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Abstract. We introduce the notion of a classification system for an arbitrary complete
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1. Introduction

The notion of the classification system has its origin in an application of Concept
Lattices to one of the main problems of Group Technology, namely, to classify some
technical objects on the basis of their properties.

Given a set G of (technical) objects and a set M of (possible) properties, a binary
relation I j G×M is defined as follows:

(g,m) ∈ I if and only if the object g ∈ G has the property m ∈M .

The triple (G,M, I) is called formal context in mathematical literature and (by us-
ing the basic construction of Formal Concept Analysis) a complete lattice L(G,M, I)
is associated with it, which is called the concept lattice of the context (G,M, I). (For
details see [3].) If the objects with the same properties are considered identical -
and this is the case in our technical application - then the context (G,M, I) is called
row-reduced. A classification of the elements of G means a partition π = {Gi, i ∈ I}
of the set G, where any block Gi of π is characterized by the common properties of its
objects. The observation (see [7]) which led us to our investigations was the following:

”If (G,M, I) is a row-reduced context, then to any classification π = {Gi, i ∈ I} of
the elements of G corresponds a system {ai, i ∈ I} of nonzero elements of the concept
lattice L(G,M, I) satisfying the conditions (1) and (2) of Definition 2.1. Conversely,
any set of elements of L(G,M, I) which satisfies conditions (1) and (2) induces a
classification of the elements of G.”
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In the next Section, we define and study classification systems in an arbitrary
complete lattice presenting some of their basic properties, making abstraction from
the original problem and the theory of Concept Lattices. In Section 3 we give a char-
acterization of those complete pseudocomplemented lattices which have the property
that any of their classification systems yields a decomposition of the given lattice
into a direct product. In Section 4 we apply these results to describe direct product
decompositions of certain pseudocomplemented lattices.

2. Basic notions

Let 0 and 1 stand for the least and the greatest element of a bounded lattice L,
respectively. (x] is our notation for the principal ideal generated by an x ∈ L. The
supremum of a set A j L (if it exists) is denoted by ∨A. We set ∨∅ = 0, as usual.
Definition 2.1. Let L be a complete lattice. A set S = {ai | i ∈ I}, I 6= ∅ of
nonzero elements of L is called a classification system of L if the following conditions
are satisfied:

(1) ai ∧ aj = 0, for all i 6= j,

(2) x =
W
i∈I
(x ∧ ai), for all x ∈ L.

If S = {1}, then we say that S is trivial. S is called weakly independent if
aj ∧ (

W
aj

i∈I\{j}
) = 0 holds for all j ∈ I. We say that S is strongly independent if the

relation (
W
ai

i∈J
) ∧ (Wai

i∈K
) = (

W
aj

i∈J∩K
) holds for all K,J j I.

The following lemma contains some simple properties of the classification systems.

Lemma 2.2. Let S = {ai | i ∈ I} be a classification system of a complete lattice L.
Then the following statements hold:

(i) We have
W
i∈I

ai = 1 and for any b ∈ L, b 6= 0 the nonzero elements of the set

{b ∧ ai | i ∈ I} form a classification system of the sublattice (b].

(ii) If T = {bj | j ∈ J} is a classification system of (ai0 ] ( i0 ∈ I), then S0 = {ai |
i ∈ I \ {i0}} ∪ {bj | j ∈ J} is also a classification system for L.

(iii) Let K j I, K 6= ∅ arbitrary and b =
W
i∈K

ai. If S is weakly independent then

S∗ = {ai | i ∈ I \K} ∪ {b} is also a classification system of L.

Proof. (i) Substituting x = 1 in relation (2) we obtain 1 =
W
i∈I

ai. Let V = {b ∧ ai |
i ∈ K} be the subset of nonzero elements of {b ∧ ai | i ∈ I} (here K j I). Since
by (2) we have b =

W
i∈I
(b ∧ ai), V cannot be empty. As we have (b ∧ ai) ∧ (b ∧ aj) =

b ∧ (ai ∧ aj) = 0 for i 6= j, relation (1) is satisfied by V . Now take an x ∈ (b], then



Classification systems 147

x ∧ (b ∧ ai) = (x ∧ b) ∧ ai = x ∧ ai, ∀i ∈ I. Therefore, we can write:

x =
_
i∈I
(x ∧ ai) =

_
i∈I
(x ∧ (b ∧ ai)) =

_
i∈K
(x ∧ (b ∧ ai)).

Thus V satisfies (2).

(ii) Relation (1) can be easily checked for S0. Since {bj | j ∈ J} is a classification
system of (ai0 ] and since x ∧ ai0 ∈ (ai0 ], we get
x ∧ ai0 =

_
j∈J
((x ∧ ai0) ∧ bj) =

_
j∈J
(x ∧ (ai0 ∧ bj)) =

_
j∈J
(x ∧ bj), forallx ∈ L.

Thus we can write:

x =
W
i∈I
(x ∧ ai) = ( x ∧ ai0) ∨ (

W
i∈I\{i0}

(x ∧ ai)) = (
W
j∈J
(x ∧ bj)) ∨ (

W
i∈I\{i0}

(x ∧ ai)),

and this proves that relation (2) holds for S0.

(iii) We have ai ∧ b = ai ∧ (
W
i∈K

ai) 5 ai ∧ (
W

i∈I\{i}
ai). Since S is weakly independent

ai ∧ (
W

i∈I\{i}
ai) = 0. Thus we obtain ai ∧ b = 0 for all i ∈ I \K, and this ensures that

relation (1) holds for S∗. Now for an x ∈ L we have

x =
W
i∈I
(x ∧ ai) 5 (

W
i∈I\K

(x ∧ ai)) ∨ (
W
i∈K
(x ∧ ai)) 5 (

W
i∈I\K

(x ∧ ai)) ∨ (x ∧ b) 5 x.

Hence we get (
W

i∈I\K
(x∧ ai))∨ (x∧ b) = x, thus condition (2) is satisfied by S∗. ¤

Definition 2.3. An element a ∈ L is called a central element of the lattice L if for all
x, y ∈ L the sublattice generated by {a, x, y} is distributive and a is complemented.

A complement of an element a ∈ L (if it exists) is denoted by a. We note that the
complement of a central element is unique. The central elements of L form a Boolean
sublattice of L denoted by CenL. We say that an ordered pair (a, b) of elements of
a lattice L is a modular pair and we write (a, b) ∈ M if, for all x ∈ L x 5 b implies
x ∨ (a ∧ b) = (x ∨ a) ∧ b (see [6] or [8]). Clearly, we have (a, b) ∈M for any a ∈CenL
and b ∈ L. The following lemma from [6] will be useful in our proofs.

Lemma 2.4. Let a be an element of a bounded lattice L. Then the following state-
ments are equivalent:

(i) a ∈CenL,
(ii) There exists an element a0 ∈ L such that

x = (x ∧ a) ∨ (x ∧ a0) = (x ∨ a) ∧ (x ∨ a0),
(iii) There exists an element a0 ∈ L such that a ∧ a0 = 0, (a, a0) ∈M, (a0, a) ∈M

and x = (x ∧ a) ∨ (x ∧ a0) for every x ∈ L.

Remark 2.5. It is easy to check that if the element a0 in (ii) or (iii) exists, then
a0 = a. Consequently, for any a ∈CenL, {a, a} is a classification system both for L
and its dual Ld.
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Definition 2.6. Let L be a complete lattice. A classification system S = {ai | i ∈ I}
is called a decomposition system of L if ai ∈CenL, for all i ∈ I.

The following proposition clarifies the meaning of the former definition.

Proposition 2.7. Let L be a complete lattice. Then the following assertions are
true:

(i) If {ai | i ∈ I} is a (nontrivial) decomposition system of L, then L ∼= Q
i∈I
(ai] .

(ii) For any (nontrivial) direct decomposition L =
Q
i∈I

Li there exist elements

ai ∈CenL, i ∈ I such that Li ∼= (ai] and such that {ai | i ∈ I} is a (nontrivial)
decomposition system of L.

Proof. Since the above statements are more or less known in the literature, we outline
only the principal steps of the proof.

(i) The isomorphism is given by the map h : L −→ Q
i∈I
(ai] , h(x) = (x ∧ ai)i∈I .

Indeed, it is easy to check that h is a homomorphism, since for any ai ∈CenL and
x, y ∈ L we have (x ∨ y) ∧ ai = (x ∧ ai) ∨ (y ∧ ai) (and of course, (x ∧ y) ∧ ai =
(x∧ ai)∧ (y ∧ ai)). Since by the assumption of (i) x =

W
i∈I
(x∧ ai) holds for all x ∈ L,

h(x1) = h(x2) implies x1 = x2, therefore h is injective. Finally, the surjectivity of h
can be shown proving the equality

h

Ã_
i∈I

xi

!
= (xi)i∈I , for all xi 5 ai, i ∈ I.

(ii) Let 0i and 1i stand for the least and the greatest element of Li, respectively.
We define the elements ai ∈

Q
i∈I

Li = L as follows: (ai)j = 0j , for j ∈ I, j 6= i and

(ai)i = 1i. Then obviously we have Li ∼= (ai] and ai ∧ aj = 0 for all i 6= j. It is
also easy to check that any ai is a central element of

Q
i∈I

Li , i.e. of L (see [4] or [6]).

Clearly, for all x = (xi)i∈I ∈
Q
i∈I

Li we can write x =
W
i∈I
(x∧ ai), thus S = {ai | i ∈ I}

is a decomposition system of L =
Q
i∈I

Li. Evidently, whenever the set I contains more

than one element, S is not trivial. ¤
Proposition 2.8. Any decomposition system S = {ci | i ∈ I} of a complete lattice L
is a strongly independent classification system of L. Moreover, we have

W
i∈K

ci ∈CenL,
for any K j I.

Proof. In view of Proposition 2.7 we have L ∼= Q
i∈I
(ci]. For each M j I we define the

elements cM ∈ Q
i∈I
(ci] as follows: (cM )i = ci for all i ∈M , otherwise (cM )i = 0i. It is

easy to check that for any J,K j I we have cJ ∧ cK = cJ∩K . Let h : L −→ Q
i∈I
(ci],

h(x) = (x ∧ ci)i∈I be the isomorphism as in the proof of Proposition 2.7.(i). Since
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we have h

µW
i∈I

xi

¶
= (xi)i∈I for all xi 5 ai (as was indicated), h−1 maps any x =

(xi)i∈I ∈
Q
i∈I
(ci] to

W
i∈I

xi. Thus we get h−1(cM ) =
W
i∈M

ci , for all M j I. Since h−1 is

an isomorphism, now we can write:µW
i∈J

ci

¶
∧
µ W
i∈K

ci

¶
= h−1(cJ)∧h−1(cK) = h−1(cJ ∧ cK) = h−1(cJ∩K) =

W
i∈J∩K

ci.

Thus {ci | i ∈ I} is a strongly independent system.

In order to prove the second assertion, let us define for any K j I the direct
products AK =

Q
i∈K
(ci] and BK =

Q
i∈I\K

(ci], and denote by 0AK ,1AK and 0BK ,1BK

the least and the greatest elements of the lattices AK and BK , respectively. Clearly,
we have L ∼= Q

i∈I
(ci] ∼= AK × BK . By [4], (1AK , 0BK ) and (0AK , 1BK ) are central

elements of the lattice AK × BK and correspond by isomorphism to the elements
cK ∈ Q

i∈I
(ci] and cI\K ∈ Q

i∈I
(ci], respectively. Since h−1(cK) =

W
i∈K

ci, and since the

central elements of a lattice are preserved by isomorphisms, we get
W
i∈K

ci ∈CenL. ¤

3. Classification systems in particular lattices

A lattice L with 0 is said to be 0-modular if a, b ∈ L, a 5 c and b ∧ c = 0 imply
(a ∨ b) ∧ c = a. By J.C. Varlet’s result (see e.g. [8]), this definition is equivalent to
the fact that there is no N5 sublattice in L including the element 0.

Proposition 3.1. If L is a 0-modular complete lattice, then any of its weakly inde-
pendent classification systems of it is a decomposition system.

Proof. Let S = {ai | i ∈ I} be a weakly independent classification system of L and
take bi =

W
j∈I\{i}

aj , i ∈ I. Since S is weakly independent, we have ai ∧ bi = 0. In

view of Lemma 2.2(iii) the set {ai, bi} is a classification system of L, thus we get
x = (x ∧ ai) ∨ (x ∧ bi) for all x ∈ L. Since L is 0-modular, we have (x ∨ ai) ∧ bi = x
for all x 5 ai. Thus we obtain x∨ (ai∧ bi) = x = (x∨ai)∧ bi and this relation means
that (ai, bi) ∈M . Similarly we can prove (bi, ai) ∈M . Now, by applying Lemma 2.4
we get ai ∈CenL, i ∈ I, therefore S is a decomposition system of L. ¤

A lattice L with 0 element is called a pseudocomplemented lattice if any element
x ∈ L has a pseudocomplement x∗, that is, for any x ∈ L there exists an element
x∗ ∈ L such that y ∧ x = 0 iff y 5 x∗.

Definition 3.2. (R. Beazer, [2]) An element a of a pseudocomplemented lattice L is
called a semicentral element if

x = (x ∧ a) ∨ (x ∧ a∗) holds for all x ∈ L. (∗)
Remark 3.3. The above definition implies a∗ = a and a∗∗ = a for any semicentral
element a ∈ L. From here it follows that the pseudocomplement of a, i.e. a∗, is a
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semicentral element too. We note that in view of relation (∗) the set {a, a∗} is a
classification system of L. It is also clear that any c ∈CenL is a semicentral element.

Proposition 3.4. Any classification system S = {ai | i ∈ I} of a complete pseudo-
complemented lattice L is weakly independent and it consists of semicentral elements
of L. Moreover, for any K j I, K 6= ∅ W

i∈K
ai is a semicentral element of L.

Proof. As ai ∧ aj = 0 for i 6= j, we have aj 5 a∗i for all j 6= i. Thus we can writeW
j∈I\{i}

aj 5 a∗i . As a consequence, we get ai ∧
Ã W
j∈I\{i}

aj

!
= 0, i ∈ I, i.e. S is

weakly independent. Furthermore, we can write a∗i =
W
j∈I
(a∗i ∧ aj) = (a∗i ∧ ai) ∨Ã W

j∈I\{i}
(a∗i ∧ aj)

!
5

W
j∈I\{i}

aj . Hence we obtain a∗i =
W

j∈I\{i}
aj . Since S is a weakly

independent classification system, by applying Lemma 2.2(iii) with K = I \ {i} we
get that {ai, a∗i } is a classification system, too. Therefore x = (x∨ai)∨ (x∧a∗i ) holds
for all x ∈ L (and i ∈ I). Thus each ai is a semicentral element.

Finally, set b =
W
i∈K

ai, for a K j I, K 6= ∅. Then S∗ = {ai | i ∈ I \K} ∪ {b} is
also a classification system of L, by Lemma 2.2(iii) again. Thus, as we have already
proved above, b =

W
i∈K

ai is a semicentral element. ¤

Corollary 3.5. If L is a complete 0-modular pseudocomplemented lattice, then any
classification system of L is its decomposition system.

Proof. We apply Proposition 3.4 and Proposition 3.1. ¤
Example 3.6. Let TolL stand for the tolerance lattice of a lattice L. By [1], TolL is
a pseudocomplemented and 0-modular complete lattice. Thus, according to Corollary
3.5, any classification system of TolL is its decomposition system.

The last two results naturally raise the question: ”Under what conditions do the
classification systems of a complete lattice coincide with its decomposition systems?”
In the case of pseudocomplemented lattices the following is an answer.

Theorem 3.7. Let L be a complete pseudocomplemented lattice. Then the following
assertions are equivalent:

(i) Any semicentral element of L is its central element,

(ii) Any classification system of L is its decomposition system,

(iii) For any semicentral element a ∈ L we have (a, a∗) ∈M.

(iv) The complemented congruences of the algebra (L,∧,∗ ) and the factor congru-
ences of the lattice L are the same.

Proof. (i)⇒(ii) is obvious, since any classification system of a pseudocomplemented
lattice consists of semicentral elements.

(ii)⇒(iii). Since for any semicentral element a ∈ L, the set {a, a∗} is a classification
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system, by assumption of (ii) it follows that a, a∗ ∈CenL. Hence (a, a∗) ∈M .

(iii)⇒(i). Let a ∈ L be a semicentral element. Then, according to Remark 3.3, a∗

is a semicentral element, too, and a∗∗ = a. Thus by assumption we have (a, a∗) ∈M
and (a∗, a) ∈ M and x = (x ∧ a) ∨ (x ∧ a∗), ∀x ∈ L. As a ∧ a∗ = 0, by applying
Lemma 2.4, we get that a ∈CenL.

(i)⇔(iv). Let θa = {(x, y) ∈ L2 | x∧a = y∧a}. In view of [2], θa is a complemented
congruence of the algebra (L,∧,∗ ) if and only if a is a semicentral element of L.
However a ∈CenL if and only if θa is a factor congruence of the lattice L (see [4]),
whence the required equivalence follows. ¤

4. Classification systems in CJ-generated pseudocomplemented lattices

An element p of a complete lattice L is called completely join-irreducible if for
any system of elements xi ∈ L, i ∈ I, the equality p =

W{xi | i ∈ I} implies
p = xi0 for some i0 ∈ I. If any element of L is a join of the completely join-irreducible
elements, then L is called a CJ-generated lattice. The set of completely join-irreducible
elements of L is denoted by J(L). For an a ∈ L let J(a) = {p ∈ J(L) | p ≤ a}. It

is clear that for any system of elements ai ∈ L, i ∈ I we have J
µV
i∈I

ai

¶
=
T
i∈I

J(ai)

and
S
i∈I

J(ai) j J

µW
i∈I

ai

¶
, moreover, if L is CJ-generated, then for any x, y ∈ L

J(x) j J(y)⇐⇒ x 5 y.

For an arbitrary relation ρ j X × X and for a set B j X we define ρ(B) =
{x ∈ X | ∃b ∈ B such that (b, x) ∈ ρ}. We say that the set B is closed relative to
the relation ρ if ρ(B) j B, i.e. for any b ∈ B and x ∈ X from (b, x) ∈ ρ it follows
x ∈ B. If ρ is an equivalence relation, then the equivalence class of an element x ∈ X
is denoted by [x]ρ.

Let L be a CJ-generated (complete) pseudocomplemented lattice. On the set
J(L)\ {0} we define the relation R as follows: pRq ⇔ p∧ q 6= 0 (p, q ∈ J(L)\ {0}). A
partition π = {Ai | i ∈ I} of J(L) \ {0} is called R-closed if every block Ai is closed
relative to the relation R.

Now we can formulate the following

Proposition 4.1.

(i) If {ai | i ∈ I} is a classification system of L, then the sets J(ai) \ {0}, i ∈ I
form an R-closed partition of J(L) \ {0}.

(ii) If π = {Ai | i ∈ I} is an R-closed partition of the set J(L) \ {0} then the
elements ai =

W
Ai, i ∈ I form a classification system of L with J(ai) \ {0} = Ai.

Proof. (i) Since ai 6= 0, we have J(ai) \ {0} 6= ∅, and for i 6= j, ai ∧ aj = 0 gives
(J(ai)\{0})∩(J(aj)\{0}) = ∅. We prove

S
i∈I
(J(ai)\{0}) = J(L)\{0}. The inclusion
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i∈I
(J(ai) \ {0}) j J(L) \ {0} is obvious. To prove the converse inclusion take an

arbitrary p ∈ J(L) \ {0}. Then p =
W
i∈I
(p ∧ ai), because {ai | i ∈ I} is a classification

system of L. As p is completely join-irreducible, there exists an i0 ∈ I such that
p = p ∧ ai0 , i.e. such that p ∈ J(ai0) j

S
i∈I
(J(ai) \ {0}). Thus {J(ai) \ {0} | i ∈ I} is

a partition of J(L) \ {0}.
Take now any p ∈ J(ai) \ {0} and assume that pRq holds for some q ∈ J(L) \ {0}.

Since {J(ai)\{0} | i ∈ I} is a partition, we have q ∈ J(aj)\{0} for some j ∈ I. Then
p 5 ai and q 5 aj implies p ∧ q 5 ai ∧ aj . As ai ∧ aj = 0 for i 6= j, the assumption
p ∧ q 6= 0 gives i = j. Therefore q ∈ J(ai) \ {0} and this means that J(ai) \ {0} is
R-closed.

(ii) Let π = {Ai | i ∈ I} be an R-closed partition of J(L)\{0} and put ai =
W
Ai,

i ∈ I. Since Ai 6= ∅, we have ai 6= 0. First, we show that J(ai) \ {0} = Ai.

Let p ∈ J(ai)\{0}. We claim that p∧q 6= 0 for some q ∈ Ai. Indeed, p∧q = 0,∀q ∈
Ai would imply that ai =

W{q | q ∈ Ai} 5 p∗, thus we would get p = p∧ai 5 p∧p∗ = 0
- a contradiction. Thus we must have pRq for some q ∈ Ai. Since Ai is R-closed
by assumption, we get p ∈ Ai and this proves J(ai) \ {0} j Ai. The inclusion
Ai j J(ai) \ {0} is obvious.

If i 6= j then J(ai ∧aj) = J(ai)∩J(aj) = (Ai ∪{0})∩ (Aj ∪{0}) = {0}, and since
L is CJ-generated, from here it follows ai ∧ aj = 0.

Finally, observe that, in order to prove that {ai | i ∈ I} is a classification system
of L, it is enough to show the inequality x 5

W
i∈I
(x ∧ ai) for any x ∈ L. For this

purpose take any p ∈ J(x) \ {0}. Since {Ai | i ∈ I} is a partition of J(L) \ {0}, there
exists an ip ∈ I such that p ∈ Aip . Then we get p 5 x∧aip , therefore p 5

W
i∈I
(x∧ ai).

Thus we obtain x =
W{p | p ∈ J(x)} 5 W

i∈I
(x ∧ ai). ¤

Let R denote the transitive hull of the relation R. Since R is reflexive and symmet-
ric by its definition, R is an equivalence on J(L)\{0}. Clearly, the equivalence classes
[x]R, x ∈ J(L)\{0} form an R-closed partition of J(L)\{0}. Let D = {d | d = W[x]R,
x ∈ J(L) \ {0}}. Evidently the elements of D can be indexed by the elements of the
factor set CR = (J(L) \ {0})/R , i.e. we can write: D = {di | i ∈ CR}. Now, by
applying Proposition 4.1(ii) we obtain the following

Corollary 4.2. For any CJ-generated complete pseudocomplemented lattice L, the
set D = {di | i ∈ CR} is a classification system of L.

We call a CJ-generated lattice L connected, if R is the total relation on the set
J(L) \ {0}, i.e. if for any p, q ∈ J(L) \ {0} there exists a sequence of elements
p0, p1, ..., pn ∈ J(L) \ {0}, such that p0 = p, pn = q and pi−1 ∧ pi 6= 0, for all
1 5 i 5 n. Now we have the following

Corollary 4.3 Let L be a CJ-generated complete pseudocomplemented lattice. Then

(i) L admits only the trivial classification system if and only if L is connected.
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(ii) If L is connected, then it is directly irreducible.

Proof. (i) If L is not a connected lattice, then the equivalence R has more than one
class, thus applying Corollary 4.2 we get that D = {di | i ∈ CR} is a nontrivial
classification system of L.

Conversely, suppose that L is connected, and let {ai | i ∈ I} be a classification
system of L. In view of Proposition 4.1(i) the sets J(ai)\ {0}, i ∈ I form an R-closed
partition of J(L)\{0}. Thus for every ai and any x ∈ J(ai)\{0} we have [x]R j J(ai).
As L is connected, we have [x]R = J(L) \ {0} for all x ∈ J(L) \ {0}, whence we get
that J(ai) = J(L), i.e. that ai = 1, for all i ∈ I. Hence any classification system of
L is trivial.

(ii) On the contrary, suppose that the lattice L is directly reducible. Then, by
Proposition 2.7, L admits a nontrivial decomposition system S. Since S at the same
time is a classification system, the above (i) gives that L is not connected, which is a
contradiction. ¤

Now we are able to formulate the main result of this section, which is the following

Theorem 4.4. Let L be a CJ-generated complete pseudocomplemented lattice. Then
the following assertions are equivalent.

(i) Any classification system of L is a decomposition system,

(ii) L is a direct product of connected lattices,

(iii) Any semicentral element of L is central.

Proof. The equivalence (i)⇔(iii) was proved by Theorem 3.7.

(i)⇒(ii). Let D = {di | i ∈ CR} be the classification system induced by the
equivalence R. Since by assumption D is a decomposition system of L, Proposition 2.7
gives L ∼= Q

i∈CR
(di]. Clearly, any (di] as a principal ideal of L is a pseudocomplemented

CJ-generated complete lattice and the set of its completely join-irreducible elements
is the same as J(di) j J(L). Since any di is of the form di =

W
[x]R for some

x ∈ J(L) \ {0}, and since J(di) \ {0} = [x]R in view of Proposition 4.1(ii), we have
pRq for all p, q ∈ J(di) \ {0}. Thus any lattice (di] is connected.

(ii)⇒(iii). By assumption of (ii) we have L ∼= Q
i∈I

Li , where all Li are connected.

Then, in view of Proposition 2.7, there are ci ∈CenL such that Li ∼= (ci], i ∈ I and
S = {ci | i ∈ I} is a decomposition system of L. Now, let a be a semicentral element
of L. Since {a, a∗} is a classification system of L, if ci ∧ a 6= 0 and ci ∧ a∗ 6= 0 for
some i ∈ I, then by applying Lemma 2.2(i) we get that {ci ∧a, ci∧a∗} is a nontrivial
classification system of the lattice (ci]. (The system is nontrivial, since ci ∧ a = ci
would imply ci 5 a, i.e. ci ∧ a∗ = 0, - a contradiction.) Since any (ci] is a connected
lattice, it admits only the trivial classification system. Thus for each i ∈ I we must
have either ci ∧ a = 0 or ci ∧ a∗ = 0, i.e. either ci 5 a∗ or ci 5 a∗∗ = a. Let
K = {i ∈ I | ci 5 a}. Then we have ci 5 a∗ for all i ∈ I \K. Set b =

W
i∈K

ci and

c =
W

i∈I\K
ci. Then Proposition 2.8 gives b, c ∈CenL, and since S is also a classification
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system, we have b ∨ c = W
i∈I

ci = 1.

On the other hand, we have b =
W
i∈K

ci 5 a and c =
W

i∈I\K
ci 5 a∗, so we get

c ∧ a 5 a∗ ∧ a = 0 and c ∨ a = c ∨ b = 1, whence a = c. As the complement of a
central element is also central, we obtain that a ∈CenL. ¤
Corollary 4.5. Any finite 0-modular pseudocomplemented lattice L is a direct product
of connected directly irreducible lattices.

Proof. In view of Corollary 3.5 any classification system of L is a decomposition
system. Since any finite lattice is a CJ-generated complete lattice, we can apply
Theorem 4.4 and this gives that L is a direct product of connected lattices, i.e. that
L ∼= Q

i∈I
Li, where any Li is connected and of course, finite and pseudocomplemented,

too. Applying now Corollary 4.3(ii) we get that each Li is directly irreducible. ¤

Finally, we present an application of our former results to the theory of Stone
lattices.

A bounded pseudocomplemented lattice L is called a Stone lattice if x∗ ∨ x∗∗ = 1
holds for all x ∈ L. We say that a lattice L with 0 is handled, if it contains an atom
ω ∈ L such that ω 5 x hold for all x ∈ L \ {0}. Clearly, any bounded handled lattice
L is a pseudocomplemented lattice where x∗ = 0 and x∗∗ = 1, for all x ∈ L \ {0}.
Thus any bounded handled lattice is a Stone lattice. It is also obvious that any CJ-
generated handled lattice is connected. In [5], G. Grätzer and E.T. Schmidt gave the
following fine characterization of finite distributive Stone lattices:

”A finite distributive lattice is a Stone lattice if and only if it is a direct product
of finite distributive handled lattices.”

Remark 4.6. It is easy to check that in a distributive Stone lattice L we have
x∗ ∈CenL for all x ∈ L. Conversely, if x∗ ∈CenL holds for all x ∈ L in a bounded
lattice L, then L is a Stone lattice. (We note that a lattice with this property is
not distributive in general.). In view of these observations, the next theorem can be
considered to be a generalization of the above cited result of G. Grätzer and E.T.
Schmidt.

Theorem 4.7. Let L be a CJ-generated complete lattice. Then the following state-
ments are equivalent:

(i) L is a pseudocomplemented atomic lattice, and for all x ∈ L we have x∗ ∈CenL.
(ii) L is a direct product of handled lattices.

Proof. (i)⇒(ii). Since any semicentral element a ∈ L satisfies a = a∗∗, the assumption
of (i) implies that any semicentral element of L is central. Thus, by applying Theorem
4.4 we get that L is of the form L ∼= Q

i∈I
Li, where all Li are connected CJ-generated

lattices. Evidently, any lattice Li, as a factor of L, is a complete pseudocomplemented
atomic lattice.

Now we prove that any Li (i ∈ I) is a handled lattice. Denote by 0i and 1i the
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smallest and the largest element of Li, respectively. Let α be an atom of Li, we have
to show that α 5 x for all x ∈ Li, x 6= 0i. On the contrary, let us assume that
b ∧ α = 0, for some b ∈ Li, b 6= 0i. Then we have b∗ 6= 1i and b∗ = α > 0i. The
latter relation implies b∗∗ 6= 1i, and since b∗∗ = b, we have b∗∗ 6= 0i. Thus we get
b∗, b∗∗ /∈ {0i, 1i}.

Set now an element z = (zk)k∈I ∈
Q
k∈I

Lk, with zi = b. Since by assumption

z∗, z∗∗ ∈CenL, and since z∗∗ = (z∗) the set {z∗, z∗∗} is a decomposition system of
L. Thus we have x = (x ∧ z∗) ∨ (x ∧ z∗∗) for all x ∈ Q

i∈I
Li. Clearly, we get xi =

(xi∧(z∗)i)∨(xi∧(z∗∗)i) for all xi ∈ Li. Observe now, that for all x = (xk)k∈I ∈
Q
k∈I

Lk

we have x∗ = (x∗k)k∈I . Hence (z
∗)i = b∗ and (z∗∗)i = b∗∗. Summarizing, we get that

{b∗, b∗∗} is a classification system of Li. Since b∗ 6= 1i, this system is nontrivial. As
Li is a connected lattice, this result is in contradiction with Corollary 4.3(i).

(ii)⇒(i). Let L =
Q
i∈I

Li, with all Li handled. As L is a bounded lattice, each

Li must be bounded, and consequently, it must be pseudocomplemented. Then it is
not hard to check that L itself, as a direct product of pseudocomplemented atomic
lattices Li, is a pseudocomplemented atomic lattice, too. Take now an arbitrary
x = (xi)i∈I ∈ L. Then we have x∗ = (x∗i )i∈I . Since any Li is a bounded handled
lattice, we must have x∗i = 0i, for all xi 6= 0i, and x∗i = 1i otherwise. Thus for all
i ∈ I we have either (x∗)i = 0i or (x∗)i = 1i, and this fact proves that x∗ is a central
element of the product

Q
i∈I

Li. Hence x∗ ∈CenL. ¤
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