/ has a supplement
y that is a direct summand in a2=0. By Lemma 9, y is a supplement of a1 _ x in
L. Since a1=0 is ˚�supplemented, a1^ .x_y/ has a supplement ´ that is a direct
summand in a1=0. By Lemma 9, y_´ is a supplement of x in L. Since y is a direct
summand of a2=0 and ´ is a direct summand of a1=0, by 1D a1˚a2, y_´D y˚´
is a direct summand of L. Finally, L is˚�supplemented. �

Corollary 1. Let L be a lattice, a1;a2; :::;an 2 L and 1D a1˚a2˚ :::˚an. If
ai=0 is˚�supplemented for every iD 1;2; : : : :;n, then L is˚�supplemented.

Proof. Clear from Lemma 10. �

Lemma 11. LetL be a lattice, a 2L and aD .a^a1/˚.a^a2/ for every a1;a2 2

L with 1D a1˚a2. If L is˚�supplemented, then 1=a is also˚�supplemented.
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Proof. Let x 2 1=a . Since L is ˚�supplemented, there exist y;´ 2 L such that
1D x_y, x^y� y=0 and 1D y˚´. Since y is a supplement of x in L and a� x,
by Lemma 1, a_ y is a supplement of x in 1=a. Since 1 D y˚ ´, by hypothesis,
a D .a^y/˚ .a^´/. Then .a_y/^ .a_´/D Œ.a^y/_ .a^´/_y�^ Œ.a^y/_
.a^´/_´�D Œy_ .a^´/�^ Œ.a^y/_´�D .a^y/_ Œ.y_ .a^´//^´�D .a^y/_

Œ.y ^´/_ .a^´/�D .a^y/_ .0_ .a^´//D .a^y/_ .a^´/D a. Hence 1=a is
˚�supplemented. �

Corollary 2. Let L be a distributive lattice. If L is ˚�supplemented, then 1=a is
˚�supplemented for every a 2 L.

Proof. Clear from Lemma 11. �

Lemma 12. Let L be a supplemented lattice and a=0 is a quotient sublattice such
that a^ r.L/D 0. Then every element of a=0 is a direct summand of a=0.

Proof. Let x 2 a=0. Since L is supplemented, there exists an element y of L
with 1D x_y and x^y� y=0. Since 1D x_y and x � a, aD x_ .a^y/. Since
x^y� y=0, by Lemma 4, x^y � r.L/. Then x^.a^y/D a^x^y � a^r.L/D
0 and a^x ^y D 0. Hence a D x˚ .a^y/ in a=0 and x is a direct summand of
a=0. �

Corollary 3. LetL be a supplemented lattice and a=0 is a quotient sublattice such
that a^ r.L/D 0. Then a=0 is complemented.

Proof. Clear from Lemma 12. �

Proposition 3. Let L be a ˚�supplemented lattice. Then there exist a1;a2 2 L

such that 1D a1˚a2, r.a1=0/� a1=0 and r.a2=0/D a2.

Proof. Since L is ˚�supplemented, there exist a1;a2 2 L such that 1D r.L/_
a1 D a1˚a2 and r.L/^a1� a1=0. Then by Lemma 5, r.a1=0/ � r.L/^a1�

a1=0.
Assume x be a maximal .¤ a2/ element of a2=0. Since 1=.a1 _ x/ D .a1˚

a2/=.a1_x/D .a1_x_a2/=.a1_x/Š a2=Œa2^ .a1_x/�D a2=Œ.a2^a1/_x�D

a2=x, a1_x is a maximal element .¤ 1/ of L and since 1D r.L/_a1 � a1_x, this
is a contradiction. Hence r.a2=0/D a2. �

Definition 2. Let L be a lattice. L is called a completely ˚�supplemented
lattice, if every quotient sublattice a=0 such that a is a direct summand of L is
˚�supplemented.

Theorem 1. Let L be a˚�supplemented lattice with .D3/. Then L is completely
˚�supplemented.

Proof. Let u be a direct summand ofL and x 2 u=0. SinceL is˚�supplemented,
then there exists a direct summand y of L such that 1 D x _ y and x ^ y � y=0.



˚�SUPPLEMENTED LATTICES 777

Because of 1 D x _ y, u_ y D 1 and because of L has .D3/, u^ y is a direct
summand of L and hence u^ y is a direct summand of u=0. Since 1 D x _ y

and x � u, u D x _ .u^ y/. By x ^ u^ y D x ^ y � y=0, x ^ u^ y � L. By
x^u^y � u^y and u^y is a direct summand of L, x^u^y� u^y. Thus u=0
is˚�supplemented. �

Definition 3. Let L be a supplemented lattice. L is called a strongly ˚�supp-
lemented lattice if every supplement element in L is a direct summand of L.

Clearly we see that every strongly ˚�supplemented lattice is ˚�supplemented
and every complemented lattice is strongly ˚�supplemented. Hollow and local lat-
tices are strongly˚�supplemented.

Lemma 13. Let a be a supplement of b in L and x;y 2 a=0. Then y is a supple-
ment of x in a=0 if and only if y is a supplement of b_x in L.

Proof. .H)/ Let y be a supplement of x in a=0 and b_x _ ´ D 1 with ´ � y.
Because of x;y 2 a=0 and ´ � y, x _ ´ � a. Since a is a supplement of b in L,
a D x_´. Since y is a supplement of x in a=0, ´D y. Hence y is a supplement of
b_x in L.
.(H/Let y be a supplement of b_x in L. So, b_x_y D 1 and .b_x/^y�

y=0. Since x _ y � a and a is a supplement of b in L, x _ y D a and x ^ y �
.b_x/^y� y=0. Hence y is a supplement of x in a=0. �

Lemma 14. Let L be a strongly ˚�supplemented lattice. Then for every direct
summand a of L, the quotient sublattice a=0 is strongly˚�supplemented.

Proof. Let 1D a˚b with b 2L, x;y 2 a=0 and y be supplement of x in a=0. By
Lemma 13, y is a supplement of b_x in L. Since L is strongly ˚�supplemented,
every supplement element is a direct summand of L and y is a direct summand of L.
Here there exists ´2L such that 1D y˚´. By modularity, aD a^1D a^.y˚´/D
y˚ .a^´/. Thus y is a direct summand of a=0. �

Corollary 4. Every strongly ˚�supplemented lattice is completely ˚�
supplemented.

Proof. Clear from Lemma 14. �

Lemma 15. LetL be a distributive lattice and a1;a2 2Lwith 1D a1˚a2. If a1=0

and a2=0 are strongly˚�supplemented, then L is also strongly˚�supplemented.

Proof. Let a be a supplement of b in L. Since L is distributive, a D a^ 1 D
a^ .a1˚a2/D .a^a1/˚ .a^a2/ holds. By Lemma 13, a^a1 is a supplement of
.a^a2/_b in L. We can also see that a^a1 is a supplement of a1^ ..a^a2/_b/

in a1=0. Since a1=0 is strongly ˚�supplemented, a^ a1 is a direct summand of
a1=0. Similarly we can see that a^ a2 is a direct summand of a2=0. Since 1 D
a1˚a2 and aD .a^a1/˚.a^a2/, a is a direct summand ofL. HenceL is strongly
˚�supplemented. �
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Corollary 5. Let L be a distributive lattice, a1;a2; :::;an 2 L and 1D a1˚a2˚

:::˚ an. If ai=0 is strongly ˚�supplemented for every iD 1;2; : : : :;n, then L is
strongly˚�supplemented.

Proof. Clear from Lemma 15. �

Lemma 16. Let L be a supplemented lattice. The following statements are equi-
valent.
.i/ L is strongly˚�supplemented.
.i i/ Every supplement element of L lies above a direct summand in L.
.i i i/ .a/ For every nonzero supplement element a in L, a=0 contains a nonzero

direct summand of L.
.b/ For every nonzero supplement element a in L, a=0 contains a maximal

direct summand of L.

Proof. .i/H) .i i/ Clear, since every element of L lies above itself.
.i i/ H) .i i i/ Let a be a nonzero supplement element in L. Assume a is a sup-

plement of b in L. By hypothesis, there exists a direct summand x of L such that a
lies above x in L. By Lemma 7, aˇ�x and since a_b D 1, x_b D 1. Since a is a
supplement of b in L and x � a, aD x and a is a nonzero direct summand of L.
.i i i/H) .i/ Let a be a supplement of b in L and x be a maximal direct summand

of L with x � a. Assume 1D x˚y with y 2 L. Then a D a^ 1D a^ .x˚y/D
x˚ .a^y/ and by Lemma 13, a^y is a supplement of b_x in L. If a^y is not
zero, then by hypothesis, .a^y/=0 contains a nonzero direct summand c of L. Here
x˚ c is a direct summand of L and x˚ c � a. This contradicts the choice of x.
Hence a^ y D 0 and a D x. Thus a is a direct summand of L and L is strongly
˚�supplemented. �

Proposition 4. Let L be a lattice. The following statements are equivalent.
.i/ L has .D1/ property.
.i i/ Every element of L lies above a direct summand in L.
.i i i/ L is amply supplemented and strongly˚�supplemented.

Proof. .i/ H) .i i/ Let a 2 L. Since L has .D1/ property, there exist a1;a2 2 L

such that 1 D a1˚ a2, a1 � a and a2 ^ a� a2=0. Let a_ t D 1 with t 2 1=a1.
Since a1 � a and 1 D a1˚ a2, a D a^ 1 D a^ .a1˚a2/ D a1˚ .a^a2/. Then
1 D a_ t D a1 _ .a^a2/_ t D .a^a2/_ t and since a^ a2 � L, t D 1. Hence
a� 1=a1 and a lies above a1.
.i i/ H) .i i i/ Let a_ b D 1 with a;b 2 L. By hypothesis, a^ b lies above a

direct summand in L. Here there exist x;y 2 L such that 1 D x˚y and a^ b lies
above x. Since 1D x˚y and x � b, b D b^ 1D b^ .x_y/D x_ .b^y/. Then
1D a_ b D a_x_ .b^y/D a_ .b^y/. By hypothesis, b^y lies above a direct
summand in L. Here there exist x1;y1 2 L such that 1 D x1˚ y1 and b ^ y lies
above x1. By Lemma 7, .b^y/ˇ�x1 and since 1D a_ .b^y/, 1D a_x1 holds.
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Let .a^x1/_ t D 1 with t 2 L. By a^x1 � a^ b^y, .a^b^y/_ t D 1 holds.
Here y D y^1D y^ ..a^b^y/_ t /D .a^b^y/_ .y^ t / and 1D x_y D x_
.a^b^y/_ .y^ t /D x_ .a^b/_ .y^ t /. Since a^b lies above x, by Lemma 7,
.a^b/ˇ�x. Then 1D x_.a^b/_.y^ t /D x_.y^ t / and since y is a supplement
of x in L and y ^ t � y, y ^ t D y and y � t . Hence 1 D .a^b^y/_ t D t and
a^x1�L. Since x1 a direct summand of L, a^x1� x1=0 and x1 is a supplement
of a in L. Moreover, x1 � b. Hence L is amply supplemented. By Lemma 16, L is
strongly˚�supplemented.
.i i i/ H) .i/ Let a be any element of L. By hypothesis, a has a supplement b

in L. Here 1 D a_ b and a^ b � b=0. Since L is amply supplemented, b has
a supplement x in L with x � a. By hypothesis, x is a direct summand of L and
there exists an element y of L such that 1D x˚y. Let .a^y/_ t D 1 with t 2 L.
Since 1D x_y D a_y, by Lemma 8, a_ .y^ t /D 1. Since 1D x_b and x � a,
a D a^1D a^ .x_b/D x_ .a^b/. Then 1D a_ .y^ t /D x_ .a^b/_ .y^ t /
and since a^b�L, 1D x_ .y^ t /. Since 1D x_ .y^ t / and y is a supplement of
x in L, y^ t D y and y � t . Then 1D .a^y/_ t D t and a^y� L. Since y is a
direct summand of L, a^y� y=0. Hence L has .D1/ property. �

Corollary 6. Let L be a lattice with .D1/ property. Then L is˚�supplemented.

Proof. Clear from Proposition 4 and Corollary 4. �

Example 1. Consider the lattice LD f0;a;b;c;1g given by the following diagram.

a

1

0

c

b

Then L is supplemented but not˚�supplemented.

Example 2. Consider the lattice LD f0;a;b;c;d;e;1g given by the following dia-
gram.

a

1

0

c

b

e

d
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Then L is supplemented but not˚�supplemented.

Example 3. Consider the interval Œ0;1� with natural topology. Let P be the set
of all closed subsets of Œ0;1�. P is complete modular lattice by the inclusion (See
[1, Example 2.10]). Here ^

i2I
Ci D \

i2I
Ci and _

i2I
Ci D [

i2I
Ci for every Ci 2P .i 2 I /�

[
i2I
Ci is the closure of [

i2I
Ci

�
. Let X 2 P and X _Y D Œ0;1� with Y 2 P . Then

Œ0;1��X � Y and since Y is closed Œ0;1��X � Y . Let X
0

D Œ0;1��X . Then X
0

2

P ,X_X
0

DX[X
0

D Œ0;1� andX
0

� Y for every Y 2P withX_Y D Œ0;1�. Hence
X has ample supplements in P .here X

0

D Œ0;1��X is the only supplement of
X in P / and P is amply supplemented. Let A D Œ0;a� 2 P with 0 < a < 1. Here
A

0

D Œ0;1��AD Œa;1� is the only supplement ofA inP . LetA
0

_BDA
0

[BD Œ0;1�

with B 2 P . Since A
0

[B D Œ0;1�, Œ0;a/ D Œ0;1��A
0

� B and since B is closed,
Œ0;a��B . This case a 2B and since a 2A

0

, A
0

^B DA
0

\B ¤¿. Hence A
0

is not
a direct summand of P and P is not˚�supplemented.
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