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Abstract. There is a large number of discrete inequalities between geometric and arithmetic
means. Our intention is to investigate possible generalization and integral analogues of the in-
equalities obtained by Redhefer, Bullen and Godunova. At the end, we will consider refinements
of these inequalities by different separations of their domains.
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1. PRELIMINARES
Consider the following sequences of positive real numbers:

(a) = (ay,...,an); (b) = (b1,....bn); (p) = (P1,---, Pn); (@) = (q1,---.4n)-

‘We use the notations:
n n
Pn = Zpk’Qn = Zka
k=1 k=1

1 n n q)
An(a,q)=Q—quak,Gn(a,q)= [Tal" (1.1)
" k=1 k=1

1 n
Iu(a.q) = Q—quGk(a,q>.
" k=1

A function F : [a,b] — R is said to be convex if for all x,y € [a,b] and all o €
[0, 1],
Flax+(1—-a)y) <aF(x)+(1—-a)F(y). (1.2)
If the inequality (1.2) is reversed, then F is said to be concave.
Investigating recurrent inequalities in [5], Redhefer has obtained the following

result involving the arithmetic and geometric means. The statement is given in terms
of (1.1), where Gy (a,1) = Gy(a,q), g =1,k =1,...,n.
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Theorem 1 (Redhefer). Ift > 0, then
Gn(a,1) < Ay(a,)e™" +tIy(a,l).
Bullen [2] proved an inequality of Rado type generalizing Redheffer’s inequality.
Theorem 2 (Bullen). If0 <tq, < Qp, then
On(An(a,q)e™ +1tIu(a,q) —Gnla,q))
> On-1(An-1(a,q)e™" +1Iy-1(a,q) = Gn-1(a,q)).
A more general result (given bellow) is obtained in [3].

Theorem 3 (Godunova). Suppose that G and F are twice continuously differen-
tiable functions such that G is concave and GF = (G o F) is convex.
Fort € R the next inequality is true:

Qn§G(An(F(z+ak),q>>—zAn ((GF)/(q" aPe g p)) ) (1.3)
Pk Qk

—GF(q"Q” An(a, p))} (1.4)

Pnln

zQn_1{G(An_l(m+ak),q))—rAn_1 ((GF)/(;’ZS" A, p>) ) (1.5)

_GF (an—n_lAn_l(a,p))} . (1.6)
PnQn—1

In this article we will present some generalizations and refinements of these res-
ults.

2. MAIN RESULT

Our results are based on the well-known properties of convex functions. The con-
ditions are simpler than the ones of Theorem 3. It is obvious that Theorem 3 follows
from this result.

Theorem 4. If F is a convex differentiable function, then for all t € R

On |:An(F(t+ak)7Q)_['An (F/(Qkpk A (a, p)) ) (2.1)
Pk Qk

—F(q” " An(a. p))}
Pn

> On—1 |:An—1(F([ +ag),q)—t-Ap—1 (F (quk A (a, P)) )
Pk Ok

P,
—F(qn "L Apei(a, P))
PnOn-1
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Proof. Obviously, we have
n—1
quF(t +ax) =Y qiF(t +ax) = gnF(t +an)
k=1 k=1
and

P
oo (r (3t )

—Qn—l CdOIAn_l (F (Zj:g]; Ak(a p))’ )

2Py
an-F’(q ) -An(a, p))

Statement (2.1) is equivalent to

P, _
GnF(t +an) + Qny - F ("—1 : An_l(a,p)) 2.2)
nQn 1
qn Pn qn Pn
= 0 (0 yta )+ tan ' (20 ).
so it remains to show (2.2). Because of g—n + QQn_l = 1, the definition of convex
n n
functions implies
qnPn—1
gn-F(t+an)+ On-1-F | ——— An-1(a,p) (2.3)
nQn 1
Iqn qn Pn
>Qn-F + “An(a, p))
" (Qn PnQn

Presuming that the convex function F is differentiable, we have (see [4], p.5, The-
orem 1.6.):

Fu+a)>Fu)+o-F'(u). (2.4)
Upon application of these results, the following inequality is obtained
4n Pn )
-F + — (2.5)
P
> Qn-F(q" : -An(a,p)) +1ogn-F' (q" - An(a, p))
PnQn DPnQn

Now (2.3) and (2.5) imply (2.2). O
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Corollary 1. If F is a strictly monotone convex function, then

0, [An(b,q)—F ( n P oA (F ), p>)}

n

> On_y [An_l(b,q)—F(q" anbuot 4 (P, p))]

n Qn—
Proof. It is enough to substitute t =0 and ay = F Y (b), k =1,2,...,nin (2.1).
O
Corollary 2. If F is a convex, differentiable function, then for every t € R
Proof. Substitute (p) = (¢) in (2.1) for n = 2,3,...,n — 1,n in order to get a
sequence of inequalities. Then sum these inequalities. O

Inequality (2.6) turns into the inequality of Redhefer upon taking F(u) = e ¥,

1
= lng and (p) = (1,...,1). This inequality is proved in [5] for # > 0. The same

inequalit)l/ is proved in [2], but only for 0 < < 2.
Theorem 4 ensures the statement of Theorem 2 proved in [2] only for 0 < 7g, <

On.
Corollary 3. For everyt € R

Qn (An(b7q)€_t +tFn(b’Q)_Gn(b’Q))

> On—1(An-1(b.9)e™ +1-1(b.q) = Gn-1(b.9)). 2.7)

Proof. To obtain (2.7), substitute (p) = (¢) and F(u) = ¢ ™ in (2.1). Then
1

F(ap) =by = e % andak:—lnbkzlnb—. O
k

Remark. Theorem 3, (the first theorem of [3]), follows from Theorem 4. Substi-
tute the composition GF instead of the convex function F in (2.2) and use the Jensen
inequality for the concave function G:

OnG(An(F(t+ak),q) = On-1G(An—1(F(t +ag),q)) +qnG(F(t +an)).

The next inequality from [1] is an immediate consequence of Theorem 3.

Corollary 4. Suppose that F is a strictly monotone function, G is a concave func-
tion and GF is a convex function. Then

nPn
0, {G(An(b,q)) _(GF) ( a

I’lQl’l

> Qn—l{G(An—l(baQ))_(GF)(ann 11 An—1(F71(b), p))}

An(F‘l(b>,p>)§
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Taking (p) = (q), the next corollary is obtained from (2.1).

Corollary 5. If F is a differentiable convex function, then
n n 1 k
Y o pkFG+a)—t-)  piF' P—kZPjaj
k=1 k=1 ]=1
n 1 n
“Soner (g e
n
k=1 k=1
n—1 n—1 1 k
=Y peF+a) =t ) pieF' | 5= pjdj
k 4
k=1 j=1
n

k=1
n—1 1 —1
—kX:Pk'F (Pn Zpkak),
=1

=1

whereby t € R.

3. AN APPLICATION ON INTEGRAL ANALOGUE
Integral analogue is given in [3] as Theorem 2.

Theorem 5 (Godunova). Let { be a convex, differentiable function and let p(t)
and a(t) be positive functions for t > 0. Then the function

Jo a®pE)dg
Jo p(§)dé

X d X
—y (_fofax(;)(i)(;)r T) -/0 p(tydr (3.1)
0

O(x) = /0 V(i +a@)p@dr—1 /O w/( )p(r)dr

is an increasing function on (0, 00).

The next corollary estimates the difference between the values, so that composition
GF is calculated at the mean values on the intervals [0, x] C [0, y].

Corollary 6. Let GF be a convex function, let G be a concave function and sup-
pose that a, p are positive on (0,00). Then

foya(t)p(r)a’t . y

B f(;ca(f)p(r)dr . x
GF(—fgp(T)d‘[ )/(;p(r)dr
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y fy F(t+a(m)p)dt
5/ p(ryde- G( T oo )

I (S)p(é)dé)
— GF d
t/( )< Treae ) PO

Proof. Substitute v = GF in (5). Notice that if
X
d(x) = / GF(t +a(r))p(t)dt + D(x), then for 0 < x < y we have
0

D(x)—D(y)

_, /y (GFY (fo ar(é)p(é)dé) ()
0

Jo P&)d

foya(t)p(t)dr ' y
+GF (—foyp(f)dr /0 p(r)dt

[y (S e©peds
], (GF)( I3 pe)de )p (D)

B fOxa(t)p(f)dt . x
GF(—fOxp(t)dt )/Op(r)dt

y X
5/ GF(Z+a(t))p(r)dr—/ GF(t+a()p(r)dr
0 0
- / " GF(+a(0)po)dr

y ;F([-ﬁ-a(‘f))p(f)d‘f
E/x p(r)dT'G(I 17 p(0yde )

O

In case that all calculations are well defined, Jensen’s inequality for a concave
function G

y 1 y
/0 GF(t+a(®))p(r)dr < P(y)~G(m/0 F(t—l—a(t))p(r)dr),

y
with P(y) = / p(t)d 1, makes it possible to define the function
0

v P G ! yF d yGF d
7 (y) = P(y)- (W /0 (t +a(0)p(@) r)— /O (t +a(0)p()d-.

The function ¥ is monotone on (0, 00).
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Proposition 1. If G is a concave function, then 0 < x < y ensures
Fx)<FO»). (3.2)

Proof. This statements follows from the concavity of G. There is a chain of in-
equalities:

1 X X
P(x)G (Tx)/o F(t—i—a(r))p(t)dr)—/o GF(t+a(r))p(r)dt
—l—/y GF(t+a(r))p(r)dt
0

= P(x)G (ﬁ/o F(t—l—a(r))p(r)dr)
f; p(r)dr
fxy p(‘[)d‘f.
P(y)
(v

1 X
< P_) |:P(x)-G (m/(; F(it+a(r))p(r)dr

y
+/yp(r)dr.c; (fx F(t+a(f))p(r)dr)}

/y GF(t+a(r))p(r)dt

f; p(r)dt

1%@.G(Pa)/xFU+aﬁDpﬁMT
0

P(y)

_ P(y)[

+E¢“M7G [T F(t+a(v)p(r)drt
P(y) f; p(v)drt
1

1 X y
§P(y)-G(m/O F(t—i—a(r))p(r)dt—l—m i F(t—i—a(t))p(t)dt)

1 y
U

At this point observe certain refinements when G is concave and GF is a convex
function.

Remark 1. Applying (3.2) in

@)= = [ GFG+apdr- [ GFa+ampeir.
the following is obta?ned: 0

foya(r)p(r)dt) _P(x)-GF (foxa(f)l?(f)df)

P -GF
) ( [T p(0dr JEp(0ydr
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Jo F +a(r>)p(z)dr) (fg‘ F( +a(r))p(r)dr)
P(y)-G —P(x)-G
= P(y) ( 7 (e (x) T p(yde
_t / " (GFY (%) p(r)dr.
x 0

To sum up, if GF is a non-decreasing function, we can make the following obser-
vation.

Remark 2. If GF is a nondecreasing differentiable function, then GF’ > 0 and for
t > 0 one can obtain

Yy X
P(y)-GF (—f 0 fay(f)(p )(;)df) — P(x)-GF (—f 0 fax(f)(p)(;)dj
o plv)at o P(v)drt
[ F@ —i—a(l’))p(f)d‘f) (f(j‘ F( +a(1’))p(f)d‘[)
< P(y)-G —Px)-G .
=ro ( ST p()dr ) NG

For ¢t = 0 we get ordinary monotonicity. If [0, x] C [0, y], then

o PlU)dT o P(v)dt
<P(y)-G (foy F(a(T))p(T)df) —P(y)-GF (M)
- f()yp(f)df foyp(f)dr .

4. DECREASING PROPERTY UPON TAKING SUBSETS

In the next theorem an integral version of the statement obtained in (1.6) is given
whereby (p) = (¢) and ¢t = 0. The statement appeared as particular case of Bullen’s
inequality (see [4]). In [3] the author omitted the proof. We are providing it here to
refresh certain basic integral inequalities.

Theorem 6. Let D be a measurable domain and let D1 C D be its regular
measurable sub-domain. Further, suppose a,q : D — [0,+00) is such that Q =

/ qu)dVy #0and Q1 = fi)1 qu)dVy #0. If G is concave, F is monotone and
D

GF is a convex function, then

1 1
0, [G (E /@1 F(a(u))q(u)dvu) _GF (E /@1 a(u)q(u)dvu)]

1 1
<0 [G (5 /@ F(a(u))q(u)dvu) _GF (5 /@a(u)q(u)dvu)} R}
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Proof. Concavity of G ensures

Q-G(l / F(a(u))q(u)dvu)
D

0
1
>01-G (Z [501 F(a(u))q(u)qu)
1
10,6 (@ /@2 F(a(u))q(u)dvu) |

wherby D, = D\ D with 0, = fi)z qu)dV, # 0. Besides, the convexity of GF
implies

1
0.GF (E /@a(u)q(u)dvu)

01 0>

Integral version of Jensen’s inequality (see [4], p. 45) for concave function G provides

1
02-G (@ /@2 F(a(u))qw)d Vu) > /@2 GF(a(u))q)dVy.

Furthermore, the convexity of GF provides the statement

/ GF(a()q()dVy = 03-GF (i / a(u)q(u)dvu).
502 Q2 0{02

<Q0:1-GF (L /@ a(u)q(u)qu) + 0,-GF (L /i) a(u)q(u)qu).

Now there is a chain

1 1
0-6( [ Fatmatmav)-01-6(5- [ Flatdv,)

1 1
e (E /@2 F(a(u))q(u)dvu) > 0,-GF (E /gza(wq(u)dvu)

1 1
- 0.GF (5 /@a(u)g(u)dvu) —01-GF (Z /@l a(u)q(u)dvu) |

The first line and the last line from this give (4.1). Il
Finally, we generalize (4.1).

Theorem 7. Let (£2,X, 1) be a space with a positive finite measure and let a :
§£2 — R be a p-measurable function. Suppose that G and F are differentiable func-
tions such that G is concave and GF is convex. For everyt € R, if 21 € X, and
21 # 82, then

1
M(Q)-G(m /Q F(t+a)du) @2)
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‘“‘””‘G(m o F“*‘”‘”‘)

. B Joadu—[g adu
> (1(R) u(Ql)[GF( IS )

haW—bij]

p(£2) — p($21)
Proof. Take £2\ 21 = £2,. Then concavity of G ensures

1 1
w(2)-G (m /Q F(t —I—a)d,u) —u(821)-G (M(Ql) o F(t +a)du)

> u(§2,2)-G ( F(t —I—a)d,u) . (4.3)

+t-(GF) (

w($22) Jo,
Concavity of G implies (see [4], p.51) that

/,L(.Qz)-G( F(t+a)du) 2/ GF(t+a)du.
/‘L(QZ) 2> §2>
Now, convexity of GF implies
GF(t+a)du > u(§22)-GF ( (t +a)d,u) .
2> /’L(QZ) 2>
1
Using (2.4) and the equalit / (t+a)du=t+ a du, we claim
i Y @) Jo, w(22) Jo,
that
GF(z+ : d)>GF( ! d)
adp| > adp
M’(Q2) 2, IU“(QZ) 2>
+t(GF) ( a d,u) . 4.4)
/"L(QZ) 2>

Finally, (4.3) and (4.4), together with the well-known properties

,u(.Q\.Ql)=;L(.Q)—,u(.Ql)and/ ad;L:/ adp,—/ adu give (4.2). O
2\82, 94 ko

Theorem 7 contains (4.1) as a particular case.

Remark 3. Notice that convexity of GF', assumed in (4.4), implies

1 1
w(§2)-G (—M(Q) /Q F(t +a)d,u) —u($21)-G (M(Ql) o F(t +a)du)

1 1
-6 (i fp ) -5 (s | e
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fac di—Ja,c du) (.5)

w(§2) — pn($21)

+t-(GF) (

and (4.1) can be obtained from (4.5) for t = 0.

In the similar manner as in [6], where the authors have refined Jensen’s inequality,
here we give an estimate after dividing the n-tuples (ay,...,an), (p1,...,pn) and
(¢1,-..,4») into groups. Firstly, we obtain the next Theorem.

Theorem 8. Suppose that G and F are differentiable functions such that G is
concave and GF is convex. If m < n, then

0, [G(An(m L ap).q) 1Ay ((GF)/ ( e Qk A, p)) )

G dn nA ):|
P2t
O [G(Am(F(r a).q) — 1 Am ((GF)/ (ﬁAk(a,p)) ,q)
Pk Qk
()

PmYUm

n—1
gk Pr ) (6]k+1Pk )]
GF A , — =4 , .
ZkE:m Qk[ (kak x(a,p) k(a,p)

Pk+19k
Proof. No generality is lost if we separate each of n-tuples (a1,...,as), (p1,..., Pn)
and (¢1,...,qn) by the choosing the first m members in the first group. For example:
(ai,....am,am+1,....45).

Then the first inequality is

0, [G(An(F(t+ak>,q))—tAn ((GF)/(Q" P 4 p)) )

Pk Qk /

o (g o)

> Ons [G(An_l(F(r+ak>,q>)—zAn_1 ((GF)/(Q" L p)) )
Pk Qk

_ qn—1Pn—1 i

oF (pn_lQn_l An-1(@.p ))_

+0n—1 |:GF (M/M—l(a,]))) -GF (qnp—n_lAn—l(a,P))]-
Pn—lQn—l DPn Qn—l

The second one is

Onos [G(An_1<F(z+ak),q))—zAn_1 ((GF)’(‘”‘ £ Ay, p>) )
Pk Qk
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_1P,_
_GF (MAn—l(a,p))
Pn—-109n-1

> Qs [G(AH(F(t+ak),q))—rAn_2 ((GF)’(j’; Q" A (a, p)) )

DY A T
_GF (qnz—nzAn_z(a’p))
Pn—20n—2

P,
+Qn_2|:GF(q" 26p—2
Pn—20n—2

And finally, the last one is

1P, _
Ans(a, p)) _ GF%left(qnl—nzAn—z(a,P))
pn—lQn—Z

Ot [G(Am+1 (F(t +a1).q) — 1 Am ((GF)/ (MAk(a, p)) ,q)
Pk Qk

P,
_GF(qm+1 mtl . p))}
Pm+19m+1

> Om [G(Am(F(z+ak),q))—zAm ((GF) ("" £ Ay (a. p)) )}
Pk Qk

)
+Om [GF ( 4 P Am<a,p>) ~GF (MAm(a,p))} .

PmOm Pm+19m
The desired inequality in the statement is obtained by summing these inequalities.
g
n—1 P P
The sum Z Ok [GF ( k" k Ag(a p)) (%—1kAk(a,p))] depends on
Pt PiQk Pr+1Qk

the positive weights (p) and (g). Therefore it could be positive, negative or zero.
When (p) = (g), the sum is zero and and we obtain the following Corollary.

Corollary 7. Suppose G and F fulfill the assumptions of Theorem 8. If n > m,
then

On [G(An(F(t +ag). p)) —tAn (GF) (A (a. p)). p) — GF (4n(a. p))]
> Om [G(Am(F(t +ag). p)) —tAm ((GF) (Ak(a, p)) . p) = GF (Am(a. p))].

Finally, we state the following Corollary in the case of disjunct separation of the
n-tuples as: (ai,...,an) = (a1,...,0m,dm+1,...,4n).

Corollary 8. Suppose that G(u) and F(u) satisfy conditions given in Theorem 8.
Ifl+m=nand (by,...,b;,c1,...,cm) = (a1,...,an), then

01 {G(A;(F(t +bi), p)) —tA; (GF) (Ar(b. p)). p)
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—GF (A;(D, p))}

+Om {G(Am(F(t +cx).q)) —tAm ((GF)' (Ax(c. p)) . p)
—GF (Am(c, p))}

<2-0n{G(An(F(t +ag). p)) —1An (GF) (Ar(a. p)).p)
—GF (An(a,p))}.
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