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Abstract. In this paper, we construct an iteration scheme involving a hybrid pair of nonexpansive
mappings. For this scheme, we prove some convergence theorems in CAT(0) spaces. In process,
we remove a restricted condition (also called end-point condition) in previous several existing
results. Thus, several relevant results cited in the literature generalize and improve.
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1. INTRODUCTION

A metric space .X;d/ is a CAT(0) space if it is geodesically connected and every
geodesic triangle in X is at least as thin as its comparison triangle in the Euclidean
plane. A complete CAT(0) space is also called Hadamard space. It is well known that
any complete, simply connected Riemannian manifold having non-positive sectional
curvature is a CAT(0) space. Other examples are the classes of Pre-Hilbert spaces,
R-tress and some others. For more details on these spaces, one can consult [3].

Fixed point theory in CAT(0) spaces was initiated by Kirk [13] wherein he proved
that every single-valued nonexpansive mapping defined on a bounded closed convex
subset of a complete CAT(0) space has a fixed point. Since then the fixed point theory
for single-valued as well as multi-valued mappings is rapidly developing in complete
CAT(0) space (e.g., [4–9]). Here it is worth mentioning that the results in complete
CAT(0) space can be applied to any CAT(k) space with k � 0 as any CAT(k) space
is a CAT(k0) space for every k0 � k.

In recent years, different iterative schemes have been used to approximate the fixed
points of multi-valued nonexpansive mappings in Banach spaces. Among these iterat-
ive schemes, iteration schemes due to Sastry and Babu [17], Panyanak [16] and Song
and Wang [23] are notable generalizations of Mann and Ishikawa iteration schemes
especially in the case of multi-valued mappings. By now, there exists an extensive
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literature on the iterative fixed points for various classes of mappings. For an up to
date account of literature on this theme, we refer the readers to Berinde [2].

In 2010, Sokhuma and Kaewkhao [21] introduced an iteration scheme for a pair
of single valued and multivalued mapping and same has been utilized to prove some
convergence theorems in Banach spaces. This scheme has also been studied by sev-
eral authors [1, 19, 20, 25] with respect to different class of mappings in different
spaces. All the authors proved their results under a very strong condition, i.e. end
point condition Tw D fwg for all w 2 F.T /, where T is a multi-valued mapping.
With a motivation to remove this strong condition, Uddin and Imdad [24] introduced
a new iteration scheme for a pair of hybrid mappings in Banach space.

In this paper, we study newly defined iteration scheme due to Uddin and Imdad
[24] in complete CAT(0) space and prove some convergence theorems. In process,
several relevant results in Sokhuma and Kaewkhao [21], Akkasriworn et al. [1],
Uddin et al. [25], Sokhuma [19], Sokhuma [20] and Uddin and Imdad [24] are gen-
eralized and improved.

2. PRELIMINARIES

With a view to make, our presentation self contained, we collect some basic defin-
itions and needed results which will be used frequently in the text later.
Let X be a Banach space and K be a nonempty subset of X . Let CB.K/ be the
family of nonempty closed bounded subsets of K while KC.K/ be the family of
nonempty compact convex subsets of K. A subset K of X is called proximinal if for
each x 2X , there exists an element k 2K such that

d.x;k/D d.x;K/D inffkx�yk W y 2Kg:

It is well known that every closed convex subset of a uniformly convex Banach space
is proximinal. We shall denote by PB.K/, the family of nonempty bounded proxim-
inal subsets of K. The Hausdorff metric H on CB.K/ is defined as

H.A;B/Dmax

�
sup
x2A

d.x;B/; sup
y2B

d.y;A/

�
for A; B 2 CB.K/:

A multi-valued mapping T WK! CB.K/ is said to be nonexpansive if

H.T x;Ty/� kx�yk; for all x; y 2K:

We use the notation F.T / for the set of fixed points of the mapping T while F.t;T /
denotes the set of common fixed points of t and T , i.e. a point x is said to be a com-
mon fixed point of t and T if x D tx 2 T x:
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Now, we recall some basic geometric properties which are instrumental throughout
the discussions. Let fxng be a bounded sequence in a CAT(0) space X . For x 2 X ,
write:

r.x;.fxng//D limsup
n!1

d.x;xn/:

The asymptotic radius r.fxng/ is given by

r.fxng/D inffr.x;xn/ W x 2Xg;

and the asymptotic center A.fxng/ of fxng is defined as:

A.fxng/D fx 2X W r.x;xn/D r.fxng/g:

It is well known that in a CAT(0) space, A.fxng/ consists of exactly one point (see
Proposition 5 of [7]).

In 2008, Kirk and Panyanak [14] gave a concept of convergence in CAT(0) spaces
which is an analogue of weak convergence in Banach spaces and restriction of Lim’s
concept of convergence [15] to CAT(0) space.

Definition 1 ([14]). A sequence fxng in X is said to �-converge to x 2 X if x
is the unique asymptotic center of fung for every subsequence fung of fxng. In this
case, we write �� limnxn D x and read as x is the �-limit of fxng:

Notice that for a given fxng �X which �-converges to x and for any y 2X with
y ¤ x (owing to uniqueness of asymptotic center), we have

limsup
n!1

d.xn;x/ < limsup
n!1

d.xn;y/:

Thus every CAT(0) space satisfies the Opial property.
Now, we state some basic facts about CAT(0) spaces which will be frequently used

throughout the text.

Lemma 1 ([14]). Every bounded sequence in a complete CAT(0) space admits a
�-convergent subsequence.

Lemma 2 ([8]). If K is closed convex subset of a complete CAT(0) space X and
if fxng is a bounded sequence in K, then the asymptotic center of fxng is in K.

Kirk and Panyanak [14] also proved analogoue of famous demiclosedness prin-
ciple for nonexpansive mappings in CAT(0) spaces.

Lemma 3. Let K be a closed convex subset of X and T WK!X a nonexpansive
mapping. If fxng is a sequence in X which �-converges to x and d.xn;T xn/! 0,
then x 2K and T x D x.

The following theorem is a consequence of Theorem 3.2 of Dhompongsa et al.
[6].
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Lemma 4 ([6]). Let K be a nonempty closed convex subset of complete CAT(0)
spaceX and T WK!C.K/ be a multivalued nonexpansive mapping. If��limnxnD

x and lim
n!1

d.T xn;xn/D 0, then x is a fixed point of T .

Lemma 5 ([9]). Let .X; d/ be a CAT(0) space. For x; y 2X and ˛ 2 Œ0;1�; there
exists a unique ´ 2 Œx; y� such that

d.x;´/D ˛d.x;y/ and d.y;´/D .1�˛/d.x;y/:

Notice that we use the notation .1�˛/x˚˛y for the unique point ´ in the case of
preceding lemma.

Lemma 6 ([9]). For x;y;´ 2X and ˛ 2 Œ0;1� we have

d..1�˛/x˚˛y;´/� .1�˛/d.x;´/C˛d.y;´/:

The following lemma is very important to prove our main results, which is an
analogue of Proposition 2 of [11] in CAT(0) spaces.

Lemma 7. Let X be a CAT(0) space and let x 2 X . Suppose ftng is a se-
quence in Œb;c� for some b;c 2 .0;1/ andfxng, fyng are sequences in X such that
limsup
n!1

d.xn;x/� a, limsup
n!1

d.yn;x/� a, and lim
n!1

d..1� tn/xn˚ tnyn;x/D a for

some a � 0. Then
lim

n!1
d.xn;yn/D 0:

Lemma 8. Let X be a Banach space, and let K be a nonempty closed convex
subset of X . Then,

d.y;Ty/� ky�xkCd.x;T x/CH.T x;Ty/;

where x;y 2K and T is a multi-valued nonexpansive mapping fromK into CB.K/.

The following result due to Song and Cho [22] is very useful.

Lemma 9. Let T WK!P.K/ be a multi-valued mapping and PT .x/Dfy 2 T x W

kx�yk D d.x;T x/g. Then the following are equivalent.
(1) x 2 F.T /,
(2) PT .x/D fxg,
(3) x 2 F.PT /. Moreover, F.T /D F.PT /.

3. MAIN RESULTS

In this section, we opt the following iteration scheme in CAT(0) spaces.
Let K be a nonempty convex subset of CAT(0) space X , let t WK!K be a single-
valued nonexpansive mapping and T WK! PB.K/ be a multi-valued nonexpansive
mapping. The sequence fxng of the modified Ishikawa iteration is defined by(

yn D ˛n´n˚ .1�˛n/xn;

xnC1 D ˇntyn˚ .1�ˇn/xn;
(3.1)
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where x0 2K, ´n 2 PT xn and 0 < a � ˛n; ˇn � b < 1:

We begin with following lemma.

Lemma 10. Let K be a non-empty bounded closed convex subset of a complete
CAT(0) space X . Let t W K ! K be a single-valued nonexpansive mapping and
T W K! PB.K/ be a multi-valued mapping whose PT is a nonexpansive mapping
such that F.t;T / 6D ¿. If fxng is the sequence of the modified Ishikawa iteration
defined by (3.1) with 0 < a � ˛n; ˇn � b < 1, then lim

n!1
d.xn;w/ exists for all

w 2 F.t;T /.

Proof. Letw 2F.t;T / and fxng be the sequence described by (3.1). Then in view
Lemma 9

w 2 PT .w/D fwg:

Now, consider

d.xnC1;w/D d..1�ˇn/xn˚ˇntyn;w/

� .1�ˇn/d.xn;w/˚ˇnd.tyn; tw/

� .1�ˇn/d.xn;w/˚ˇnd.yn;w/: (3.2)

But

d.yn;w/D d..1�˛n/xn˚˛n´n;w/

� .1�˛n/d.xn;w/C˛nd.´n;w/

D .1�˛n/d.xn;w/C˛nd.´n;PTw/

� .1�˛n/d.xn;w/C˛nH.PT xn;PTw/

� .1�˛n/d.xn;w/C˛nd.xn;w/

D d.xn;w/: (3.3)

In view of (3.2) and (3.3), we have

d.xnC1;w/� d.xn;w/:

Which shows that fd.xn;w/g is a decreasing sequence of non-negative reals. Thus in
all, sequence fd.xn;wg is bounded below and decreasing, therefore remains conver-
gent. �

Lemma 11. Let K be a non-empty bounded closed convex subset of a complete
CAT(0) space X . Let t W K ! K be a single-valued nonexpansive mapping and
T W K! PB.K/ be a multi-valued mapping whose PT is a nonexpansive mapping
such that F.t;T / 6D ¿. If fxng is the sequence of the modified Ishikawa iteration
defined by (3.1) with 0 < a � ˛n; ˇn � b < 1, then lim

n!1
d.tyn;xn/D 0.
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Proof. In view of Lemma 10, lim
n!1

d.xn;w/ exists for all w 2 F.t;T /. Write

lim
n!1

d.xn;w/D c: (3.4)

Now, consider

d.tyn;w/� d.yn;w/

� d..1�˛n/xn˚˛n´n;w/

� .1�˛n/d.xn;w/C˛nd.´n;w/

D .1�˛n/d.xn;w/C˛nd.´n;PTw/

� .1�˛n/d.xn;w/C˛nH.PT xn;PTw/

� .1�˛n/d.xn;w/C˛nd.xn;w/

D d.xn;w/: (3.5)

On taking limsup of both the sides, we obtain

limsup
n!1

d.tyn;w/� c: (3.6)

Also,

c D lim
n!1

d.xnC1;w/

D lim
n!1

d..1�ˇn/xn˚ˇntyn;w/: (3.7)

In view of (3.5), (3.6), (3.7) and Lemma 7, we get

lim
n!1

d.tyn;xn/D 0:

�

Lemma 12. Let K be a nonempty bounded closed convex subset of a complete
CAT(0) space X . Let t W K ! K be a single-valued nonexpansive mapping and
T W K! PB.K/ be a multi-valued mapping whose PT is a nonexpansive mapping
such that F.t;T / 6D ¿. If fxng is the sequence of the modified Ishikawa iteration
defined by (3.1) with 0 < a � ˛n; ˇn � b < 1, then lim

n!1
d.´n;xn/D 0.

Proof. Let w 2 F.t;T / and fxng be the sequence described by (3.1). Since PT is
nonexpansive, so in view of Lemma 9, we have

w 2 PT .w/D fwg:

Now, consider

d.xnC1;w/D d..1�ˇn/xn˚ˇntyn;w/

� .1�ˇn/d.xn;w/Cˇnd.tyn; tw/

� .1�ˇn/d.xn;w/Cˇnd.yn;w/: (3.8)
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and therefore

d.xnC1;w/�d.xn;w/� ˇn.d.yn;w/�d.xn;w//;

d.xnC1;w/�d.xn;w/

ˇn
� d.yn;w/�d.xn;w/:

Since 0 < a � ˇn � b < 1; we have

liminf
n!1

n�d.xnC1;w/�d.xn;w/

ˇn

�
Cd.xn;w/

o
� liminf

n!1
d.yn;w/:

It follows that
c � liminf

n!1
d.yn;w/:

Since, from (3.3) limsup
n!1

d.yn;w/� c, hence we have

c D lim
n!1

d.yn;w/

D lim
n!1

d..1�˛n/xn˚˛n´n;w/: (3.9)

Recall that d.´n;w/D d.´n;PTw/�H.PT xn;PTw/� d.xn;w/: Thus, we have

limsup
n!1

d.´n;w/� limsup
n!1

d.xn;w/D c: (3.10)

Owing to (3.9), (3.10) and Lemma 7, we obtain lim
n!1

d.xn;´n/D 0: �

Lemma 13. Let K be a nonempty bounded closed convex subset of a complete
CAT(0) space X . Let t W K ! K be a single-valued nonexpansive mapping and
T W K! PB.K/ be a multi-valued mapping whose PT is a nonexpansive mapping
such that F.t;T / 6D ¿. If fxng is the sequence of the modified Ishikawa iteration
defined by (3.1) with 0 < a � ˛n; ˇn � b < 1, then lim

n!1
d.txn;xn/D 0.

Proof.

d.txn;xn/� d.txn; tyn/Cd.tyn;xn/

� d.xn;yn/Cd.tyn;xn/

� d.xn; .1�˛n/xn˚˛n´n/Cd.tyn;xn/

D ˛nd.xn;´n/Cd.tyn;xn/

therefore,

lim
n!1

d.txn;xn/� lim
n!1

˛nd.xn;´n/C lim
n!1

d.tyn;xn/:

Thus by Lemma 11 and Lemma 12, we have

lim
n!1

d.txn;xn/D 0:

�
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Now, we prove the following �-convergence theorem.

Theorem 1. Let K be a nonempty bounded closed convex subset of a complete
CAT(0) space X . Let t W K ! K be a single-valued nonexpansive mapping and
T W K ! P.K/ be a multi-valued mapping such that F.t;T / 6D ¿ with PT is a
nonexpansive mapping. Let fxng be the sequence of the modified Ishikawa iteration
defined by (3.1) with 0 < a � ˛n; ˇn � b < 1, then fxng �-converge to y 2 F.t;T /.

Proof. From Lemma 10, we have lim
n!1

d.xn;w/ exists for each w 2 F.t;T / so

that the sequence fxng is bounded and lim
n!1

d.xn; txn/D 0.

Let W!.fxng/ WD [A.fung/, where union is taken over all subsequences fung over
fxng. In order to show that the �-convergence of fxng to a common fixed point
of t and T , firstly we will prove W!.fxng/ � F.t;T / and thereafter argue that
W!.fxng/ is a singleton set. To show W!.fxng/� F.t;T /, let y 2W!.fxng/: Then,
there exists a subsequence fyng of fxng such that A.fyng/D y. By Lemmas 1 and
2, there exists a subsequence fwng of fyng such that �� lim

n
wn D w and w 2

K. Since, lim
n!1

d.twn;wn/ D 0 so that in view of Lemma 4, w 2 F.t/: Also,

lim
n!1

d.xn;PT xn/� d.xn;´n/. In view of Lemma 12, we have lim
n!1

d.xn;PT xn/D

0 and so is lim
n!1

d.wn;PTwn/ D 0. Owing to Lemma 4, w 2 F.PT / and hence

w 2 F.t;T /: Now, we claim that w D y: Let on contrary that w ¤ y; then we have

limsup
n!1

d.wn;w/ < limsup
n!1

d.wn;y/

� limsup
n!1

d.yn;y/

< limsup
n!1

d.yn;w/

D limsup
n!1

d.xn;w/

D limsup
n!1

d.wn;w/

which is a contradiction and hencewD y 2F: To show thatW!.f.xng/ is a singleton,
let fyng be a subsequence of fxng. In view of Lemmas 1 and 2, there exists a sub-
sequence fwng of fyng such that�� lim

n
wnDw. LetA.fyng/D y andA.fxng/D x.

Earlier, we have shown that y D w; therefore it is enough to show w D x. If w ¤ x,
so by Lemma 10 fd.xn;w/g is convergent. By uniqueness of asymptotic center

limsup
n!1

d.wn;w/ < limsup
n!1

d.wn;x/

� limsup
n!1

d.xn;x/

< limsup
n!1

d.xn;w/

D limsup
n!1

d.wn;w/
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which is a contradiction so that the conclusion follows. �

Theorem 2. Let K be a nonempty bounded closed convex subset of a complete
CAT(0) space X . Let t W K ! K be a single-valued nonexpansive mapping and
T W K ! P.K/ be a multi-valued mapping whose PT is a nonexpansive mapping
such that F.t;T / 6D ¿. Let fxng be the sequence of the modified Ishikawa iteration
defined by (3.1) with 0 < a � ˛n; ˇn � b < 1, then fxni

g! y for some subsequence
fxni
g of fxng implies y 2 F.t;T /.

Proof. Assume that lim
i!1

d.xni
;y/D 0. By Lemma 13, we obtain

lim
i!1

d.txni
;xni

/D 0

Now, we have

d.xni
; ty/� d.xni

; txni
/Cd.txni

; ty/

� d.xni
; txni

/Cd.xni
;y/:

On taking limit of both the sides, we get

lim
i!1

d.xni
; ty/D 0:

Hence by the uniqueness of limit, we obtain y D ty, that is, y 2 F.t/. By Lemma 8,
we have

d.y;PT y/� d.y;xni
/Cd.xni

;PT xni
/CH.PT xni

;PT y/

� d.y;xni
/Cd.xni

;´ni
/Cd.xni

;y/ ! 0

as i !1. It follows that y 2 F.PT /D F.T /. Thus y 2 F.t;T /. �

Theorem 3. Let K be a nonempty compact convex subset of a complete CAT(0)
space X . Let t W K ! K be a single-valued nonexpansive mapping and T W K !
PB.K/ be a multi-valued mapping whose PT is a nonexpansive mapping such that
F.t;T / 6D¿. Let fxng be the sequence of the modified Ishikawa iteration defined by
(3.1) with 0 < a � ˛n; ˇn � b < 1, then fxng converges strongly to a common fixed
point of t and T .

Proof. Since fxng is contained in K which is compact, there exists a subsequence
fxni
g of fxng such that fxni

g converges strongly to some point y 2 K, that is,
lim

i!1
d.xni

;y/D 0: By Theorem 2, we get y 2 F.t;T / and by Lemma 10, we have

that lim
n!1

d.xn;y/ exists. It must be the case in which lim
n!1

d.xn;y/D lim
i!1

d.xni
;y/D

0. Thus, fxng converges strongly to y 2 F.t;T /. �

Khan and Fukhar-ud-din [12] introduced the so-called condition .A0/ for two map-
pings and gave an improved version in [10] of condition (I) of Senter and Dotson
[18]. A hybrid version of condition .A0/ for a pair of single valued and multivalued
mapping which is weaker than compactness of the domain, is given as follows:
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A pair of single-valued mapping t WK!K and a multi-valued mapping T WK!
CB.K/ is said to satisfy condition .A0/ if there exists a nondecreasing function f W
Œ0;1/! Œ0;1/with f .0/D 0, f .r/> 0 for all r 2 .0;1/ such that either d.x; tx/�
f .d.x;F // or d.x;T x/� f .d.x;F // for all x 2K.

Theorem 4. Let K be a nonempty bounded closed convex subset of a complete
CAT(0) space X . Let t WK!K be a single-valued nonexpansive mapping and T W
K! PB.K/ be a multi-valued mapping whose PT is a nonexpansive mapping such
that F.t;T / 6D¿. Moreover pair .t;PT / satisfies condition .A0/. If fxng is sequence
of the modified Ishikawa iteration defined by (3.1) with 0 < a� ˛n; ˇn � b < 1, then
fxng converges strongly to a common fixed point of t and T .

Proof. First, we show that F.t;T / is closed. Let fxng be a sequence in F.t;T /
converging to some point ´ 2K. Since

d.xn; t´/D d.txn; t´/

� d.xn;´/;

we have
limsup

n
d.xn; t´/� limsupd.xn;´/D 0:

By uniqueness of the limit, we have t´D ´. Also,

d.xn;PT ´/�H.PT xn;PT ´/

� d.xn;´/! 0 as n!1:

This implies that fxng converges to some point of PT ´ and hence ´ 2 F.PT / D

F.T /:

By Lemma 10, lim
n!1

d.xn;p/ exists for all p 2 F.t;T / and let us take to be c. If c D
0, then there is nothing to prove. If c > 0, then in view of Equation (3.4) for all p 2
F.t;T /, we have

d.xnC1;p/� d.xn;p/;

so that
inf

p2F .t;T /
d.xnC1;p/� inf

p2F .t;T /
d.xn;p/;

which amounts to say that

d.xnC1;F .t;T //� d.xn;F .t;T //

and hence lim
n!1

d.xn;F .t;T // exists. Owing to condition .A0/ there exists a non-

decreasing function f such that

lim
n!1

f .d.xn;F .t;T ///� lim
n!1

d.xn; txn/D 0

or,
lim

n!1
f .d.xn;F .t;T ///� lim

n!1
d.xn;PT xn/� lim

n!1
d.xn;´n/D 0
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so that in both the cases lim
n!1

f .d.xn;F .t;T /// D 0: Since, f is a nondecreasing

function and f .0/D 0, therefore lim
n!1

d.xn;F .t;T //D 0:

This implies that there exists a subsequence fxnk
g of fxng such that

d.xnk
;pk/�

1

2k
for all k� 1

where fpkg is in F.t;T /. By Lemma 10, we have

d.xnkC1
;pk/� d.xnk

;pk/�
1

2k
;

so that
d.pkC1;pk/� d.pkC1;xnkC1

/Cd.xnkC1
;pk/

�
1

2kC1
C
1

2k
<

1

2k�1
;

which implies that fpkg is a Cauchy sequence. Since F.t;T / is closed, therefore
fpkg is a convergent sequence. Write lim

k!1
pk D p: Now, in order to show that fxng

converges to p, lets proceed as follows:

d.xnk
;p/� d.xnk

;pk/Cd.pk;p/! 0 as k!1;

so that lim
k!1

d.xnk
;p/D 0: Since lim

n!1
d.xn;p/ exists, therefore xn! p: �

Remark 1. The condition of nonexpansiveness on PT is necessary. By the follow-
ing example we can illustrate that PT need not be necessarily nonexpansive even T
is nonexpansive.

Example 1. LetX be a rectangle with vertices .0;0/; .2;0/; .2;1/ and .0;1/. Define
T ..u;v//DT ..u;0//D Œ. up

2
; up

2
/; .1C up

2
; up

2
/� for u�

p
2 and T .u;v/DT .u;0/D

Œ.1;1/; .2;1/� for u >
p
2. Then it can be verified that

H.T u1;T u2/D ju1�u2j

for u1;u2�
p
2 and less than other case so that T is nonexpansive. Also, if xD .0;1/

then PT .x/ D .0;0/ while for p D .
p
2;1/, PT .p/ D .

p
2;1/. Now, jjPT .p/�

PT .x/jj D
p
3 while jjx �pjj D

p
2 that is jjPT .p/�PT .x/jj > jjx �pjj which

assures that PT is not a nonexpansive mapping.
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