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SZEGED INDEX OF A CLASS OF UNICYCLIC GRAPHS
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Abstract. The Szeged index is a modification of the Wiener index to cyclic molecules. The
Szeged index of a connected graph G is defined as S´.G/D

P
e2E.G/n1.ejG/n2.ejG/, where

E.G/ is the edge set of G, and for any e D uv 2 E.G/, n1.ejG/ is the number of vertices of
G lying closer to vertex u than to vertex v, and n2.ejG/ is the number of vertices of G lying
closer to vertex v than to vertex u. In this paper, we determine the n-vertex unicyclic graphs
whose vertices on the unique cycle have degree at least three with the first, the second and the
third smallest as well as largest Szeged indices for n� 6, n� 7 and n� 8, respectively.
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1. INTRODUCTION

A topological index is a numerical quantity derived from the hydrogen-depleted
graph of a molecule as a tool for compact and effective description of structural for-
mula which allows one to study and predict the structure-property correlations of or-
ganic compounds. The Wiener index is one of the oldest topological indices, which
was introduced by Wiener [17] in 1947 to study boiling points of paraffins. Since
then, it has been used to explain various chemical and physical properties of mo-
lecules and to correlate the structure of molecules to their biological activity.

Let G be a simple connected graph with vertex set V.G/ and edge set E.G/. Let
dG.x;y/ be the distance between vertices x and y inG. Recall that the Wiener index
of G is defined as W.G/D

P
fx;yg�V.G/

dG.x;y/ [5, 8].

If e is an edge of G connecting the vertices u and v, then we write e D uv or
e D vu.

Let e D uv 2 E.G/. Let n1.ejG/ be the number of vertices of G lying closer to
vertex u than to vertex v, and n2.ejG/ be the number of vertices of G lying closer to
vertex v than to vertex u, i.e.,

n1.ejG/D jfx 2 V.G/ W dG.x;u/ < dG.x;v/gj

and
n2.ejG/D jfx 2 V.G/ W dG.x;v/ < dG.x;u/gj:

c
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If T is a tree, then W.T / D
P

e2E.T /

n1.ejT /n2.ejT /, see [5, 8]. Motivated by this

equality for Wiener index of trees, Gutman [7] put forward to the Szeged index. For
a connected graph G, it is defined as [7]

S´.G/D
X

e2E.G/

n1.ejG/n2.ejG/:

The Szeged index found applications for modeling physicochemical properties as
well as physiological activities of organic compounds acting as drugs or possessing
pharmacological activity [11], and its mathematical properties may be found, e.g.,[1–
4, 6, 9, 12–16, 19].

A unicyclic graph is a connected graph with a unique cycle. The n-vertex unicyclic
graphs with the smallest and the largest Szeged indices have been determined [7,16].
Zhou et al. [19] determined the n-vertex unicyclic graphs of cycle length r with the
smallest and the largest Szeged indices for 3 � r � n, the n-vertex unicyclic graphs
with the second, the third and the fourth smallest Szeged indices, and the n-vertex
unicyclic graphs with the kth largest Szeged indices for all k up to n

2
C2 if n � 6 is

even, to four if nD 7, to five if nD 9, to nC13
4

if n� 3.mod 4/ with n� 11, and to
nC15

4
if n� 1.mod 4/ with n� 13.

A unicyclic graph is fully loaded if vertices on its unique cycle all have degree at
least three. In the present paper, in continuation of the study on the Szeged index,
we determine the n-vertex fully loaded unicyclic graphs with the first, the second
and the third smallest as well as largest Szeged indices for n � 6, n � 7 and n � 8,
respectively.

2. PRELIMINARIES

Let Sn and Pn be the n-vertex star and path, respectively.

Lemma 1 ([5, 8]). Let T be an n-vertex tree different from Sn and Pn. Then

.n�1/2 DW.Sn/ < W.T / < W.Pn/D
n3�n

6
:

For a connected graph G with u 2 V.G/, let Wu.G/D
P

v2V.G/

dG.u;v/.

Lemma 2 ([18]). Let T be an n-vertex tree with u 2 V.T /, where u is not the
center if T D Sn and u is not a terminal vertex if T D Pn. Let x and y be the center
of the star Sn and a terminal vertex of the path Pn, respectively. Then

n�1DWx.Sn/ < Wu.T / < Wy.Pn/D
n.n�1/

2
:

Let S 0n be the graph formed by attaching a pendent vertex to one pendent vertex
of Sn�1 for n � 4. Let P 0n be the graph formed by attaching a pendent vertex to the
neighbor of a terminal vertex of Pn�1 for n� 4.
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Lemma 3 ([10,18]). Among the n-vertex trees with n� 4, S 0n is the unique graph
with the second smallest Wiener index, which is equal to n2�n� 2, and P 0n is the
unique graph with the second largest Wiener index, which is equal to 1

6
.n3�7nC18/.

The following lemma may be easily checked.

Lemma 4. Let T be an n-vertex tree with n � 5, u 2 V.T /, T ¤ Sn;Pn, where
u is not a vertex of maximal degree if T D S 0n, and not the terminal vertex whose
neighbor has degree two if T DP 0n. Let x be the vertex of maximal degree of S 0n, and
y be the terminal vertex whose neighbor has degree two in P 0n. Then nDWx.S

0
n/ <

Wu.T / < Wy.P
0
n/D

.nC1/.n�2/
2

.

Let Cr.T1;T2; : : : ;Tr/ be the graph constructed as follows. Let the vertices of
the cycle Cr be labeled consecutively by v1;v2; : : : ;vr . Let T1;T2; : : : ;Tr be vertex–
disjoint trees such that Ti and the cycle Cr share exactly one common vertex vi

for i D 1;2; : : : ; r . Denote jGj D jV.G/j for a graph G. Then any n-vertex unicyclic

graphG with a cycle on r vertices is of the form Cr.T1;T2; : : : ;Tr/, where
rP

iD1

jTi j D

n. For the graph G D Cr.T1;T2; : : : ;Tr/, let dij D dCr
.vi ;vj / and ti D jTi j for

i D 1;2; : : : ; r . Then let Ns D
P
i¤s

tidis .

For a subset M of E.G/, G�M denotes the graph obtained from G by deleting
the edges in M . For a subset M � of the edge set of the complement of G, GCM �

denotes the graph obtained from G by adding the edges in M �.

Lemma 5 ([19]). Let G D Cr.T1;T2; : : : ;Tr/ and Ti be a star with center vi for
i D 1;2; : : : ; r . Suppose that trees Tk and Tl are nontrivial. Let w 2 V.Tl/ with
w ¤ vl . If r is odd and Nk C

1
2
tk � Nl C

1
2
tl , or r is even and Nk � Nl , then

S´.G�fvlwgCfvkwg/ < S´.G/.

Let "n D 1 if n is odd and "n D 0 if n is even.

Lemma 6 ([9]). Let G D Cr.T1;T2; : : : ;Tr/. Then

S´.G/D

rX
iD1

W.Ti /C

rX
iD1

.jGj� ti /Wvi
.Ti /C

rX
iD1

rX
jD1

ti tjdij � "r

X
i<j

ti tj :

For 3 � r � bn
2
c, let Un;r be the set of all fully loaded unicyclic graphs with n

vertices and unique cycle Cr . For n � 6, let Un be the set of n-vertex fully loaded
unicyclic graphs.

3. FULLY LOADED UNICYCLIC GRAPHS WITH SMALL SZEGED INDICES

For 3 � r � bn
2
c, let Sn;r D Cr.T1;T2; : : : ;Tr/ with T1 D �� � D Tr�1 D P2 and

Tr D Sn�2.r�1/ with center vr .
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Proposition 1. Let G 2Un;r with 3� r � bn
2
c. Then

S´.G/�

(
n2C .r2�3r/n� r3C2r2 if r is odd
n2C .r2� r �1/n� r3C r if r is even

with equality if and only if G D Sn;r .

Proof. By the definition of the Szeged index, if r is odd, then

S´.Sn;r/D 1 � .n�1/ � .n� r/C .r �1/ � .r �1/

C .r �1/ � .n� rC1�2/ � .r �1/

D n2
C .r2

�3r/n� r3
C2r2;

and if r is even, then

S´.Sn;r/D 1 � .n�1/ � .n� r/C r � .n� r/ � r

D n2
C .r2

� r �1/n� r3
C r:

Let G D Cr.T1;T2; : : : ;Tr/ be a graph with the smallest Szeged index among
graphs in Un;r . We need only to show that G D Sn;r .

By Lemmas 1, 2 and 6, Ti is a star with center vi for i D 1;2; : : : ; r . Suppose that
tk , tl � 3 with k¤ l . Let w 2 V.Tl/ with w¤ vl . Suppose without loss of generality
that NkC

1
2
tk � Nl C

1
2
tl if r is odd and that Nk � Nl if r is even. By Lemma 5,

S´.G�fvlwgCfvkwg/ < S´.G/, a contradiction. Thus there can not be two trees
of T1;T2; : : : ;Tr with at least three vertices in G, i.e., G D Sn;r . �

Let �n be the set of graphs C3.T1;T2;T3/ in Un with jT1j D jT2j D 2. Let 	n be
the set of graphs C3.T1;T2;T3/ in Un with jT3j � jT2j � maxfjT1j;3g. Let ˚n be
the set of graphs in Un with cycle length at least four. Then Un D �n[	n[˚n.

For n � 7, let B 0n be the graph in �n formed by attaching a path P2 and n� 7
pendent vertices to the vertex of degree two in C3.P2;P2;P1/.

Lemma 7. Among the graphs in �n with n � 7, B 0n is the unique graph with the
second smallest Szeged index, which is equal to n2Cn�12.

Proof. The case nD 7 is trivial. Let G D C3.T1;T2;T3/ 2 �n with n � 8. Note
that jT1j D jT2j D 2. By Lemma 6, we have

S´.G/D 1C1CW.T3/Cn�2Cn�2C4Wv3
.T3/

C2Œ2 �2C2 � .n�4/C2 � .n�4/�

� Œ2 �2C2 � .n�4/C2 � .n�4/�

D 6n�14CW.T3/C4Wv3
.T3/;

which, together with Lemmas 3 and 4, implies that B 0n is the unique graph in �n with
the second smallest Szeged index, which is equal to n2Cn�12. �
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Let Sn.a;b;c/D C3.T1;T2;T3/ with jT1j D a, jT2j D b, jT3j D c, aCbCc D n,
and a;b;c � 2, where T1 (T2, T3, respectively) is a star with center v1 (v2, v3,
respectively). Let G0n for n � 8 be the graph obtained from Sn�1.2;3;n� 6/ by
attaching a pendent vertex to a pendent vertex at v3, and G00n for n � 9 the graph
obtained from Sn�1.2;2;n� 5/ by attaching a pendent vertex to the pendent vertex
at v2.

Lemma 8. Among the graphs in 	n, Sn.2;3;n�5/ for n� 8 is the unique graph
with the smallest Szeged index, which is equal to n2Cn�16;G08 for nD 8, S9.3;3;3/

for n D 9, and Sn.2;4;n� 6/ for n � 10 are the unique graphs with the second
smallest Szeged index, which is equal to 61 for nD 8, 75 for nD 9, and n2C2n�25

for n� 10.

Proof. For n � 8, let G D C3.T1;T2;T3/ 2 	n with c � b � maxfa;3g, where
jT1j D a, jT2j D b, jT3j D c and aCbC c D n.

If inG, T1DP2 and T2D S3 with v2 its center, then by Lemma 6, S´.G/D 8n�
22CW.T3/C5Wv3

.T3/, which, together with Lemmas 1–4, implies that, among the
graphs C3.T1;T2;T3/2	n with T1DP2 and T2D S3 with v2 its center, Sn.2;3;n�

5/ and G0n are the unique graphs with the smallest Szeged index n2Cn�16 and the
second smallest Szeged index n2C2n�19, respectively.

For n D 8, the graphs in 	8 are S8.2;3;3/, G08 and C3.P2;P3;P3/ with v2 be-
ing a terminal vertex of one P3 and v3 a terminal vertex of the other P3, where
S´.S8.2;3;3//D 56 < S´.G

0
8/D 61 < S´.C3.P2;P3;P3//D 66. Thus S8.2;3;3/

and G08 are the unique graphs in 	8 respectively with the smallest and the second
smallest Szeged indices, which are equal to 56 and 61, respectively.

For n D 9, by Lemmas 1, 2 and 6, the graphs in 	9 with the smallest Szeged
index are just the graphs S9.2;3;4/ and S9.3;3;3/ with smaller Szeged index, which
is equal to minf74;75g D 74. Thus S9.2;3;4/ is the unique graph in 	9 with the
smallest Szeged index, which is equal to 74. By the proof at the beginning, the
graphs in 	9 with the second smallest Szeged index are just the graphs inG09,G009 and
S9.3;3;3/ with the smallest Szeged index, which is equal to minf80;80;75g D 75.
Thus S9.3;3;3/ is the unique graph in 	9 with the second smallest Szeged index,
which is equal to 75.

For n� 10, suppose first thatGD Sn.a;b;c/ andG¤ Sn.2;3;n�5/, Sn.2;4;n�

6/. Since N1 D
P
i¤1

tidi1 D bC c, N2 D
P
i¤2

tidi2 D aC c and N3 D
P
i¤3

tidi3 D

aCb, it is easily seen that N3C
1
2
c �N2C

1
2
b �N1C

1
2
a. By Lemmas 5 and 6, if

aD 2, then

S´.Sn.2;b;c// > S´.Sn.2;4;n�6//D n
2
C2n�25

> S´.Sn.2;3;n�5//D n
2
Cn�16;
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and if a � 3, then

S´.Sn.a;b;c//� S´.Sn.3;3;n�6//D n
2
C2n�24 > n2

C2n�25:

If G ¤ Sn.a;b;c/, then by the proof at the beginning and applying Lemmas 1, 2
and 6, we have either S´.G/�S´.G0n/DS´.G

00
n/D n

2C2n�19>n2�2n�25 for
aD 2, or S´.G/ > S´.Sn.a;b;c// � S´.Sn.3;3;n�6// > n

2C2n�25 for a � 3.
Thus, for n � 10, Sn.2;3;n� 5/ and Sn.2;4;n� 6/ are the unique graphs with the
smallest and the second smallest Szeged indices, which are equal to n2Cn�16 and
n2C2n�25, respectively. The result follows. �

Theorem 1. Among the graphs in Un,
.i/ Sn;3 for n� 6 is the unique graph with the smallest Szeged index, which is equal
to n2�9;
.i i/ B 07 for nD 7, and Sn.2;3;n�5/ for n� 8 are the unique graphs with the second
smallest Szeged index, which is equal to 44 for nD 7, and n2Cn�16 for n� 8;
.i i i/ B 08 for nD 8, S9.3;3;3/ for nD 9, Sn.2;4;n�6/ for 10� n� 12, S13.2;4;7/

and B 013 for nD 13, and B 0n for n� 14 are the unique graphs with the third smallest
Szeged index, which is equal to 60 for nD 8, 75 for nD 9, n2C2n�25 for 10� n�
12, 170 for nD 13, and n2Cn�12 for n� 14.

Proof. By Proposition 1, if r is odd, then

S´.Sn;rC1/�S´.Sn;r/D .4r �1/n�5r
2
�2r

� .4r �1/ �2.rC1/�5r2
�2r

D 3r2
C4r �2 > 0

for 3� r � bn
2
c�1, implying that S´.Sn;rC1/ > S´.Sn;r/, and

S´.Sn;rC2/�S´.Sn;r/D .4r �2/n�6r
2
�4r

� .4r �2/ �2.rC2/�6r2
�4r

D 2r2
C8r �8 > 0

for 3� r � bn
2
c�2, implying that S´.Sn;rC2/ > S´.Sn;r/. If r is even, then

S´.Sn;rC1/�S´.Sn;r/D�n� r
2
C1 < 0

for 4� r � bn
2
c�1, implying that S´.Sn;rC1/ < S´.Sn;r/, and

S´.Sn;rC2/�S´.Sn;r/D .4rC2/n�6r
2
�12r �6

� .4rC2/ �2.rC2/�6r2
�12r �6

D 2r2
C8rC2 > 0

for 4� r � bn
2
c�2, implying that S´.Sn;rC2/ > S´.Sn;r/. It follows that

S´.Sn;rC1/ > S´.Sn;r/ for odd r with 3 � r � bn
2
c� 1, S´.Sn;rC1/ < S´.Sn;r/

for even r with 4 � r � bn
2
c � 1, and S´.Sn;r/ is increasing with respect to odd
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r 2
˚
3;5; : : : ;bn

2
c
	

and even r 2
˚
4;6; : : : ;bn

2
c
	
. Then by Proposition 1, Sn;3 for n� 6

is the unique graph with the smallest Szeged index, which is equal to n2�9, proving
.i/. Moreover, Sn;4 for n D 8;9 and Sn;5 for n � 10 are the unique graphs in ˚n

with the smallest Szeged index, which are equal to n2C11n�60 and n2C10n�75,
respectively.

Now we prove .i i/. The case n D 7 is trivial. For n � 8, the graphs in Un with
the second smallest Szeged index are just the graphs in Un nfSn;3g D .�n nfSn;3g/[

	n[˚n with the smallest Szeged index, which, by Lemmas 7 and 8, is equal to

minfS´.B 0n/;S´.Sn.2;3;n�5//;S´.Sn;4/g

Dminfn2
Cn�12;n2

Cn�16;n2
C11n�60g D n2

Cn�16

for nD 8;9, and

minfS´.B 0n/;S´.Sn.2;3;n�5//;S´.Sn;5/g

Dminfn2
Cn�12;n2

Cn�16;n2
C10n�75g D n2

Cn�16

for n� 10. Then .i i/ follows.
From .i/ and .i i/ and by Lemmas 7 and 8, we find that the graphs in Un for n� 8

with the third smallest Szeged index are just the graphs in

Un n fSn;3;Sn.2;3;n�5/g D .�n n fSn;3g/[ .	n n fSn.2;3;n�5/g[˚n

for n� 8, which is equal to

minfS´.B 08/;S´.G
0
8/;S´.S8;4/g Dminf60;61;92g D 60

for nD 8,

minfSe.B 09/;S´.S9.3;3;3//;S´.S9;4/g Dminf78;75;120g D 75

for nD 9, and

minfS´.B 0n/;S´.Sn.2;4;n�6//;S´.Sn;5/g

Dminfn2
Cn�12;n2

C2n�25;n2
C10n�75g

i.e., n2C 2n� 25 for 10 � n � 12, n2C 2n� 25 D n2Cn� 12 D 170 for n D 13,
and n2Cn�12 for n� 14. Now .i i i/ follows easily. �

4. FULLY LOADED UNICYCLIC GRAPHS WITH LARGE SZEGED INDICES

For 3 � r � bn
2
c, let Pn;r D Cr.T1;T2; : : : ;Tr/ with T1 D �� � D Tr�1 D P2 and

Tr D Pn�2.r�1/ with a terminal vertex vr .

Proposition 2. Let G 2Un;r with 3� r � bn
2
c. Then

S´.G/�

(
1
6
Œn3C .�6r2C12r �7/nC10r3�24r2C14r� if r is odd

1
6
Œn3C .�6r2C24r �13/nC10r3�36r2C20r� if r is even

with equality if and only if G D Pn;r .
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Proof. By the definition of the Szeged index, if r is odd, then

S´.Pn;r/D 1 � .n�1/ � rC2 � .n�2/C�� �C .n�2rC1/ � .2r �1/

C .r �1/ � .r �1/C .r �1/ � .n� rC1�2/ � .r �1/

D
1

6
Œn3
C .�6r2

C12r �7/nC10r3
�24r2

C14r�;

and if r is even, then

S´.Pn;r/D 1 � .n�1/ � rC2 � .n�2/C�� �C .n�2rC1/ � .2r �1/C r � .n� r/ � r

D
1

6
Œn3
C .�6r2

C24r �13/nC10r3
�36r2

C20r�:

LetGDCr.T1;T2; : : : ;Tr/ be a graph with the largest Szeged index among graphs
in Un;r . We need only to show that G D Pn;r .

By Lemmas 1, 2 and 6, Ti is a path with a terminal vertex vi for each i D 1;2; : : : ; r .
Then by Lemma 6, we have

S´.G/D

rX
iD1

1

6
.t3i � ti /C

rX
iD1

1

2
.n� ti /ti .ti �1/C

rX
iD1

rX
jD1

ti tjdij � "r

X
i<j

ti tj

D�
1

3

rX
iD1

t3i C
1

2
.nC1/

rX
iD1

t2i �
1

2
n2
�
1

6
nC

rX
iD1

rX
jD1

ti tjdij � "r

X
i<j

ti tj :

Suppose that there exist distinct k, l , m with 1 � k; l;m � r , such that tk , tl , tm � 3
and tm �maxftk; tlg.
Case 1. r is odd. Assume that t2

k
C .nC1/tl C2Nl � t

2
l
C .nC1/tkC2Nk . Let G0

be the graph formed from G by deleting the pendent vertex in Tl and attaching it to
the pendent vertex in Tk . Obviously,G0 2Un;r . Note that 2tlC2dkl < tlC tmCr �

n < nC2. Then

S´.G/�S´.G0/

D .t2k CntlC2Nl/� .t
2
l CntkC2Nk/C2tlC2dkl �n�1C .�tkC tl �1/

D Œt2k C .nC1/tlC2Nl �� Œt
2
l C .nC1/tkC2Nk�C2tlC2dkl � .nC2/ < 0;

and thus S´.G/ < S´.G0/, which is a contradiction. Thus r � 2 of t1; t2; : : : ; tr are
equal to 2, say ti D 2 for i ¤ k; l . Let tk D a and tl D b. We write G DGa;b , where
a;b � 2 and aCb D n�2.r�2/. Note that Nk D 2Wvk

.Cr/C .b�2/dkl and Nl D

2Wvl
.Cr/C.a�2/dkl . If a� b� 3, then since that aCbC2dkl <aCbCr � nC1

and 2bC2dkl < aCbC r < nC2, we have

S´.Ga;b/�S´.GaC1;b�1/

D Œa2
C .nC1/bC4Wvl

.Cr/C2.a�2/dkl �

� Œb2
C .nC1/aC4Wvk

.Cr/C2.b�2/dkl �C2bC2dkl � .nC2/
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D .a�b/ŒaCbC2dkl � .nC1/�C2bC2dkl � .nC2/ < 0;

implying that S´.Ga;b/ is maximum for a � b and aCb D n�2.r �2/ if and only
if aD n�2.r �1/ and b D 2. It follows that G D Pn;r .
Case 2. r is even. Assume that t2

k
CntlC2Nl � t

2
l
CntkC2Nk . LetG0 be the graph

formed from G by deleting the pendent vertex in Tl and attaching it to the pendent
vertex in Tk . Obviously, G0 2Un;r . Note that 2tlC2dkl � tlC tmC r � n < nC1.
Then

S´.G/�S´.G0/D .t2k CntlC2Nl/� .t
2
l CntkC2Nk/C2tlC2dkl � .nC1/ < 0;

and thus S´.G/ < S´.G0/, which is a contradiction. Thus r � 2 of t1; t2; : : : ; tr are
equal to 2, say ti D 2 for i ¤ k; l . Let tk D a and tl D b. We write G DGa;b , where
a;b � 2 and aCb D n�2.r�2/. Note that Nk D 2Wvk

.Cr/C .b�2/dkl and Nl D

2Wvl
.Cr/C .a�2/dkl . If a � b � 3, then since that aCbC2dkl � aCbC r � n

and 2bC2dkl � aCbC r < nC1, we have

S´.Ga;b/�S´.GaC1;b�1/D Œa
2
CnbC4Wvl

.Cr/C2.a�2/dkl �

� Œb2
CnaC4Wvk

.Cr/C2.b�2/dkl �C2bC2dkl � .nC1/

D .a�b/.aCbC2dkl �n/C2bC2dkl � .nC1/ < 0;

implying that S´.Ga;b/ is maximum for a � b and aCb D n�2.r �2/ if and only
if aD n�2.r �1/ and b D 2. It follows that G D Pn;r .

By combining Cases 1 and 2, the result follows. �

LetPn.a;b;c;d/DC4.T1;T2;T3;T4/with jT1j D a, jT2j D b, jT3j D c, jT4j D d ,
aC bC cCd D n, and a;b;c;d � 2, where T1 (T2, T3, T4, respectively) is a path
with a terminal vertex v1 (v2, v3, v4, respectively). Let P 0n;4 be the graph formed by
attaching a pendent vertex to the neighbor of the pendent vertex of T4 in Pn�1;4.

Lemma 9. Among the graphs in Un;4 with n� 9, S9;4 for nD 9 andPn.2;3;2;n�

7/ for n � 10 are the unique graphs with the second largest Szeged index, which is
equal to 120 for n D 9, and 1

6
.n3 � 19nC 198/ for n � 10; Pn.2;2;3;n� 7/ for

nD 10;11, Pn.2;4;2;n�8/ for 12� n� 16, P17.2;4;2;9/DP
0
17;4 for nD 17, and

P 0n;4 for n � 18 are the unique graphs with the third largest Szeged index, which is
equal to 1

6
.n3�31nC306/ for nD 10;11, 1

6
.n3�25nC264/ for 12� n� 16, 792

for nD 17 and 1
6
.n3�19nC162/ for n� 18.

Proof. The case nD 9 is trivial. Let G D C4.T1;T2;T3;T4/ 2Un;4 with n� 10.
Suppose first that there is exactly one tree, say T4 with more than two vertices.

Note that t1 D t2 D t3 D 2. By Lemma 6, we have S´.G/ D 19n� 67CW.T4/C

6Wv4
.T4/. In this case, by Lemmas 3 and 4, we know that P 0n;4 is the unique graph

with the second largest Szeged index, which is equal to 1
6
.n3�19nC162/.
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Suppose that there are two trees (T3 and T4, or T2 and T4) with more than two
vertices. By the proof of Proposition 2, we have

S´.G/� S´.Pn.2;2; t3; t4//� S´.Pn.2;2;3;n�7//D
1

6
.n3
�31nC306/

or

S´.G/� S´.Pn.2; t2;2; t4//� S´.Pn.2;3;2;n�7//D
1

6
.n3
�19nC198/:

If there are three or four trees with more than two vertices, then by the proof of
Proposition 2, we have

S´.G/� S´.Pn.t1; t2; t3; t4//�maxfS´.Pn.2;2;3;n�7//;S´.Pn.2;3;2;n�7//g:

It follows that the graphs in Un;4 with the second largest Szeged index are just the
graphs in Un;4 n fPn;4g with the largest Szeged index, which is equal to

maxfS´.P 0n;4/;S´.Pn.2;2;3;n�7//;S´.Pn.2;3;2;n�7//g

Dmax
�
1

6
.n3
�19nC162/;

1

6
.n3
�31nC306/;

1

6
.n3
�19nC198/

�
D
1

6
.n3
�19nC198/:

Thus Pn.2;3;2;n�7/ is the unique graph in Un;4 for n� 10 with the second largest
Szeged index, which is equal to 1

6
.n3�19nC198/.

Suppose that T2 and T4 have more than two vertices. If t2 D 3 and
G ¤ Pn.2;3;2;n�7/, then

S´.G/�maxfS´.C4.P2;S3;P2;Pn�7//;S´.C4.P2;P3;P2;P
0
n�7//g

Dmax
�
1

6
.n3
�25nC216/;

1

6
.n3
�25nC216/

�
D
1

6
.n3
�25nC216/;

where v2 is the center of S3 and v4 is a terminal vertex of Pn�7 in
C4.P2;S3;P2;Pn�7/, and v2 is a terminal vertex of P3 and v4 is a terminal vertex of
P 0n�7 for nD 11 and a terminal vertex of P 0n�7 whose neighbor has degree two for
n� 12 in C4.P2;P3;P2;P

0
n�7/. And if t2 � 4, then we have

S´.G/� S´.Pn.2; t2;2; t4//� S´.Pn.2;4;2;n�8//D
1

6
.n3
�25nC264/:

Thus the graphs in Un;4 with the third largest Szeged index are just the graphs in
Un;4 n fPn;4;Pn.2;3;2;n�7/g with the largest Szeged index, which is equal to

maxfS´.P 0n;4/;S´.Pn.2;2;3;n�7//;S´.C4.P2;S3;P2;Pn�7//;

S´.C4.P2;P3;P2;P
0
n�7//;S´.Pn.2;4;2;n�8//g
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Dmax
�
1

6
.n3
�19nC162/;

1

6
.n3
�31nC306/;

1

6
.n3
�25nC216/;

1

6
.n3
�25nC264/

�
i.e., 1

6
.n3�31nC306/ for nD 10;11, 1

6
.n3�25nC264/ for 12 � n � 16, 1

6
.n3�

25nC 264/ D 1
6
.n3 � 19nC 162/ D 792 for n D 17, and 1

6
.n3 � 19nC 162/ for

n � 18. Thus Pn.2;2;3;n� 7/ for n D 10;11, Pn.2;4;2;n� 8/ for 12 � n � 16,
P17.2;4;2;9/ D P

0
17;4 for n D 17, and P 0n;4 for n � 18 are the unique graphs with

the third largest Szeged index, which is equal to 1
6
.n3� 31nC 306/ for nD 10;11,

1
6
.n3�25nC264/ for 12� n� 16, 792 for nD 17 and 1

6
.n3�19nC162/ for n� 18.

The result follows. �

Theorem 2. Among the graphs in Un,
.i/ Pn;3 for nD 6;7 and Pn;4 for n� 8 are the unique graphs with the largest Szeged
index, which is equal to 1

6
.n3� 25nC 96/ for n D 6;7, and 1

6
.n3� 13nC 144/ for

n� 8;
.i i/ S7;3 for nD 7, P8;3 for nD 8, S9;4 for nD 9, and Pn.2;3;2;n�7/ for n � 10
are the unique graphs with the second largest Szeged index, which is equal to 40 for
nD 7, 68 for nD 8, 120 for nD 9, and 1

6
.n3�19nC198/ for n� 10;

.i i i/ C3.P2;P3;P3/ with v2 a terminal vertex of P3 and v3 a terminal vertex of
P3 for nD 8, P9;3 for nD 9, Pn.2;2;3;n�7/ for nD 10;11, Pn.2;4;2;n�8/ for
12 � n � 16, P17.2;4;2;9/D P

0
17;4 for nD 17, and P 0n;4 for n � 18 are the unique

graphs with the third largest Szeged index, which is equal to 66 for n D 8, 100 for
nD 9, 1

6
.n3� 31nC 306/ for nD 10;11, 1

6
.n3� 25nC 264/ for 12 � n � 16, 792

for nD 17, and 1
6
.n3�19nC162/ for n� 18.

Proof. The cases nD 6;7 are obvious. Suppose that n� 8. Let f1.r/D S´.Pn;r/

if r is odd, and f2.r/D S´.Pn;r/ if r is even. If r is odd with 3� r � bn
2
c�1, then

by Proposition 2,

f2.rC1/�f1.r/D 2nC3r
2
�6r �1� 2 �2.rC1/C3r2

�6r �1

D 3r2
�2rC3 > 0;

implying that f2.rC1/ > f1.r/. If r is even with 4� r � bn
2
c�1, then by Proposi-

tion 2,

f1.rC1/�f2.r/D .�4rC2/nC7r
2
�4r

� .�4rC2/ �2.rC1/C7r2
�4r

D�r2
�8rC4 < 0;

implying that f1.rC1/ < f2.r/.
For fixed n, taking the derivatives for fi .r/ where i D 1;2, whose expressions are

given in Proposition 2, we have

f 01.r/D
1

3
Œ15r2

� .6nC24/rC6nC7�;
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f 02.r/D
1

3
Œ15r2

� .6nC36/rC12nC10�:

The two roots of f 01.r/D 0 are r1 and r2, where

r1 D
3nC12�

p
9.n�1/2C30

15
<
3nC12�3.n�1/

15
D 1 < 3;

r2 D
3nC12C

p
9.n�1/2C30

15
>
3nC12C3.n�1//

15
D
2

5
nC

3

5
> 3;

and r2 < bn
2
c. Hence, for fixed n � 8, f 01.r/ < 0 for 3 � r < r2 and f 01.r/ � 0 for

r2 � r � b
n
2
c. Then, for fixed n� 8, f1.r/ is decreasing for 3� r < r2 and increasing

for r2 � r � bn
2
c. The two roots of f 02.r/D 0 are r3 and r4, where

r3 D
3nC18�

p
9.n�4/2C30

15
<
3nC18�3.n�4/

15
D 2 < 4;

r4 D
3nC18C

p
9.n�4/2C30

15
>
3nC18C3.n�4/

15
D
2

5
nC

2

5
� 4

for n� 9, and r4< bn
2
c for n� 8. Hence, for fixed n� 9, f 02.r/ < 0 for 4� r < r4 and

f 02.r/� 0 for r4 � r � bn
2
c. Then, for fixed n� 9, f2.r/ is decreasing for 4� r < r4

and increasing for r4 � r � bn
2
c. Note that 2

5
n < r4 < r2 <

2
5
nC 1 for n � 8. Let

G 2Un.
By Proposition 2 and the properties of f1.r/ and f2.r/, we have

S´.G/� S´.Pn;r/�max
n
f2.4/;f2

�n
2

�o
Dmax

�
1

6
.n3
�13nC144/;

1

8
.n3
C4n2

�4n/

�
D
1

6
.n3
�13nC144/

if n� 8 and n� 0 .mod 4/,

S´.G/� S´.Pn;r/�max
�
f2.4/;f2

�
n�1

2

��
Dmax

�
1

6
.n3
�13nC144/;

1

8
.n3
C3n2

C7n�27/

�
D
1

6
.n3
�13nC144/

if n� 9 and n� 1 .mod 4/,

S´.G/� S´.Pn;r/�max
�
f2.4/;f2

�
n�2

2

��
Dmax

�
1

6
.n3
�13nC144/;

1

8
.n3
C2n2

C24n�88/

�
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D
1

6
.n3
�13nC144/

if n� 10 and n� 2 .mod 4/, and

S´.G/� S´.Pn;r/�max
�
f2.4/;f2

�
n�3

2

��
Dmax

�
1

6
.n3
�13nC144/;

1

8
.n3
Cn2

C47n�193/

�
D
1

6
.n3
�13nC144/

if n � 11 and n� 3 .mod 4/. Thus Pn;4 is the unique graph in Un with the largest
Szeged index, and then the graphs in Un with the second largest Szeged index are
just the graphs in Un n fPn;4g with the largest Szeged index.
Case 1. n� 8 and n� 0 .mod 4/. The largest Szeged index of graphs in Un nfPn;4g

is equal to f1.3/D 68 for nD 8 and

max
n
S´.Pn.2;3;2;n�7//;f1.3/;f2.6/;f2

�n
2

�o
Dmax

�
1

6
.n3
�19nC198/;

1

6
.n3
�25nC96/;

1

6
.n3
�85nC984/;

1

8
.n3
C4n2

�4n/

�
D
1

6
.n3
�19nC198/

for n � 12. Thus P8;3 for n D 8 and Pn.2;3;2;n� 7/ for n � 12 are the unique
graphs in Un with the second largest Szeged index. It follows that the graphs in Un

with the third largest Szeged index are just the graphs in U8 n fP8;4;P8;3g for nD 8
and Un nfPn;4;Pn.2;3;2;n�7/g for n� 12 with the largest Szeged index, which is
equal to S´.C3.P2;P3;P3//D 66 for nD 8, where one P3 has a terminal vertex v2

and the other P3 has a terminal vertex v3 in C3.P2;P3;P3/,

max
n
S´.Pn.2;4;2;n�8//;f1.3/;f2.6/;f2

�n
2

�o
Dmax

�
1

6
.n3
�25nC264/;

1

6
.n3
�25nC96/;

1

6
.n3
�85nC984/;

1

8
.n3
C4n2

�4n/

�
D
1

6
.n3
�25nC264/

for nD 12;16, and

max
n
S´.P 0n;4/;f1.3/;f2.6/;f2

�n
2

�o
Dmax

�
1

6
.n3
�19nC162/;

1

6
.n3
�25nC96/;

1

6
.n3
�85nC984/;

1

8
.n3
C3n2

C7n�27/

�
D
1

6
.n3
�19nC162/
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for n� 20. Thus C3.P2;P3;P3/with v2 being a terminal vertex of P3 and v3 being a
terminal vertex of P3 for nD 8, Pn.2;4;2;n�8/ for nD 12;16, and P 0n;4 for n� 20
are the unique graphs in Un with the third largest Szeged index.
Case 2. n� 9 and n� 1 .mod 4/. The largest Szeged index of graphs in Un nfPn;4g

is equal to maxfS´.S9;4/;f1.3/g Dmaxf120;100g D 120 for nD 9 and

max
�
S´.Pn.2;3;2;n�7//;f1.3/;f2.6/;f2

�
n�1

2

��
Dmax

�
1

6
.n3
�19nC198/;

1

6
.n3
�25nC96/;

1

6
.n3
�85nC984/;

1

8
.n3
C3n2

C7n�27/

�
D
1

6
.n3
�19nC198/

for n � 13. Thus S9;4 for n D 9 and Pn.2;3;2;n� 7/ for n � 13 are the unique
graphs in Un with the second largest Szeged index. Then the graphs in Un with
the third largest Szeged index are just the graphs in U9 n fP9;4;S9;4g for nD 9 and
UnnfPn;4;Pn.2;3;2;n�7/g for n� 13with the largest Szeged index, which is equal
to S´.P9;3/D 100 for nD 9,

maxfS´.P13.2;4;2;5//;f1.3/;f2.6/g Dmaxf356;328;346g D 356

for nD 13,

maxfS´.P17.2;4;2;9//;S´.P
0
17;4/;f1.3/;f2.6/;f2.8/g

Dmaxf792;792;764;742;734g D 792

for nD 17, and

max
�
S´.P 0n;4/;f1.3/;f2.6/;f2

�
n�1

2

��
Dmax

�
1

6
.n3
�19nC162/;

1

6
.n3
�25nC96/;

1

6
.n3
�85nC984/;

1

8
.n3
C3n2

C7n�27/

�
D
1

6
.n3
�19nC162/

for n� 21. Thus P9;3 for nD 9, P13.2;4;2;5/ for nD 13, P17.2;4;2;9/ and P 017;4

for n D 17, and P 0n;4 for n � 21 are the unique graphs in Un with the third largest
Szeged index.
Case 3. n � 10 and n � 2 .mod 4/. The largest Szeged index of graphs in Un n

fPn;4g is equal to maxfS´.P10.2;3;2;3//;f1.3/;f1.5/g D maxf168;141; 125g D
168 for nD 10, and

max
�
S´.Pn.2;3;2;n�7//;f1.3/;f2.6/;f2

�
n�2

2

��
Dmax

�
1

6
.n3
�19nC198/;

1

6
.n3
�25nC96/;

1

6
.n3
�85nC984/;

1

8
.n3
C2n2

C24n�88/

�
D
1

6
.n3
�19nC198/
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for n � 14. Thus for n � 10, Pn.2;3;2;n� 7/ is the unique graph in Un with the
second largest Szeged index. Then the graphs in Un with the third largest Szeged in-
dex are just the graphs in UnnfPn;4;Pn.2;3;2;n�7/gwith the largest Szeged index,
which is equal to maxfS´.P10.2;2;3;3//;f1.3/;f1.5/gDmaxf166;141;125gD 166
for nD 10, maxfS´.P14.2;4;2;6//;f1.3/;f2.6/g D maxf443;415;423g D 443 for
nD 14, and

max
�
S´.P 0n;4/;f1.3/;f2.6/;f2

�
n�2

2

��
Dmax

�
1

6
.n3
�19nC162/;

1

6
.n3
�25nC96/;

1

6
.n3
�85nC984/;

1

8
.n3
C2n2

C24n�88/

�
D
1

6
.n3
�19nC162/

for n � 18. Thus P10.2;2;3;3/ for nD 10, P14.2;4;2;6/ for nD 14, and P 0n;4 for
n� 18 are the unique graphs in Un with the third largest Szeged index.
Case 4. n � 11 and n � 3 .mod 4/. The largest Szeged index of graphs in Un n

fPn;4g is equal to

maxfS´.P11.2;3;2;4//;f1.3/;f1.5/g Dmaxf220;214;164g D 220

for nD 11, and

max
�
S´.Pn.2;3;2;n�7//;f1.3/;f2.6/;f2

�
n�3

2

��
Dmax

�
1

6
.n3
�19nC198/;

1

6
.n3
�25nC96/;

1

6
.n3
�85nC984/;

1

8
.n3
Cn2

C47n�193/

�
D
1

6
.n3
�19nC198/

for n � 15. Thus Pn.2;3;2;n� 7/ for n � 11 is the unique graph in Un with the
second largest Szeged index. Then the graphs in Un for n� 11 with the third largest
Szeged index are just the graphs in Un n fPn;4;Pn.2;3;2;n� 7/g with the largest
Szeged index, which is equal to

maxfS´.P11.2;2;3;4//;f1.3/;f1.5/g Dmaxf216;214;164g D 216

for nD 11, maxfS´.P15.2;4;2;7//;f1.3/;f2.6/g D maxf544;516;514g D 544 for
nD 15, and

max
�
S´.P 0n;4/;f1.3/;f2.6/;f2

�
n�3

2

��
Dmax

�
1

6
.n3
�19nC162/;

1

6
.n3
�25nC96/;

1

6
.n3
�85nC984/;

1

8
.n3
Cn2

C47n�193/

�
D
1

6
.n3
�19nC162/

for n � 19. Thus P11.2;2;3;4/ for nD 11, P15.2;4;2;7/ for nD 15, and P 0n;4 for
n� 19 are the unique graphs in Un with the third largest Szeged index.

By combining Cases 1–4, the result follows easily. �
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