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Abstract. In this paper, we suggest some new and efficient iterative methods for solving non-
linear equations f (x) = 0. These methods are free from derivatives having high order of con-
vergence. We also give some examples to illustrate the efficiency of these methods. Finally,
numerical tests confirm the theoretical results and allow us to compare these variants with the
classical Steffensen’s method. These new methods can be considered as alternative of existing
derivative-free methods.
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1. INTRODUCTION

Finding the approximate solution of the nonlinear equation f (x) = 0 is one of the
basic problems which frequently occurs in scientific work of various fields [1–13].
Due to the higher order of the nonlinear equations and the involvement of transcend-
ental functions, analytical methods cannot be employed and therefore, it is only pos-
sible to obtain approximate solutions by relying on numerical methods based on it-
eration procedure. There are several methods in the literature for the computation of
the root of the nonlinear equations. Newton method is well known classical method
which is described as:

xn+1 = xn −
f (xn)

f ′(xn)
, n = 0,1,2, ...

This method possesses quadratic convergence in the neighborhood of simple root
r. This method is not applicable when the derivative of any function is not defined
at initial or any stage of computations. There are also some interval based initial
methods but have slow convergence towards the solution with additional drawbacks.
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Some time we face the complicated problems for whom the calculation of derivatives
are more complicated to compute. Some of the problems of such type are listed here.

(1) f (x) = cos(x)+ sin(2x)
√

1−2x2 + sin(x2)+ x14 + x3 ln(x)+12
(2) f (x) = (1+ x3)cos(x2)+

√
1− x2 −2(9

√
2+7

√
3)x4

(3) f (x) = 1
x −|x|.

Such kind of problems need derivative-free iterative methods for obtaining the ap-
proximate solutions. In the last few years, researchers have established the idea of
removing derivatives from the main recurrence relations in order to escape defining
new functions involving derivatives and tried to calculate iterations only by using the
function that describes the problem. It is tried to preserve the order of convergence
of the method after using the approximation of the involved derivatives. Steffensen
[5, 13] introduced such type of method in which he used the approximation of deriv-
ative as:

f ′(xn)≈
f (xn + f (xn)− f (xn)

f (xn)
Using this approximation, Steffensen [5, 13] modified the Newton method as a
derivative-free method:

xn+1 = xn −
[ f (xn)]

2

f (xn + f (xn))− f (xn)
, n = 0,1,2, ...

This method is known as Steffensen’s iterative method for solving nonlinear equa-
tions. This method has quadratic convergence. Steffensen’s method is free from any
derivative of the function and have great importance because sometimes the applica-
tions of iterative methods which depend upon derivatives are restricted in engineering
and other fields.

The rest of this paper is organized as follows. In Section 2, we describe our meth-
ods that are free from derivatives and have better convergence rate than Steffensen’s
method. In Section 3, we establish the convergence order of these methods. Finally,
in Section 4 different numerical tests confirm the theoretical results and allow us to
compare these methods with the existing methods.

2. CONSTRUCTION OF DERIVATIVE-FREE ITERATIVE TECHNIQUES

In this section, we derive some new iterative techniques for solving nonlinear equa-
tions without using the derivative of the function to obtain such type of iterative meth-
ods. We use approximation of the first derivatives of the function to obtain such type
of iterative methods.

Let us approximate the first derivative of the function f (x) by

f ′(x) =
f (x+b f (x))− f (x)

b f (x)
, ∵ b ∈ R and b ̸= 0.

Now we use this approximation in well known Newton method [3,13] and obtain the
following derivative-free iterative method for solving nonlinear equations as:
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Algorithm 2.1. For a given x0, find the approximate solution xn+1 by the iterative
scheme:

xn+1 = xn −
b[ f (xn)]

2

f (xn +b f (xn))− f (xn)
, n = 0,1,2, ...

For different values of b, we obtain classes of iterative schemes without involving
derivatives. If we select, b = 1, then Algorithm 2.1 reduces to the well known Stef-
fensen’s method [5,13]. Our aim is to modify higher order methods as derivative-free
method preserving their order of convergence. Halley method is a well known cu-
bic convergent method [5, 13] involving higher derivatives. This method has cubic
convergence and can be derived by various techniques [5, 12, 13]. Halley method is
described as:

Algorithm 2.2. For a given x0, find the approximate solution xn+1 by the iterative
scheme:

xn+1 = xn −
2 f (xn) f ′(xn)

2[ f ′(xn)]2 − f (xn) f ′′(xn)
, n = 0,1,2, ...

This method involves second derivative of the function for solving nonlinear equa-
tions. We will use the approximation of the first and second derivatives of function
f (x) as:

f ′(xn)≈
f (xn +b f (xn))− f (xn −b f (xn))

2b[ f (xn)]
,

f ′′(xn)≈
f (xn +b f (xn))−2 f (x)+ f (xn −b f (xn))

[b f (xn)]2
.

Using the above approximations of derivatives in Algorithm 2.2, we obtain the fol-
lowing derivative-free iterative method as:

Algorithm 2.3. For a given x0, find the approximate solution xn+1 by the iterative
scheme:

xn+1 = xn −
b[ f (xn)]

2A(xn)

[A(xn)]2 −2 f (xn)[ f (xn +b f (xn))−2 f (xn)+ f (xn −b f (xn))
,

where

A(xn) = [ f (xn +b f (xn))− f (xn −b f (xn))] ∵ b ∈ R, and b ̸= 0.

Algorithm 2.3 is a newly derived third order convergent derivative-free iterative method
for solving nonlinear equations. Shah and Noor [12] suggested a fourth-order iterat-
ive method for solving nonlinear equations as:

Algorithm 2.4. For a given x0, find the approximate solution xn+1 by the iterative
schemes:

yn = xn −
2 f (xn) f ′(xn)

2[ f ′(xn)]2 − f (xn) f ′′(xn)
,

xn+1 = yn −
2 f (yn) f ′(xn)

2[ f ′(xn)]2 − f (xn) f ′′(xn)
, n = 0,1,2, ...
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Algorithm 2.4 involves the second derivative of the function. We use the approx-
imations of the first and the second derivative of function f (xn) and obtain the new
iterative scheme by this modification as:

Algorithm 2.5. For a given x0, find the approximate solution xn+1 by the iterative
schemes:

yn = xn −
2bA(xn)

[A(xn)]2 −2 f (xn)[ f (xn +b f (xn))−2 f (xn)+ f (xn −b f (xn))
,

xn+1 = yn −
2b f (xn) f (yn)[A(xn)]

[A(xn)]2 −2 f (xn)[ f (xn +b f (xn))−2 f (xn)+ f (xn −b f (xn))
.

Algorithm 2.5 is a fourth order convergent derivative-free iterative method for
solving nonlinear equations.

Shah [11] suggested the following fourth-order iterative method for solving non-
linear equations.

Algorithm 2.6. For a given x0, find the approximate solution xn+1 by the iterative
schemes:

yn = xn −
2 f (xn) f ′(xn)

2[ f ′(xn)]2 − f (xn) f ′′(xn))
,

xn+1 = yn −
4 f (yn) f ′(xn)

2[ f ′(xn)]2 − f (xn) f ′′(xn))
− 4 f (yn) f ′(yn)[ f ′(xn)]

2

[2[ f ′(xn)]2 − f (xn) f ′′(xn))]2
.

This method also involves the derivatives of the function. We modify this method by
using approximation of derivatives and obtain the following derivative-free iterative
method.

Algorithm 2.7. For a given x0, find the approximate solution xn+1 by the iterative
schemes:

yn = xn −
2b[ f (xn)]

2[A(xn)]

[A(xn)]2 −2 f (xn)[ f (xn +b f (xn))−2 f (xn)+ f (xn −b f (xn))
,

xn+1 = yn −
4b f (xn) f (yn)[A(xn)]

[A(xn)]2 −2 f (xn)[ f (xn +b f (xn))−2 f (xn)+ f (xn −b f (xn))

− 4[b f (xn)]
3[A(xn)][ f (yn +b f (yn))− f (y−b f (yn))]

[A(xn)]2 −2 f (xn)[ f (xn +b f (xn))−2 f (xn)+ f (xn −b f (xn))]2
.

Algorithm 2.7 is a fourth order convergent derivative-free iterative method for solving
nonlinear equations.

Noor [10] suggested the following two iterative methods for solving nonlinear
equations which involve the first derivative of the function as:

Algorithm 2.8. For a given x0, find the approximate solution xn+1 by the iterative
schemes:

yn = xn −
f (xn)

f ′(xn)
,
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xn+1 = yn −
f (xn)+h f (yn)

f ′(yn)
.

Now we use the suggested approximation in Algorithm 2.8 and obtain a derivative-
free iterative method as:

Algorithm 2.9. For a given x0, find the approximate solution xn+1 by the iterative
schemes:

xn+1 = xn −
2b[ f (xn)]

2

f (xn +b f (xn))− f (xn −b f (xn))
,

xn+1 = yn −
2b f (yn)[ f (xn)+h f (yn)]

f (yn +b f (yn))− f (yn −b f (yn))
.

Similarly Noor [10] also suggested a method which involves derivatives:
Algorithm 2.10. For a given x0, find the approximate solution xn+1 by the iterative

schemes:

yn = xn −
f (xn)

f ′(xn)
,

xn+1 = yn −
f (xn)+2h f (yn)

f ′(xn)
+

h f (yn) f ′(yn)

[ f (x)]2
.

Using the approximation in Algorithm 2.10 we obtain a derivative-free method as:
Algorithm 2.11. For a given x0, find the approximate solution xn+1 by the iterative

schemes:

yn = xn −
2b[ f (xn)]

2

f (xn +b f (xn))− f (xn −b f (xn))
,

xn+1 = yn −
2b f (xn)[ f (xn)+2h f (yn)]

f (xn +b f (xn))− f (xn −b f (xn))
+

h[ f (yn +b f (yn))− f (yn −b f (yn))]

2b[ f (xn)]2
.

3. CONVERGENCE ANALYSIS

In this section, we consider the convergence criteria of Algorithm 2.5 developed in
Section 2. All other methods can be studied for the convergence in a similar manner.

Theorem 1. Let α be a simple zero of a sufficiently differentiable function
f : D ⊂ R→ R in an open interval D. If x0 is sufficiently close to α, then Algorithm
2.5 has fourth order convergence and satisfies the error equation

en+1 = [(c2
2 − c3 + c3b2(c1)

2)e4
n +O(e5

n)].

Proof. Let α be the simple root of f (x). Using Taylor series and expanding f (xn),
f (xn −b f (xn)) and f (xn +b f (xn)), we obtain

f (xn) = c1[en + c2e2
n + c3e3

n + c4e4
n + c5e5

n +O(e6
n)], (3.1)

f (xn +b f (xn)) = c1(1+bc1)en +3(c1)
2bc2 + c1c2 +(c1)

3b2c2)e2
n +O(e3

n) (3.2)
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and

f (xn −b f (xn)) = [−c1(−1+bc1)en +(3c1)
2bc2 + c1c2 +(c1)

3b2c2)e2
n +O(e3

n)],
(3.3)

where

ck =
f (k)(p)
f ′(p)

, k = 2,3, ..., c1 = f ′(p), en = xn − p.

Now using (3.2) and (3.3), we obtain

f (xn +b f (xn))+ f (xn −b f (xn))

= [2b(c1)
2en +6(c1)

2bc2e2
n +4b(c1)

2c2
2 +8b(c1)

2c3 +2c3(c1)
4b3)e3

n +O(e4
n)].
(3.4)

Using (3.1), (3.2), (3.3) and (3.4) in Algorithm 2.5, we have

xn−
2b[ f (xn)]

2[ f (xn +b f (xn))− f (xn −b f (xn))]

[ f (xn +b f (xn))− f (xn −b f (xn))]2 −2 f (xn)[ f (xn +b f (xn))−2 f (xn)+ f (xn −b f (xn))

= α+[(c2
2 − c3 + c3b2(c1)

2)e3
n +O(e4

n)].

Using above all equations and simple manipulations yield the following error equa-
tions

en+1 = [(c2
2 − c3 + c3b2(c1)

2)e4
n +O(e5

n)].

This shows that Algorithm 2.5 has fourth order convergence. □

4. NUMERICAL RESULTS

In this section, we exhibit computational comparison of newly derived methods
for some examples. All the examples are tested by using Maple 11. Stopping criteria
used for the computational work are given as:

• |xn − xn−1|< ε,
• | f (xn)|< ε, where ε = 10−64.

Example 1. We consider the nonlinear equation f (x) = cos(x)− x, and the initial
guess for all the methods is x0 = 2. Results and comparison is shown in Table 1 and
Table 2 for b = 1 and b = 0.25 respectively.
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TABLE 1. Comparison of methods for b = 1.

Method IT xn |xn − xn−1| | f (xn)|
SM 6 0.7390848856 5.08170e−22 0.0000000

Alg 2.5 3 0.7390848856 1.12139e−3 6.8890e−12

Alg 2.7 3 0.7390848856 4.63400e−5 7.9041e−9

Alg 2.9 5 0.7390848856 1.19850e−20 0.0000000
Alg 2.11 3 0.7390848856 2.53515e−23 0.0000000

TABLE 2. Comparison of methods for b = 1
4 .

Method IT xn |xn − xn−1| | f (xn)|
SM 6 0.7390848856 5.08170e−22 0.0000000

Alg 2.5 3 0.7390848856 1.29387e−05 1.45143e−8

Alg 2.7 3 0.7390848856 1.5601833e−05 5.16302e−6

Alg 2.9 6 0.7390848856 3.40895e−16 0.0000000
Alg 2.11 6 0.7390848856 8.68285e−23 0.0000000

TABLE 3. Comparison of methods for b = 1.

Method IT xn |xn − xn−1| | f (xn)|
SM 11 1.36523001478 0.00000000 2.31492e−14

Alg 2.5 6 1.36523001478 2.6400e−7 2.45754e−17

Alg 2.7 4 1.36523001478 9.823e−6 1.609915e−14

Alg 2.9 8 1.36523001478 0.00000000 2.2193e−24

Alg 2.11 7 1.36523001478 0.00000000 6.08207e−27

TABLE 4. Comparison of methods for b = 1
4 .

Method IT xn |xn − xn−1| | f (xn)|
SM 11 1.36523001478 0.0000000 2.31492e−14

Alg 2.5 3 1.36523001478 8.17300e−9 6.136728e−14

Alg 2.7 3 1.36523001478 2.103500e−7 6.671405e−5

Alg 2.9 8 1.36523001478 0.0000000 2.5083e−17

Alg 2.11 7 1.36523001478 0.0000000 5.0634e−32

Example 2. We consider the nonlinear equation f (x) = x3 +4x−10.
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Table 3 and Table 4 depict the numerical results of Example 2. We use the initial
guess x0 = 1.5 for the computer program.

Example 3. Consider the nonlinear equation f (x) = 2x3−3x2. We observe that its
derivative becomes zero on the interval [1

2 ,2], so for this function we can use only
derivative-free methods.

Table 5 and Table 6 depict the numerical results of Example 3. We use the initial
guess x0 = 0.5 for the computer program.

TABLE 5. Comparison of methods for b = 1.

Method IT xn |xn − xn−1| | f (xn)|
SM 23 1.499999335 1.0449181e−18 0.0000000

Alg 2.5 5 1.499999335 5.5190301e−4 −3.4115e−5

Alg 2.7 4 1.499999335 2.6258151e−5 2.566e−6

Alg 2.9 9 1.499999335 7.5387141e−15 0.0000000
Alg 2.11 9 1.499999335 1.7219124e−16 0.0000000

TABLE 6. Comparison of methods for b = 1
4 .

Method IT xn |xn − xn−1| | f (xn)|
SM 23 1.499999335 1.0449181e−18 0.0000000

Alg 2.5 4 1.499999335 2.3284121e−6 −4.569e−12

Alg 2.7 3 1.499999335 1.0355809e−6 4.04686e−9

Alg 2.9 7 1.499999335 4.6836141e−16 0.0000000
Alg 2.11 7 1.499999335 2.6909900e−16 0.0000000

Example 4. Consider the nonlinear equation

f (x) = cos(x)+ sin(2x)
√

1− x2 + sin(x2)+ x14 + x3 +1/2x

with x0 =−0.92.

Table 7 and Table 8 show the numerical results of Example 4.

Example 5. Consider the nonlinear equation f (x) =
1
x
− | x | with x0 = 0.7.

Table 9 and Table 10 show the numerical results of Example 5.
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TABLE 7. Comparison of methods for b = 1.

Method IT xn |xn − xn−1| | f (xn)|
SM 5 -0.92577268 7.6591100e−20 0.0000000

Alg 2.5 2 -0.92577268 3.0216400e−4 2.634e−6

Alg 2.7 2 -0.92577268 3.2210000e−4 2.566e−6

Alg 2.9 4 -0.92577268 1.7934900e−17 0.0000000
Alg 2.11 4 -0.92577268 1.6139720e−22 0.0000000

TABLE 8. Comparison of methods for b = 1
2 .

Method IT xn |xn − xn−1| | f (xn)|
SM 5 -0.92577268 7.6591100e−20 0.0000000

Alg 2.5 2 -0.92577268 2.2412000e−4 5.647e−7

Alg 2.7 2 -0.92577268 5.0631000e−4 4.327e−8

Alg 2.9 4 -0.92577268 1.0470550e−4 0.0000000
Alg 2.11 5 -0.92577268 8.3425000e−27 0.0000000

TABLE 9. Comparison of methods for b = 1.

Method IT xn |xn − xn−1| | f (xn)|
SM 6 0.9999999932 3.2474947e−18 0.0000000

Alg 2.5 4 1.00000027 5.9794800e−4 1.5650e−10

Alg 2.7 7 1.00000027 1.2535300e−5 7.01990e−7

Alg 2.9 16 1.00000027 1.2615400e−25 0.0000000
Alg 2.11 13 1.00000027 2.7432108e−21 0.0000000

TABLE 10. Comparison of methods for b = 1
2 .

Method IT xn |xn − xn−1| | f (xn)|
SM 6 0.9999999932 3.2474947e−18 0.000000

Alg 2.5 3 0.9999999932 8.8873000e−5 9.88077e−8

Alg 2.7 4 0.9999999932 5.4401360e−5 7.25509e−6

Alg 2.9 5 0.9999999932 7.8798800e−14 0.0000000
Alg 2.11 6 0.9999999932 8.7039110e−21 0.0000000

CONCLUSION

In this article, we have used approximations with a parameter b ∈ R for the first
and higher derivatives in various known methods. These approximations generated
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the new derivative-free methods and also these newly derived methods preserved the
same order of convergence. The theoretical results have been checked with some nu-
merical examples. Comparison is also given to check the performance and efficiency
of these iterative schemes.
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