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SZEGED INDEX OF A CLASS OF UNICYCLIC GRAPHS
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Abstract. The Szeged index is a modification of the Wiener index to cyclic molecules. The
Szeged index of a connected graph G is defined as Sz(G) = ZeGE(G) n1(e|G)ny(e|G), where
E(G) is the edge set of G, and for any e = uv € E(G), n1(e|G) is the number of vertices of
G lying closer to vertex u than to vertex v, and n3(e|G) is the number of vertices of G lying
closer to vertex v than to vertex u. In this paper, we determine the n-vertex unicyclic graphs
whose vertices on the unique cycle have degree at least three with the first, the second and the
third smallest as well as largest Szeged indices for n > 6, n > 7 and n > 8§, respectively.
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1. INTRODUCTION

A topological index is a numerical quantity derived from the hydrogen-depleted
graph of a molecule as a tool for compact and effective description of structural for-
mula which allows one to study and predict the structure-property correlations of or-
ganic compounds. The Wiener index is one of the oldest topological indices, which
was introduced by Wiener [17] in 1947 to study boiling points of paraffins. Since
then, it has been used to explain various chemical and physical properties of mo-
lecules and to correlate the structure of molecules to their biological activity.

Let G be a simple connected graph with vertex set V(G) and edge set E(G). Let
dg (x,y) be the distance between vertices x and y in G. Recall that the Wiener index
of G is defined as W(G) = > dg(x,y)[5,8].

{x,y}cV(G)

If e is an edge of G connecting the vertices u and v, then we write e = uv or
e =vu.

Let e = uv € E(G). Let n1(e|G) be the number of vertices of G lying closer to
vertex u than to vertex v, and n,(e|G) be the number of vertices of G lying closer to
vertex v than to vertex u, i.e.,

ni(e|G) = [{x e V(G) : dg(x.u) <dg(x.v)j|

and
naz(e|G) = [{x e V(G) : dg(x,v) <dg(x,u)}l.
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If T is a tree, then W(T) = Y ni(e|T)n2(e|T), see [5,8]. Motivated by this
ecE(T)

equality for Wiener index of trees, Gutman [7] put forward to the Szeged index. For

a connected graph G, it is defined as [7]

Sz(G)= ) ni(e|lG)na(e|G).
ecE(G)
The Szeged index found applications for modeling physicochemical properties as
well as physiological activities of organic compounds acting as drugs or possessing
pharmacological activity [1 1], and its mathematical properties may be found, e.g.,[ 1—
,6,9,12-16, 19].

A unicyclic graph is a connected graph with a unique cycle. The n-vertex unicyclic
graphs with the smallest and the largest Szeged indices have been determined [7, 16].
Zhou et al. [19] determined the n-vertex unicyclic graphs of cycle length r with the
smallest and the largest Szeged indices for 3 < r < n, the n-vertex unicyclic graphs
with the second, the third and the fourth smallest Szeged indices, and the n-vertex
unicyclic graphs with the kth largest Szeged indices for all k up to 5 42 if n > 6 is
even, to fourif n = 7, to five if n = 9, to % if n = 3 (mod 4) with n > 11, and to
2415 if n = 1 (mod 4) with n > 13.

A unicyclic graph is fully loaded if vertices on its unique cycle all have degree at
least three. In the present paper, in continuation of the study on the Szeged index,
we determine the n-vertex fully loaded unicyclic graphs with the first, the second
and the third smallest as well as largest Szeged indices forn > 6,n > 7 and n > 8,
respectively.

2. PRELIMINARIES
Let S, and P, be the n-vertex star and path, respectively.

Lemma 1 ([5,8]). Let T be an n-vertex tree different from Sy, and P,,. Then
3

(n—1)2 = W(Sy) < W(T) < W(Py) = 6_"
For a connected graph G withu € V(G),let W,,(G) = > dg(u,v).
veV(G)

Lemma 2 ([18]). Let T be an n-vertex tree with u € V(T), where u is not the
center if T = S,, and u is not a terminal vertex if T = Py. Let x and y be the center
of the star Sy, and a terminal vertex of the path Py, respectively. Then

n—1=We(Sn) < Wy(T) < Wy(Pp) = ”(”2_1).

Let S;, be the graph formed by attaching a pendent vertex to one pendent vertex
of S, forn > 4. Let P, be the graph formed by attaching a pendent vertex to the
neighbor of a terminal vertex of P,—; forn > 4.
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Lemma 3 ([10, 18]). Among the n-vertex trees with n > 4, S}, is the unique graph
with the second smallest Wiener index, which is equal to n?2—n-—2, and Pn’ is the
unique graph with the second largest Wiener index, which is equal to %(n3 —Tn+18).

The following lemma may be easily checked.

Lemma 4. Let T be an n-vertex tree withn > 5, u € V(T), T # Sy, Py, where
u is not a vertex of maximal degree if T = S,,, and not the terminal vertex whose
neighbor has degree two if T = P,,. Let x be the vertex of maximal degree of S;,, and
y be the terminal vertex whose neighbor has degree two in P). Then n = Wx(S)) <

Wu(T) < Wy (Py) = @t D0=2)

Let C,(T1,T3,...,T,) be the graph constructed as follows. Let the vertices of
the cycle C, be labeled consecutively by vy,vs,...,v,. Let T1,T5,..., T, be vertex—
disjoint trees such that 7; and the cycle C, share exactly one common vertex v;
fori =1,2,...,r. Denote |G| = |V(G)| for a graph G. Then any n-vertex unicyclic

r
graph G with a cycle on r vertices is of the form C, (71, T3,...,T;), where >_ |T;| =
i=1
n. For the graph G = C,(T1,T3,...,Ty), let d;j = dc, (v;,v;) and t; = |T;| for
i=1,2,...,r. Thenlet Ny = ) tidjs.
i#s

For a subset M of E(G), G — M denotes the graph obtained from G by deleting
the edges in M. For a subset M * of the edge set of the complement of G, G + M *
denotes the graph obtained from G by adding the edges in M *.

Lemma 5 ([19]). Let G = C,(T1,T3,...,T;) and T; be a star with center v; for
i =1,2,...,r. Suppose that trees Ty and T; are nontrivial. Let w € V(T;) with
w # v;. If r is odd and Ny + %tk < N; + %tl, or r is even and Ny < Nj, then
Sz(G —{vyw}+{vrw}) < Sz(G).

Lete, = 1ifnis odd and ¢, = 0 if n is even.
Lemma 6 ([9]). Let G = C(T1,T3,...,Ty). Then
r r r r
S2(G) =Y W)+ Y (Gl—t)Wo, (T + D titydij—er Y _tit;.
i=1 i=1 i=1j=1 i<j

For 3 <r <[5/, let Uy, be the set of all fully loaded unicyclic graphs with n
vertices and unique cycle C,. For n > 6, let U, be the set of n-vertex fully loaded
unicyclic graphs.

3. FULLY LOADED UNICYCLIC GRAPHS WITH SMALL SZEGED INDICES

For3 <r < |%]. let Sy, = C,(T1,T2.....T;) with Ty = --- = T,—; = P> and
Ty = Sy—2(r—1) With center v;.
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Proposition 1. Let G € Uy, , with3 <r < |5 ]. Then

n2+ 2 =3r)n—r3+2r% ifrisodd

Sz(G) =
)= n2+@*—r—Dn—r3+r ifriseven

with equality if and only if G = Sy, ;.
Proof. By the definition of the Szeged index, if r is odd, then
SzSpr)=1-n=1)-(n—r)+(—-1)-(r—1)
+(r—-1)-(n—r+1-2)-(r—1)
=n?+ (% =3r)n—r3+2r2,
and if r is even, then
Sz(Snr)=1-(n—=1)-(n—r)+r-(n—r)-r
:n2+(r2—r—1)n—r3+r.
Let G = C,(T1,T2,...,T;) be a graph with the smallest Szeged index among
graphs in U, . We need only to show that G = S, .
By Lemmas 1, 2 and 6, T; is a star with center v; fori = 1,2,...,r. Suppose that
tk, 17 =3 withk #[. Let w € V(T;) with w # v;. Suppose without loss of generality
that Ny + %tk < N;+ %tl if r is odd and that N < N; if r is even. By Lemma 5,

Sz(G —{vjw}+ {vrw}) < Sz(G), a contradiction. Thus there can not be two trees
of T1,T3,...,T, with at least three vertices in G, i.e., G = Sy r. O

Let I}, be the set of graphs C3(T1,T>,T3) in U, with |T}| = |T2| = 2. Let ¥, be
the set of graphs C3(T1,72,73) in U, with |T3]| > |T>| > max{|T|,3}. Let @, be
the set of graphs in U, with cycle length at least four. Then U,, = I, U¥,, U D,,.

For n > 7, let B, be the graph in I, formed by attaching a path P, and n —7
pendent vertices to the vertex of degree two in C3(P3, Pa, P1).

Lemma 7. Among the graphs in I, with n > 7, B, is the unique graph with the
second smallest Szeged index, which is equal to n*> +n —12.

Proof. The case n = 7 is trivial. Let G = C3(T1,T>,T3) € I, with n > 8. Note
that |77 | = |T2| = 2. By Lemma 6, we have
SZ(G) =14 14+ W(T3)+n—2+n—2+4Wy,(T)
+2[2:242-(n—4)+2-(n—4)]
—[2-242-(n—4)+2-(n—4)]
= 6n— 14+ W(T3) + 4Wy,(T3),

which, together with Lemmas 3 and 4, implies that B;, is the unique graph in I, with
the second smallest Szeged index, which is equal to n2 +n —12. U
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Let Sy (a,b,c) = C3(T1,T»,T3) with |T1| =a, |T2| = b, |T3| =c,a+b+c =n,
and a,b,c > 2, where T (T», T3, respectively) is a star with center vy (va, v3,
respectively). Let G, for n > 8 be the graph obtained from S,—;(2,3,n —6) by
attaching a pendent vertex to a pendent vertex at v3, and G, for n > 9 the graph
obtained from S,—1(2,2,n —5) by attaching a pendent vertex to the pendent vertex
at vy.

Lemma 8. Among the graphs in ¥y, S, (2,3,n—5) for n > 8 is the unique graph
with the smallest Szeged index, which is equal to n2+n—16; Géfor n=28,59(3,3,3)
for n =9, and S,(2,4,n —6) for n > 10 are the unique graphs with the second
smallest Szeged index, which is equal to 61 forn =8, 75 forn =9, and n2+2n-25
forn > 10.

Proof. For n > 8, let G = C3(T1,T»,T3) € ¥, with ¢ > b > max{a, 3}, where
|Ti|=a, |Tz2|=b,|T35|=canda+b+c =n.

Ifin G, T1 = P, and T, = S35 with v, its center, then by Lemma 6, Sz(G) = 8n —
22+ W(T3) 4+ 5Wy,(T3), which, together with Lemmas 1-4, implies that, among the
graphs C3(T1, T, T3) € ¥, with T1 = P, and T, = S3 with v; its center, S, (2,3,n—
5) and G/, are the unique graphs with the smallest Szeged index n? +n — 16 and the
second smallest Szeged index n? +2n — 19, respectively.

For n = 8, the graphs in Wg are Sg(2,3,3), Gé and C3(P,, P3, P3) with v, be-
ing a terminal vertex of one P3 and vs a terminal vertex of the other Pz, where
Sz2(88(2,3,3)) =56 < Sz(Gg) = 61 < Sz(C3(P2, P3, P3)) = 66. Thus Sg(2,3,3)
and Gg are the unique graphs in ¥g respectively with the smallest and the second
smallest Szeged indices, which are equal to 56 and 61, respectively.

For n = 9, by Lemmas 1, 2 and 6, the graphs in W9 with the smallest Szeged
index are just the graphs So(2,3,4) and Sy (3, 3,3) with smaller Szeged index, which
is equal to min{74,75} = 74. Thus S9(2,3,4) is the unique graph in ¥y with the
smallest Szeged index, which is equal to 74. By the proof at the beginning, the
graphs in ¥ with the second smallest Szeged index are just the graphs in G4, G§ and
S9(3,3,3) with the smallest Szeged index, which is equal to min{80, 80,75} = 75.
Thus S9(3,3,3) is the unique graph in ¥ with the second smallest Szeged index,
which is equal to 75.

For n > 10, suppose first that G = S, (a,b,c) and G # S, (2,3,n—5), S,(2,4,n—
6). Since N; = Z tidii =b+c, Ny = Z tidi» =a+c and N3 = Z tidiz =

i#1 i#2 i#3
a+ b, it is easily seen that N3 + %c < N+ %b <N;+ %a. By Lemmas 5 and 6, if
a = 2, then

Sz(Sp(2,b,¢)) > Sz(S,(2,4,n—6)) =n>+2n—25
> 8z2(Sp(2,3.,n—5)) =n?+n—16,
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and if a > 3, then
Sz(Sp(a.b,c)) > Sz(S,(3,3,n—6)) =n? +2n—24 > n>+2n—25.

If G # Sy(a,b,c), then by the proof at the beginning and applying Lemmas 1, 2
and 6, we have either Sz(G) > Sz(G},) = Sz(G,)) =n?>+2n—19>n?—2n—25 for
a=2,0r Sz(G) > Sz(Sp(a,b,c)) > Sz(S,(3.3,n —6)) > n? +2n—25fora > 3.
Thus, for n > 10, S,(2,3,n—5) and S, (2,4,n — 6) are the unique graphs with the
smallest and the second smallest Szeged indices, which are equal to n? 4+n — 16 and
n? 4+ 2n —25, respectively. The result follows. O

Theorem 1. Among the graphs in Uy,
(1) Sn,3 for n > 6 is the unique graph with the smallest Szeged index, which is equal
ton?—9;
(ii) B, forn =1, and S, (2,3,n—5) for n > 8 are the unique graphs with the second
smallest Szeged index, which is equal to 44 for n =7, and n> +n —16 forn > 8;
(iii) Bg forn =8, S9(3,3,3) forn =9, $,(2,4,n—6) for 10 <n <12, $13(2,4,7)
and B} for n =13, and B, for n > 14 are the unique graphs with the third smallest
Szeged index, which is equal to 60 forn = 8, 75 forn =9, n> +2n —25 for 10 <n <
12, 170 for n = 13, and n?+4+n— 12 forn > 14.

Proof. By Proposition 1, if r is odd, then
Sz(Snr+1) —Sz(Spr) = (4r—Dn—5r2—2r
> (4r —1)-2(r +1)=5r% =2r
=3r4+4r-2>0
for 3 <r <|%]—1, implying that Sz(Sn,r+1) > Sz(Sn,r), and
Sz(Sn.r+2) = S2(Snr) = (4r =2)n—6r> —4r
> (4r —2)-2(r +2)—6r2 —4r
=2r>+8r—8>0
for 3 <r <|%]—2, implying that Sz(Sn,r+2) > Sz(Sn,r). If r is even, then
SZ(Snrt1) = S2(Sn) = —n—r+1<0
for4 <r <|%]—1, implying that Sz(Sn,r+1) < S2(Sn,r), and
Sz(Snr+2) —Sz(Snr) = (4r +2)n—6r2—12r —6
> (4r +2)-2(r +2)—6r>—12r —6
=2r>48r4+2>0

for4 <r <|%]—2, implying that Sz(Sp,r+2) > Sz(Sn,r). It follows that
Sz(Sn,r+1) > Sz(Sp,r) for odd r with 3 <r < L%J —1, Sz(Sn.r+1) < Sz(Sn.r)
for even r with 4 <r < [5|—1, and Sz(Sy,,,) is increasing with respect to odd
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re{3,5,....15]} andevenr € {4,6,....5]}. Then by Proposition 1, S, 3 forn > 6
is the unique graph with the smallest Szeged index, which is equal to n2 — 9, proving
(i). Moreover, Sy, 4 for n = 8,9 and S, 5 for n > 10 are the unique graphs in @,
with the smallest Szeged index, which are equal to n? + 117 — 60 and n? + 10n — 75,
respectively.

Now we prove (ii). The case n = 7 is trivial. For n > 8, the graphs in U, with
the second smallest Szeged index are just the graphs in U, \ {S, 3} = (I \ {Sx,3}) U
¥, U @, with the smallest Szeged index, which, by Lemmas 7 and 8, is equal to

min{Sz(B,),Sz(Sn(2,3,1—5)),S2(Sn,4)}
=min{n?+n—12,n>+n—16,n>+ 11n —60} =n> +n—16
forn = 8,9, and
min{Sz(B,),Sz(Sn(2,3,n—5)),S2(Sn.5)}
=min{n®>+n—12,n> +n—16,n> +10n—75} =n> +n—16

for n > 10. Then (i i) follows.
From (i) and (ii) and by Lemmas 7 and 8, we find that the graphs in U,, for n > 8
with the third smallest Szeged index are just the graphs in

Un \{Sn,3,80(2,3,n=5)} = (I \ {Sn,3) U (W \{Sn(2.3.n =5); U P,

for n > §, which is equal to
min{Sz(Bg),Sz(Gg), Sz(Ss,4)} = min{60, 61,92} = 60
forn =8,
min{Se(Bg),Sz(S9(3,3,3)),Sz2(S9,4)} = min{78,75,120} = 75
forn =9, and
min{Sz(B,),Sz(Sn(2,4,n—6)),Sz2(Sn,5)}
=min{n?® +n—12,n* +2n—25,n% 4+ 10n —75}

ie,n?2+2n—25for 10 <n <12,n2+2n—-25=n%+n—12 =170 forn = 13,
and n% +n—12 for n > 14. Now (iii) follows easily. O

4. FULLY LOADED UNICYCLIC GRAPHS WITH LARGE SZEGED INDICES

For3<r < L%J, let P, =Cr(T1,T2,....,T;) with Ty =--- =T,_; = P, and
Ty = Py_5(r—1) with a terminal vertex v,.

Proposition 2. Let G € Uy, , with3 <r < |5 ]|. Then

L3+ (—6r2 +12r —T)n+10r3 —24r2 4+ 14r]  ifr is odd
$[n3+ (—6r% +24r —13)n + 10r3 —36r> +20r] if r is even
with equality if and only if G = Py ;.

Sz(G) <
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Proof. By the definition of the Szeged index, if r is odd, then
Sz(Ppy)=1-n=1)r+2-n=2)+--+n—-2r+1)-2r—1)
+r—-D-r—D+E-D-n—r+1=-2)-(r—1)
= é[n3 + (=672 +12r = T)n 4+ 10r> —24r% + 14r],
and if r is even, then

Sz(Ppy)=1-n=1)-r+2-n=2)+--+m—-2r+1)-Cr—=1)+r-(n—r)-r
1

= 8[113 + (=672 +24r —13)n + 10r> — 3612 +20r].

Let G = Cy(T1,T3,...,Ty) be a graph with the largest Szeged index among graphs
in Uy, . We need only to show that G = Py .

By Lemmas 1, 2 and 6, T; is a path with a terminal vertex v; foreachi =1,2,...,r.
Then by Lemma 6, we have

r

Sz(G) = Zé(f? — 1)+ Z%(” —(t =)+ Y Y titidij—er Yy it

i=1 i=1 i=1j=1 i<j
1 1 4 1 1 .
§ : 3 2 2
__§i 1ti +§(n+1)i2=1:fi 5" —8n+i§1j2=1tifjdij—8ri§<jtifj«

Suppose that there exist distinct k, [, m with 1 < k,l,m <r, such that t, t;, t,, > 3
and t,, > max{f,1;}.

Case 1. r is odd. Assume that t,f +n+Dt;+2N; < tl2 + (n+ Dtg +2Ng. Let G/
be the graph formed from G by deleting the pendent vertex in 7; and attaching it to
the pendent vertex in 7. Obviously, G’ € U, ,. Note that 21; + 2dy; <t; +tm+r <
n <n—+2. Then

Sz(G)—Sz(G")
= (2 +nt; +2N;) — (t} +ntg +2Ng) + 2t +2dg; —n — 1+ (—tx +1; — 1)
=17+ (n+ Dty +2N;] = [t7 + (n + Dty + 2Ng] + 2, + 2dg; — (n +2) <0,

and thus Sz(G) < Sz(G’), which is a contradiction. Thus r —2 of #1,12,...,t, are
equalto 2,say t; =2 fori #k,l. Letty =a and t; = b. We write G = G, 5, Where
a,b>2anda+b =n—2(r—2). Note that Ny = 2W,, (C;)+ (b—2)dy; and N; =
2Wy, (Cr)+(a—2)dy;. If a > b > 3, thensince thata +b +2dy; <a+b+r <n+1
and 2b +2dy; <a+b+r <n+2, we have

SZ(Ga,b) _SZ(Ga-I-l,b—l)
= [a® + (n+ 1)b + 4Wy, (Cr) 4 2(a — 2)dy]
—[b% 4+ (n + 1)a + 4Wy, (Cp) + 2(b —2)dy ] + 2b + 2dy; — (n +2)
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=(a—-b)la+b+2dy;—(n+1)]+2b+2d;—(n+2) <0,

implying that Sz(G, ) is maximum for a > b and a +b = n —2(r —2) if and only
ifa=n—-2(r—1) and b = 2. It follows that G = P, ;.

Case 2. r is even. Assume that t,f +nt; +2N; < tlz +nty +2N. Let G’ be the graph
formed from G by deleting the pendent vertex in 7; and attaching it to the pendent
vertex in Ty. Obviously, G’ € U, ,. Note that 2t; +2dg; <t;+tm+r <n<n-+1.
Then

Sz(G)—Sz(G') = (tf +nt; +2N;) — (tf +ntx +2Ng) +2t; +2dg; — (n + 1) <0,

and thus Sz(G) < Sz(G'), which is a contradiction. Thus r —2 of t1,t,,...,1, are
equal to 2, say t; =2 fori # k,l. Letty = a and t; = b. We write G = G, , Where
a,b>2anda+b =n—2(r—2). Note that Ny = 2W,, (C;)+ (b—2)dy; and N; =
2Wy, (Cr) 4+ (a—2)dy;. Ifa>b >3, then since thata + b +2dx; <a+b+r <n
and 2b+2dy; <a+b+r <n+1, we have

S2(Gap) = S2(Gas1,p—1) = [a® +nb+4Wy, (Cr) +2(a —2)d]
—[b* +na+4Wy, (Cp) +2(b—2)dy] +2b +2dy; — (n + 1)
=(a—-b)a+b+2dy;—n)+2b+2dy;—(n+1) <0,

implying that Sz(G, p) is maximum for a > b and @ + b = n —2(r —2) if and only
ifa=n—-2(r—1)and b = 2. It follows that G = P, ,.
By combining Cases 1 and 2, the result follows. O

Let Pn(a,b,c,d) = C4(T1, 1>, T3, T4) with |T1| =a, |T2| =b, |T3| =c, |T4| =d,
a+b+c+d =n,and a,b,c,d > 2, where T1 (T3, T3, T4, respectively) is a path
with a terminal vertex vy (va, V3, V4, respectively). Let P,’l’ 4 be the graph formed by
attaching a pendent vertex to the neighbor of the pendent vertex of 74 in Py—1 4.

Lemma 9. Among the graphs in U, 4 withn > 9, Sg 4 forn =9 and P,(2,3,2,n—
7) for n > 10 are the unique graphs with the second largest Szeged index, which is
equal to 120 for n = 9, and é(n3 —19n + 198) for n > 10, P,(2,2,3,n—17) for
n=10,11, P,(2,4,2,n—8) for 12 <n <16, P17(2,4,2,9) = P1’7,4f0rn =17, and
P,;’ 4 for n > 18 are the unique graphs with the third largest Szeged index, which is
equal to &(n—31n +306) for n = 10,11, 2(n® —25n +264) for 12 <n < 16, 792
forn =17 and t(n®—19n +162) forn > 18.

Proof. The case n = 9 is trivial. Let G = C4(T1,T2,T3,T4) € Uy, 4 withn > 10.
Suppose first that there is exactly one tree, say 74 with more than two vertices.
Note that 1 = t, = t3 = 2. By Lemma 6, we have Sz(G) = 19n — 67 + W(Ty) +
6Wy,(T4). In this case, by Lemmas 3 and 4, we know that P,;, 4 1s the unique graph

with the second largest Szeged index, which is equal to %(n3 —19n +162).
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Suppose that there are two trees (73 and Ty, or 7> and T4) with more than two
vertices. By the proof of Proposition 2, we have

1
Sz(G) < Sz(Pn(2,2,13.14)) < Sz(Pn(2,2,3,n—7)) = 6(n3 —31n 4+ 306)

or
1
Sz(G) < Sz(Pn(2,12,2,14)) < Sz(Pn(2,3,2,n—7)) = 8(n3 —19n 4+ 198).

If there are three or four trees with more than two vertices, then by the proof of
Proposition 2, we have

Sz(G) < Sz(Py(t1,12,t3,14)) <max{Sz(P,(12,2,3,n—7)),5z(P,(2,3,2,n—7))}.

It follows that the graphs in U, 4 with the second largest Szeged index are just the
graphs in Uy 4 \ { Pn.4} with the largest Szeged index, which is equal to

max{Sz(P, 4).Sz(Pn(2.2.3.n—7)),Sz(Pn(2.3.2.n = 7))}

1 1 1
= max g(n3 —19n +162), 8(n3 —31n 4 306), 8(n3 — 191+ 198)

1
= g(;13—19n+198).

Thus P,(2,3,2,n—7) is the unique graph in U, 4 for n > 10 with the second largest
Szeged index, which is equal to é(n3 — 191 +198).

Suppose that 7> and T4 have more than two vertices. If 7, = 3 and
G # P,(2,3,2,n—"17), then

Sz(G) < max{Sz(Cs(P2.S3, P2, Pr—7)), Sz(Ca(P2. P3, P2, P, _))}
1 1
= max 8(n3 —25n 4 216), g(n3 —25n 4 216)

1
= g(n3 —25n 4+ 216),
where v, is the center of S35 and v4 is a terminal vertex of P,_7 in
C4(P3,S83, P>, Py—7), and v, is a terminal vertex of P3 and vy4 is a terminal vertex of
P, _- for n =11 and a terminal vertex of P,_, whose neighbor has degree two for

n>12in C4(P2, Ps3, P,, Pr:—7)' And if t, > 4, then we have

1
S7(G) < Sz(Pn(2.12,2,14)) < Sz(Pn(2,4,2,n—8)) = 6(n3 —25n 4 264).

Thus the graphs in U, 4 with the third largest Szeged index are just the graphs in
Uy 4 \ {Pn,4, Pn(2,3,2,n—7)} with the largest Szeged index, which is equal to
max{Sz(P, 4).Sz(Pn(2.2.3,n—17)),Sz(C4(P2.,S3, P2, Pu_7)),
SZ(C4(P2, P3, Pz, P,/l_7)), SZ(Pn(2,4,2,I’l —8))}
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1 1 1 1
= max 8(n3 —19n +162), g(n3 —31n +306), 8(n3 —25n +216), g(n3 —25n +264)

ie., £(n®—31n+306) for n = 10,11, § (n®—25n+264) for 12 <n < 16, £ (n>—
25n 4 264) = £(n® —19n 4 162) = 792 for n = 17, and #(n® — 191 + 162) for
n > 18. Thus P,(2,2,3,n—7) for n = 10,11, P,(2,4,2,n—8) for 12 <n < 16,
P17(2,4,2,9) = P1’7’4 for n = 17, and P,;A for n > 18 are the unique graphs with
the third largest Szeged index, which is equal to é(n3 —31n + 306) for n = 10,11,
1(n3—25n+264) for 12 <n < 16,792 forn = 17 and £ (n>—19n+162) forn > 18.
The result follows. O

Theorem 2. Among the graphs in Uy,
(i) Py 3forn==6,7and P, 4 for n > 8 are the unique graphs with the largest Szeged
index, which is equal to %(nz’ —25n +96) forn = 6,7, and %(n3 —13n + 144) for
n>8;
(ii) S73forn =", Pg3forn =38, Sg 4 forn=09 and P,(2,3,2,n—7) forn > 10
are the unique graphs with the second largest Szeged index, which is equal to 40 for
n=7, 68 forn =238, 120 forn =9, and %(n3 — 1914+ 198) for n > 10;
(iii) C3(Py, P3, P3) with vy a terminal vertex of P3 and vs a terminal vertex of
Pz forn =8, Pyj3 forn =9, P,(2,2,3,n—7) forn =10,11, P,(2,4,2,n—28) for
12<n <16, P17(2,4,2,9) = P{, , forn =17, and P, , for n > 18 are the unique
graphs with the third largest Szegéd index, which is eqL;al to 66 for n = 8, 100 for
n =9, +(n>—31n+306) for n = 10,11, (n>—25n+264) for 12 <n < 16, 792
forn =17, and £(n®—19n +162) for n > 18.

Proof. The cases n = 6,7 are obvious. Suppose thatn > 8. Let f1(r) = Sz(Pn,r)
if r is odd, and f2(r) = Sz(Py,r) if r is even. If r is odd with 3 <r < | 5| —1, then
by Proposition 2,

Hr+1D)— fi(r)=2n+3r>—6r—1>2-20r +1)+3r2—6r—1
=3r2-2r+3>0,

implying that f>(r +1) > f1(r). If r is even with 4 <r < [ 5| —1, then by Proposi-
tion 2,

fir+1)— fo(r)=(—4r+2)n +7r2 —4r
<(—4r+2)2(r+1)+7r>—4r
=—r?>—8r4+4<0,

implying that f1(r + 1) < fa(r).
For fixed n, taking the derivatives for f;(r) where i = 1,2, whose expressions are
given in Proposition 2, we have

1
flr) = g[15r2 — (6n +24)r +6n+17],
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1
() = g[15r2 — (61 4 36)r 4 121 + 10].
The two roots of f{(r) =0 are ry and r», where

_3n4+12-90-1D?+30 _3n+12-3(—1) _

ri 15 1<3,
3 124 y/9(n—1)% +30 12 —1 2
ry = n+1244/9n—-1)>+3 >3n+ +3(n )):_n+§>3’
15 15 5 5

and r < |5 |. Hence, for fixed n > 8, f/(r) <0for3 <r <ryand f{(r) > 0 for
ro <1 < | 5]. Then, for fixed n > 8, f1(r) is decreasing for 3 < r < r, and increasing
for r <r < |5]. The two roots of f;(r) = 0 are r3 and ry4, where

_ 3n+18—+/9(n—4)2 430 - 3n418-3(n—4)

r3 15 2<4,
3n+184+/9n—4)2+30 3n+18+3(n—4) 2 2

rqg = > =-n4+->4
15 15 5 5

forn >9,and r4 < 5] forn > 8. Hence, for fixedn > 9, f;(r) <0for4 <r <r4and
f5(r) > 0forry <r <|%]. Then, for fixed n > 9, f>(r) is decreasing for 4 <r <ry4
and increasing for rqg <r < L%J Note that %n <r4<ry< %n +1 forn > 8. Let
G el,.

By Proposition 2 and the properties of fi(r) and f>(r), we have

Sz(G) < Sz(Pny) < maX{fz(“)’ 2 (%)}

1 1
= max % g(n3 —13n + 144), g(n3 +4n% —4n)

1
= g(n3—13n+144)

ifn>8andn =0 (mod 4),

S2(G) < Sz(Puy) < max§f2(4>,fz (” . 1)}

1 1
= max { 8(n3 —13n + 144), g(n3 +3n2+7n—27)

1
= 8(n3—13n+ 144)

ifn>9andn =1 (mod 4),

S2(G) < Sz(Pa.r) < max { £HE). f (”242)}

1 1
= max { 6(n3 —13n + 144), g(n3 +2n? 4 24n — 88)
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1
= g(n3—13n+144)

ifn >10and n =2 (mod 4), and

S2(G) < S2(Pny) < max { f@). f (” ;3)}

1 1
= max { g(n3 —13n + 144), g(n3 +n?%+47n—193)

1
= g(n3—13n+144)

ifn>11and n =3 (mod 4). Thus Py, 4 is the unique graph in U, with the largest
Szeged index, and then the graphs in U,, with the second largest Szeged index are
just the graphs in U, \ { P, 4} with the largest Szeged index.

Casel.n >8andn =0 (mod 4). The largest Szeged index of graphs in U, \ { Py, 4}
is equal to f1(3) = 68 for n = 8 and

maX{SZ(Pn(2,3,27”—7)),f1(3)’f2(6)’f2 (%)}

1 1 1 1
= max { 6(”3 —19n 4+ 198), 6(n3 —25n 4+ 96), g(n3 —85n 4 984), g(n3 +4n2—4n)}

= é(;ﬁ— 191 + 198)
for n > 12. Thus Pg 3 for n = 8 and P,(2,3,2,n —7) for n > 12 are the unique
graphs in U, with the second largest Szeged index. It follows that the graphs in U,
with the third largest Szeged index are just the graphs in Ug \ { Pg 4, Pg 3} forn =8
and Uy \ {Prn. 4, Pn(2,3,2,n—7)} for n > 12 with the largest Szeged index, which is
equal to Sz(C3(P2, P3, P3)) = 66 for n = 8, where one P3 has a terminal vertex vy
and the other P3 has a terminal vertex vz in C3(P;, P3, P3),

max{SZ(Pn(2,4»2»” —8)), f1(3). f2(6), f2 (%)}

1 1 1 1
= max % g(n3 —25n +264), g(n3 —25n + 96), g(n3 —85n +984), g(n3 +4n? —4n)}

1
= 8(n3 —25n 4 264)

forn = 12,16, and
max{SZ(P,/l,4)’f1(3)vf2(6)’f2 (%)}

1 1 1 1
= max g(n3 — 191 +162), g(n3 —25n+96), g(n3 —85n +984), g(n3 +3n%+7n—-27)

1
= 6(n3—19n+16z)
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for n > 20. Thus C3(P3, P3, P3) with v, being a terminal vertex of P3 and v3 being a
terminal vertex of P3 forn =8, P,(2,4,2,n—38) forn = 12,16, and Pr;,4 forn > 20
are the unique graphs in U,, with the third largest Szeged index.

Case2.n>9andn =1 (mod 4). The largest Szeged index of graphs in U, \ { Py, 4}
is equal to max{Sz(S9,4), f1(3)} = max{120,100} = 120 for n = 9 and

max % Sz(Py(2,3,2,n 7)), f1(3), f2(6), f> (n ;1)}

1 1 1 1
= max { g(n3 —19n 4 198), 6("3 —25n 4+ 96), 8(n3 —85n 4 984), g(n3 +3n% +7n—27)

1
= 6(;13—19n+198)

for n > 13. Thus Sg 4 for n = 9 and P,(2,3,2,n—7) for n > 13 are the unique
graphs in U, with the second largest Szeged index. Then the graphs in U, with
the third largest Szeged index are just the graphs in Ug \ { P9 4,59 4} for n = 9 and
Uy \{Pn,4, Pn(2,3,2,n—7)} for n > 13 with the largest Szeged index, which is equal
to Sz(Pg,3) = 100 forn =9,

max{Sz(P13(2,4,2,5)), fi(3), /(6)} = max{356, 328,346} = 356
forn =13,
max{Sz(P17(2,4.2,9)).52(P{7,4). /1(3). /2(6). /2(8)}
— max{792,792,764,742,734} = 792

forn =17, and
n—1
max SZ(P,;,4),f1(3),f2(6),f2(T)}
1 1 1 1
= max g(n3—19n+162),8(n3—25n+96),8(n3—85n+984),§(n3+3n2+7n—27)

1
=g(n3—19n+162)

for n > 21. Thus P9 3 forn =9, P13(2,4,2,5) forn = 13, P17(2,4,2,9) and P1’7’4
for n = 17, and P,’l’ 4 for n > 21 are the unique graphs in U, with the third largest

Szeged index.

Case 3. n > 10 and n = 2 (mod 4). The largest Szeged index of graphs in U, \
{Pn,a} is equal to max{Sz(P10(2,3,2,3)), f1(3), f1(5)} = max{168,141, 125} =
168 for n = 10, and

max{Sz(Pn(z,z,z,n—7)),f1<3),f2(6),f2 (%)}

1 1 1 1
= max{g(n3 — 197 4 198), g(n3—25n +96), g(n3—85n +984),§(n3 +2n% 4 24n —83)

1
= 6(n3—19n+198)
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for n > 14. Thus for n > 10, P,(2,3,2,n —7) is the unique graph in U, with the
second largest Szeged index. Then the graphs in U, with the third largest Szeged in-
dex are just the graphs in U, \ { Py, 4, P (2,3,2,n—7)} with the largest Szeged index,
which is equal to max{Sz(P10(2,2,3,3)), f1(3), f1(5)} = max{166, 141,125} = 166
for n = 10, max{Sz(P14(2.4,2.6)), f1(3). f>(6)} = max{443,415,423} = 443 for
n = 14, and

n—2
max 5225, /10260 225
1 1 1 1
= max 8(n3—19n—|—162),6(n3—25n+96),8(n3—85n+984),§(n3+2n2—|—24n—88)
1
:6(n3—19n+162)

for n > 18. Thus P19(2,2,3,3) for n = 10, P14(2,4,2,6) for n = 14, and P,; 4 for
n > 18 are the unique graphs in U, with the third largest Szeged index. ’
Case 4. n > 11 and n = 3 (mod 4). The largest Szeged index of graphs in U, \
{Pn,a} is equal to

max{Sz(P11(2,3,2,4)), £1(3), f1(5)} = max{220,214, 164} = 220

forn =11, and

max{saPn(z,s,z,n—n),fl (). /2(6). f2 (?)}

1 1 1 1
- max{g(n3— 197 + 198),6(113 —25n —|—96),g(n3 —85n + 984), §(n3 +n? +47n—193)

1
= 6(n3—19n+198)

for n > 15. Thus P,(2,3,2,n—7) for n > 11 is the unique graph in U,, with the
second largest Szeged index. Then the graphs in U, for n > 11 with the third largest
Szeged index are just the graphs in Uy, \ { Py 4, Pn(2,3,2,n —7)} with the largest
Szeged index, which is equal to

max{Sz(P11(2,2,3,4)), f1(3), f1(5)} = max{216,214,164} = 216

for n = 11, max{Sz(P15(2,4,2,7)), f1(3), f2(6)} = max{544,516,514} = 544 for
n =15, and

n—3
max| S2(P ), /13), 26, /> (T)}
1 1 1 1
= max 6(n3—19n+162),8(113—25n—|—96),6(n3—85n+984),g(n3+nz+47n—193)
1
:8(n3—19n+162)

for n > 19. Thus P11(2,2,3,4) forn =11, P15(2,4,2,7) for n = 15, and P,’l’4 for
n > 19 are the unique graphs in U, with the third largest Szeged index.
By combining Cases 1-4, the result follows easily. O
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