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Abstract. The aim of this paper is to initiate the study of best proximity point and optimal co-
incidence point results of some α−Pata-proximal admissible contraction of type-I and type-II in
the framework of complete metric space. Some examples are presented to support the results
obtained herein. Our results unify, extend and generalize various existing results in literature.
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1. INTRODUCTION AND PRELIMINARIES

Banach contraction principle states that if T is a self mapping on a complete metric
space (X ,d), then T has a unique fixed point in X provided that for all x,y ∈ X , there
exists k ∈ [0,1) such that the following condition hold:

d(T x,Ty)≤ kd(x,y). (1.1)

A self mapping T satisfying the above inequality is said to be a contraction mapping.
A self mapping T on (X ,d) is called Kannan contraction if for all x,y ∈ X , there

exists γ ∈ [0,1) such that

d(T x,Ty)≤ γ

2
[d(x,T x)+d(y,Ty)] (1.2)

Every Kannan contraction mapping on a complete metric space has a unique fixed
point.

A self mapping T on (X ,d) is called Boyd-Wong contraction if for all x,y ∈ X , we
have

d(T x,Ty)≤ φ(d(x,y)),

where φ : [0,∞)→ [0,∞) is a continuous function satisfying φ(t)< t for every t > 0.
Every Boyd-Wong contraction mapping on a complete metric space has a unique

fixed point.

c© 2020 Miskolc University Press
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Suppose that x0 is an arbitrarily fixed element in (X ,d). Define ‖x‖= d(x,x0). Let
Λ≥ 0, λ≥ 1 and µ ∈ [0,λ] be fixed constants. Let ψ : [0,1]→ [0,∞) be an increasing
function which is continuous at 0 and ψ(0) = 0.

A self mapping T on (X ,d) is called Pata contraction ([10]) if for all x,y ∈ X , we
have

d(T x,Ty)≤ (1− ε)d(x,y)+Λε
λ
ψ(ε)[1+‖x‖+‖y‖]µ, (1.3)

for every ε ∈ [0,1].
Every Pata contraction mapping on a complete metric space has a unique fixed

point ([10]).
For comparison of Banach contraction principle and Boyd-Wong contraction the-

orem with Pata contraction theorem, we refer to ([10]).
A self mapping T on (X ,d) is called Kanan Pata type contraction ([2]), if for all

x,y ∈ X , we have

d(T x,Ty)≤ (1− ε)

2
[d(x,T x)+d(y,Ty)]

+Λε
λ
ψ(ε)[1+‖x‖+‖y‖+‖T x‖+‖Ty‖]µ,

(1.4)

for every ε ∈ [0,1].
Every Kanan Pata type contraction mapping on a complete metric space has a

unique fixed point ([2]).
It is known that Kanan Pata type contraction mapping theorem extends Kanan

contraction theorem.
Balasubramanian ([1]) studied fixed point results of Chakraborty-Samanta con-

traction mapping (1.4) in the framework of complete cone metric space.
A self mapping T on (X ,d) is called Chatterjea Pata type contraction ([8]), if for

all x,y ∈ X , we have

d(T x,Ty)≤
(1− ε)

2
[d(x,Ty)+d(y,T x)]+Λε

λ
ψ(ε)[1+‖x‖+‖y‖+‖T x‖+‖Ty‖]µ,

for every ε ∈ [0,1].
Every Chatterjea Pata type contraction mapping on a complete metric space has

a unique fixed point ([8]). For related results of Chatterjea Pata type contraction
mapping and their comparison with comparable existing results in the literature, we
refer to ([7], [8]).

Let (A,B) be a pair of nonempty subsets of a metric space (X ,d). Define

A0 = {x ∈ A : d(x,y) = d(A,B) for some y ∈ B},
B0 = {y ∈ B : d(x,y) = d(A,B) for some x ∈ A},

where
d(A,B) = inf{d(x,y) : x ∈ A and y ∈ B}.
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If A intersects with B, then A∩B is contained in both A0 and B0.
A set B is said to be approximate compact with respect to A if every sequence {yn}

in B satisfying d(x,yn) −→ d(x,B) has a convergent subsequence for some x ∈ A,
where d(x,A) = infa∈A d(x,a).

It is evident that every set is approximate compact with respect to itself. Further,
it can be seen that if A is compact and B is approximate compact with respect to A,
then the sets A0 and B0 are nonempty.

The solution x∗ of the following optimization problem

inf
x∈A

d(x,T x),

is called approximate fixed point of T or approximate solution of an operator equation
x = T x.

Fan ([5]) studied the existence of approximate fixed points of a continuous map-
ping on a nonempty compact convex set X in a Hausdorff locally convex topological
vector space E.

An element x∗ in A is called a best proximity point of T if d(x∗,T x∗) = d(A,B),
where A∩B = φ. Note that d(A,B) = 0, if A∩B 6= φ. Clearly, if A = B, then best
proximity point of T becomes a fixed point of T.

Let T : A→B and g : A−→A. An element x∗ in A is said to be optimal coincidence
point of a pair (g,T ), if d(gx∗,T x∗) = d(A,B) holds.

For best proximity point results of certain mappings, we refer to ([3, 4, 9, 12]) and
reference mentioned therein.

From now onward we assume that A, B are nonempty closed subsets of a complete
metric space (X ,d).

Definition 1 ([13]). A mapping f : X → X is an expansive mapping if

d( f x, f y)≥ qd(x,y),

for all q > 1 and x,y ∈ X .

Definition 2. Let α : X × X → [0,∞). A self mapping T on X is said to be
α−admissible if

α(x,y)≥ 1 implies that α(T x,Ty)≥ 1.

Definition 3. Let α : X×X→ [0,∞). A sequence {xn} in X is said to be α−regular
if α(xn,xn+1) ≥ 1 for all n ∈ N and lim

n→∞
xn = x ∈ X imply that there exists a sub-

sequence {xnk} of {xn} such that α(xnk ,x)≥ 1 for all k.

Definition 4. Let T : X → X and α : X ×X → [0,∞). A mapping T is said to be
α−proximal admissible if

α(x,y)≥ 1
d(u,T x) = d(A,B)
d(v,Ty) = d(A,B)

 implyα(u,v)≥ 1,
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for all x,y,u,v ∈ A.

Definition 5. Let α : A×A→ [0,∞). A mapping T : A −→ B is said to be a α−
Pata-proximal admissible contraction of:

(a): type-I if for any u,v,x and y in A, there exist constants Λ ≥ 0, λ ≥ 1 and
µ ∈ [0,λ] such that the following holds:

α(x,y)≥ 1
d(u,T x) = d(A,B)
d(v,Ty) = d(A,B)

 imply α(u,v)≥ 1

and

α(x,y)d(u,v)≤ (1− ε)

2
d(x,y)+Λε

λ
ψ(ε)[1+‖x‖+‖y‖+‖v‖]µ,

(b): type-II if for any u,v,x and y in A, there exist constants Λ ≥ 0, λ ≥ 1 and
µ ∈ [0,λ] such that the following holds:

α(x,y)≥ 1
d(u,T x) = d(A,B)
d(v,Ty) = d(A,B)

 imply α(u,v)≥ 1

and

α(x,y)d(Tu,T v)≤ (1− ε)

2
d(T x,Ty)+Λε

λ
ψ(ε)[1+‖T x‖+‖Ty‖+‖T v‖]µ.

for every ε ∈ [0,1], where ψ : [0,1]→ [0,∞) is an increasing function which
is continuous at 0 and ψ(0) = 0.

Definition 6. Let T : A−→ B, α : A×A→ [0,∞) and g : A−→ A. A pair (g,T ) is
said to be generalized α−Pata-proximal contraction if for any u,v,x and y in A, there
exist constants Λ≥ 0, λ≥ 1 and µ ∈ [0,λ] such that the following holds

α(x,y)≥ 1
d(gu,T x) = d(A,B)
d(gv,Ty) = d(A,B)

 imply α(gu,gv)≥ 1

and

α(x,y)d(gu,gv)≤ (1− ε)

2
d(x,y)+Λε

λ
ψ(ε)[1+‖x‖+‖y‖+‖v‖]µ

for every ε ∈ [0,1], where ψ : [0,1]→ [0,∞) is an increasing function, which is con-
tinuous at 0 and ψ(0) = 0.

Note that if g = IA ( identity mapping on A ), then generalized α−Pata-proximal
contraction becomes α− Pata-proximal admissible contraction of type-I.

From now and onward, we use the notation ∆ for a set {(xn,yn) ∈ A0×A0 : either
xn � yn or yn � xn, for all n ∈ N }.

We start with the following result.
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Lemma 1. Suppose that T is α−proximal admissible and T (A0) ⊆ B0, where A0
is a nonempty set in A. If there exists x0 and x1 in A0 satisfying d(x1,T x0) = d(A,B)
and α(x0,x1)≥ 1, then there exists a sequence {xn} ⊂ A0 such that

d(xn+1,T xn) = d(A,B) and α(xn,xn+1)≥ 1 for all n ∈ N. (1.5)

Proof. Since A0 is nonempty and x0,x1 ∈ A0 satisfying d(x1,T x0) = d(A,B) and
α(x0,x1) ≥ 1. As T x1 ∈ T (A0) ⊆ B0, there exists x2 ∈ A0 such that
d(x2,T x1) = d(A,B). Thus

α(x0,x1)≥ 1

d(x1,T x0) = d(A,B) and

d(x2,T x1) = d(A,B),

implies that α(x1,x2)≥ 1. Continuing this way, we obtain a sequence {xn} ⊂ A0 and
it satisfies the condition (1.5). �

Definition 7. A sequence {xn} ⊂ A0 satisfying the condition (1.5) is called prox-
imal admissible Picard sequence provided that α(xn,x1)≥ 1 and α(xn,x0)≥ 1 for all
n.

Definition 8. A set A0 is called proximal T−orbitally complete if and only if every
Cauchy proximal admissible Picard sequence in A0 converges to an element in A0.

We also need the following lemma in the sequel.

Lemma 2 ([6]). Let A and B be nonempty closed subsets of a metric space (X ,d).
Suppose A0 is a nonempty set and B is approximately compact with respect to A. Then
the set A0 is closed.

Proposition 1. A self mapping g : A→ A is said to satisfy αR-property if there
exist a mapping α : A×A→ [0,∞) such that

α(gx,gy)≥ 1 implies that α(x,y)≥ 1,

for all x,y ∈ A.

2. BEST PROXIMITY POINTS OF α− PATA-PROXIMAL ADMISSIBLE
CONTRACTION MAPPINGS

We start with the following lemma.

Lemma 3. Let T : A → B be a continuous and α− Pata-proximal admissible
contraction of type-II mapping with A0 6= ∅ and T (A0) ⊆ B0. Then A0 is proximal
T−orbitally complete.
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Proof. Let x0 ∈A0 and {xn} be a Cauchy proximal admissible Picard sequence. As
(X ,d) is complete and A is closed, there exist some x∗ in A such that
lim
n→∞

d(xn,x∗) = 0. By given assumption, we have

d(xn,T xn−1) = d(A,B) and

d(xn+1,T xn) = d(A,B) with α(xn−1,xn)≥ 1,

for all n ∈ N. Since T is a α− Pata-proximal admissible contraction of type-II, we
have

d(T xn,T xn+1)≤ α(xn−1,xn)d(T xn,T xn+1)

≤ (1− ε)

2
d(T xn−1,T xn)

+Λε
λ
ψ(ε)[1+‖T xn−1‖+‖T xn‖+‖T xn+1‖]µ

< d(T xn−1,T xn)

+Λε
λ
ψ(ε)[1+‖T xn−1‖+‖T xn‖+‖T xn+1‖]µ.

On taking limit as ε approaches to 0, we have

d(T xn,T xn+1)≤ d(T xn−1,T xn),

which implies that {d(T xn−1,T xn)} is a decreasing sequence and hence is conver-
gent. Let lim

n→∞
d(T xn+1,T xn) = r ≥ 0. We have to show that r = 0. First we show that

{d(T xn,x0)} is bounded above by some constant c. Note that

d(T xn+1,T xn)≤ d(T xn,T xn−1)

≤ ·· ·
≤ d(T x1,T x0)

≤ d(T x1,x0)+d(x0,T x0),

for all n = 0,1,2, . . . . Let

‖T x0‖= c0 and c1 = ‖T x1‖

for some c0, c1 ∈ R+. Then

cn = d(T xn,x0)≤ d(T xn,T xn+1)+d(T xn+1,T x1)+d(T x1,x0)

≤ (d(T x1,x0)+d(x0,T x0))+d(T xn+1,T x1)+d(T x1,x0)

= 2d(T x1,x0)+d(x0,T x0)+d(T xn+1,T x1)

≤ 2d(T x1,x0)+d(x0,T x0)+α(xn,x0)d(T xn+1,T x1)

≤ 2d(T x1,x0)+d(x0,T x0)+
(1− ε)

2
d(T xn,T x0)

+Λε
λ
ψ(ε)[1+‖T x0‖+‖T x1‖+‖T xn‖]µ
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≤ 2c1 + c0 +
(1− ε)

2
cn +

(1− ε)

2
c0 +Λε

λ
ψ(ε)[1+ c0 + c1 + cn]

µ

≤ 2c1 +2c0 + cn− εcn +Λε
λ
ψ(ε)cµ

n[
1+ c0 + c1

cn
+1]µ

which further implies that

εcn ≤ 2c1 +2c0 +Λε
λ
ψ(ε)cλ

n[
1+ c0 + c1

cn
+1]µ,

as µ ≤ λ. Suppose that an = Λ[1+c0+c1
cn

+ 1]µ and b = 2(c1 + c0). Then, the above
inequality becomes

εcn ≤ ε
λ
ψ(ε)cλ

nan +b,
for some an,b > 0. If there is a divergent subsequence {cni}, correspondingly we

have a subsequence {ani} such that ani → Λ. If we choose εni =
(1+b)

cni

, then

1≤ ψ(εi)(1+b)λani → 0,

gives a contradiction. Now, we have to show that {T xn} is a Cauchy sequence. For
this, we prove that

d(T xn+m,T xn)≤Cωn(α),

where C = supn∈N Λ(1+3cn)
µ < ∞ and ωn(λ) = (

λ

n
)λ

∑
n
k=1 ψ(

λ

k
).

Let m be fixed, define
pn = nλd(T xn+m,T xn).

Note that

pn+1 = (n+1)λd(T xn+m+1,T xn+1)

≤ (n+1)λ
α(xn+m,xn)d(T xn+m+1,T xn+1)

≤ (n+1)λ (1− ε)

2
d(T xn+m,T xn)

+(n+1)λ
Λε

λ
ψ(ε)[1+‖T xn+m‖+‖T xn‖+‖T xn+1‖]µ]

≤ (n+1)λ(1− ε)d(T xn+m,T xn)

+(n+1)λ
Λε

λ
ψ(ε)[1+‖T xn+m‖+‖T xn‖+‖T xn+1‖]µ].

Choose

ε = 1− (
n

n+1
)λ = [1− (1− 1

n+1
)λ]≤ λ

n+1
.

Then, we have

pn+1 ≤ (n+1)λ((
n

n+1
)λ)d(T xn+m,T xn)

+(n+1)λ
Λ(

λ

n+1
)λ

ψ(
λ

n+1
)[1+3cn]

µ
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≤ nλd(T xn+m,T xn)+Λ(λ)λ
ψ(

λ

n+1
)[1+3cn]

µ.

Now, we have

pn+1 ≤ pn +C(λ)λ
ψ(

λ

n+1
)

≤ pn−1 +C(λ)λ
ψ(

λ

n
)+C(λ)λ

ψ(
λ

n+1
)

· · ·

≤ p0 +C(λ)λ[ψ(
λ

1
)+ψ(

λ

2
)+ · · ·+ψ(

λ

n+1
)].

Since p0 = 0, this gives

pn ≤C(λ)λ
n

∑
k=1

ψ(
λ

k
).

After division by nλ, we obtain that

pn

nλ
= d(T xn+m,T xn)≤

C(λ)λ

nλ

n

∑
k=1

ψ(
λ

k
).

On taking as limit n→ ∞, {T xn} is a Cauchy sequence. For each ε ∈ [0,1], we have

d(T xn,T xn+1)≤ α(xn−1,xn)d(T xn,T xn+1)

≤ (1− ε)

2
d(T xn−1,T xn)

+Λε
λ
ψ(ε)[1+‖T xn−1‖+‖T xn‖+‖T xn+1‖]µ,

≤ (1− ε)

2
d(T xn−1,T xn)+Λε

λ
ψ(ε)[1+3c]µ,

for each ε ∈ [0,1]. Hence {T xn} is a Cauchy sequence in a complete metric space
(X ,d) and B is closed, there exists y ∈ B such that

lim
n→∞

d(T xn,y) = 0.

Since {xn} is Cauchy proximal admissible Picard sequence in A0, and xn→ x∗ in A
and mapping T is continuous. Now, from the above inequality, we have

d(A,B) = lim
n→∞

d(xn+1,T xn) = d(x∗,y),

which implies that x∗ ∈ A0. �

Theorem 1. Let T : A→ B be a continuous α− proximal admissible and α−
Pata-proximal admissible contraction of type-II, with A0 6= φ and T (A0)⊆ B0. If B is
approximately compact with respect to A, then T has a unique best proximity point
x∗ in A0.
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Proof. Let x0 be a given point in A0. From Lemma (1), sequence {xn} is Cauchy
proximal admissible Picard sequence in A0. We can obtain a sequence {xn} in A0
such that it satisfies

d(xn,T xn−1) = d(A,B), d(xn+1,T xn) = d(A,B) and α(xn−1,xn)≥ 1 (2.1)

for all n ∈ N. Since T is α−proximal admissible and α− Pata-proximal admissible
contraction of type-II. Following arguments similar to those in the proof of Lemma
(3), we obtain that {T xn} ∈ B0 is a Cauchy proximal admissible Picard sequence. As
B is a closed subset of a complete metric space, there exists some y ∈ B such that
lim
n→∞

d(T xn,y) = 0. Since A0 is proximal T−orbitally complete, there exists some x∗

in A0 such that xn→ x∗ in A0 which implies that T x∗ = y = lim
n→∞

T xn and hence

d(x∗,T x∗) = d(A,B),

implies that x∗ is the Pata-type best proximity point of the mapping T .
To show the uniqueness of best proximity point: Assume on contrary that there

exists another point y∗ 6= x∗ of T in A0 such that

d(y∗,Ty∗) = d(A,B),d(x∗,T x∗) = d(A,B) and α(x∗,y∗)≥ 1 where x∗,y∗ ∈ A0.

Since T is α− Pata-proximal admissible contraction of type-II, so

α(x∗,y∗)d(T x∗,Ty∗)≤ (1− ε)

2
d(T x∗,Ty∗)

+Λε
λ
ψ(ε)[1+‖T x∗‖+‖Ty∗‖+‖Ty∗‖]µ

≤ (1− ε)

2
d(T x∗,Ty∗)+Λε

λ
ψ(ε)[1+3c]µ

< d(T x∗,Ty∗)+Λε
λ
ψ(ε)[1+3c]µ.

On taking limit as ε→ 0+ , we have

α(x∗,y∗)d(T x∗,Ty∗)< d(T x∗,Ty∗),

a contradiction. Hence Pata-type best proximity point of the mapping T is unique.
�

Example 1. Let X = R. We know that X is a complete metric space with respect
to usual metric d : X ×X → [0,∞) defined by d(x,y) = |x− y| . Let A = {0, 2

6 ,
4
6 ,

6
6}

and B = {1
6 ,

3
6 ,

5
6 ,

7
6 ,

9
6 ,

11
6 ,

13
6 } be two closed subsets of X . Note that B is compact and

so B is approximately compact with respect to A. Note that

d(A,B) =
1
6
, A0 = A and B0 =

{
1
6
,
3
6
,
5
6
,
7
6

}
.
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Define a mapping T : A→ B as:

T x =


2x+ 1

6 when x ∈ {0, 2
6},

2x− 1
6 when x = 4

6 ,
3
6 when x = 6

6 .

.

Obviously, T (A0) ⊆ B0. Further, suppose that α(x,y) = e|x−y| for all x,y ∈ X . Also,
ψ(t) = tet for all t ≥ 0. If λ = 2 then µ∈ [0,2], take µ = λ. For simplicity, take ε = 1

10 .

If, we take u = 2
6 ,v =

6
6 ,x = 0 and y = 2

6 in A, satisfies the following:

d(u,T x) = d(A,B), and d(v,Ty) = d(A,B),

Now, It is straightforward to check that mapping T satisfy the α− Pata-proximal
admissible contraction of type-II for 50.79922618≤ Λ. Assume, Λ = 51. Moreover
x = 0 is the only Pata type best proximity point of mapping T .

3. OPTIMAL COINCIDENCE POINT OF GENERALIZED α− PATA-PROXIMAL
CONTRACTION MAPPINGS

Theorem 2. Let g : A→ A be an expansive mapping satisfying αR-property and
T : A→ B be an α−proximal admissible with A0 6= φ, T (A0) ⊆ B0 and A0 ⊆ g(A0)
for any t > 0. If B is approximately compact with respect to A and the pair (g,T )
is generalized α−Pata-proximal contraction. If there exists x0,x1 ∈ A0 satisfying
d(x1,T x0) = d(A,B) and α(x0,x1) ≥ 1. Then the pair (g,T ) has a unique optimal
coincidence point x∗ in A0.

Proof. Let x0 be a given point in A0. As T (A0) ⊆ B0 and A0 ⊆ g(A0), we can
choose an element x1 ∈ A0 such that d(gx1,T x0) = d(A,B) and α(x0,x1)≥ 1, where
x0,x1 ∈ A0. Also, T x1 ∈ T (A0) ⊆ B0, and A0 ⊆ g(A0), it follows that there exists an
element x2 ∈ A0 such that d(gx2,T x1) = d(A,B), since T is α−proximal admissible
mapping then α(gx1,gx2)≥ 1 further g is satisfying αR-property, which implies that
α(x1,x2) ≥ 1 , where gx1,gx2 ∈ A0. Continuing this way, we can obtain a sequence
{gxn} in A0 satisfying:

d(gxn,T xn−1) = d(A,B) and d(gxn+1,T xn) = d(A,B), (3.1)

where α(xn−1,xn)≥ 1. Note that

α(xn−1,xn)d(gxn,gxn+1)≤
(1− ε)

2
d(xn−1,xn)

+Λε
λ
ψ(ε)[1+‖xn−1‖+‖xn‖+‖xn+1‖]µ.

(3.2)

Suppose that xn 6= xn+1 for all n = 0,1,2, . . . . For each n ∈ N and ε ∈ [0,1],

d(xn,xn+1)≤ α(xn−1,xn)d(gxn,gxn+1)

≤ (1− ε)

2
d(xn−1,xn) (3.3)
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+Λε
λ
ψ(ε)[1+‖xn−1‖+‖xn‖+‖xn+1‖]µ.

Thus, for each n ∈ N, letting ε→ 0+ on both sides of the inequality (3.3), gives that

d(xn+1,xn)≤ d(gxn+1,gxn) (3.4)

≤ α(xn−1,xn)d(gxn+1,gxn)≤
d(xn,xn−1)

2
< d(xn,xn−1).

Thus {xn} is decreasing sequence. Continuing this way, we have

d(xn+1,xn)≤ d(xn,xn−1)≤ ·· · ≤ d(x1,x0), (3.5)

for all n = 0,1,2, . . . .
Now, we have to show that the sequence d(gxn,x0) is bounded above by c

2 =
d(x0,gx1). This is the case when n = 1. Assume that d(gxn−1,x0) ≤ c

2 . We show
that d(gxn,x0)≤ c. Note that

d(gxn,x0)≤ d(gxn,gxn−1)+d(gxn−1,x0)

≤ d(xn−1,xn−2)+d(gxn−1,x0)

≤ ·· ·

≤ d(x1,x0)+
c
2

≤ c
2
+

c
2
= c.

Thus, for all n ∈ N,
d(gxn,x0)≤ c.

Let
‖gx0‖= c0 and c1 = ‖gx1‖,

for some c0, c1 ∈ R+. Then

cn = d(gxn,x0)≤ d(gxn,gxn+1)+d(gxn+1,gx1)+d(gx1,x0)

≤ d(xn−1,xn)+d(gxn+1,gx1)+d(gx1,x0)

· · ·
≤ d(x0,x1)+d(gxn+1,gx1)+d(gx1,x0)

≤ d(x0,x1)+d(gx1,x0)+d(gxn+1,gx1)

≤ d(x0,x1)+d(gx1,x0)+α(xn,x0)d(gxn+1,gx1)

≤ d(x0,x1)+d(gx1,x0)+
(1− ε)

2
d(xn,x0)

+Λε
λ
ψ(ε)[1+‖x0‖+‖x1‖+‖xn‖]µ

≤ c1

2
+ c0 +

(1− ε)

2
cn +Λε

λ
ψ(ε)[1+ c0 + c1 + cn]

µ

≤ c1

2
+ c0 +(1− ε)cn +Λε

λ
ψ(ε)[1+ c0 + c1 + cn]

µ
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≤ c1

2
+ c0 + cn− εcn +Λε

λ
ψ(ε)cµ

n[
1+ c0 + c1

cn
+1]µ,

which further implies that

εcn ≤
c1

2
+ c0 +Λε

λ
ψ(ε)cλ

n[
1+ c0 + c1

cn
+1]µ,

as µ≤ λ. Suppose that an =Λ[1+c0+c1
cn

+1]µ and b = c1
2 +c0. Then, the above inequal-

ity becomes
εcn ≤ ε

λ
ψ(ε)cλ

nan +b,
for some an,b > 0. If there is a divergent subsequence {cni}, correspondingly, we

have a subsequence {ani} such that ani → Λ. If we choose εni =
(1+b)

cni

, then

1≤ ψ(εi)(1+b)λani → 0,

gives a contradiction.
Now, we have to show that {gxn} is Cauchy sequence. For this, we prove that

d(gxn+m,gxn)≤Cωn(α),

where C = supn∈N Λ(1+3cn)
µ < ∞ and ωn(λ) = (

λ

n
)λ

∑
n
k=1 ψ(

λ

k
).

Let m be fixed, define
pn = nλd(gxn+m,gxn).

Note that

pn+1 = (n+1)λd(gxn+m+1,gxn+1)

≤ (n+1)λ
α(xn+m,xn)d(gxn+m+1,gxn+1)

≤ (n+1)λ[
(1− ε)

2
d(xn+m,xn)+Λε

λ
ψ(ε)[1+‖xn+m‖+‖xn‖+‖xn+1‖]µ]

≤ (n+1)λ(1− ε)d(xn+m,xn)

+(n+1)λ
Λε

λ
ψ(ε)[1+‖xn+m‖+‖xn‖+‖xn+1‖]µ].

Choose

ε = 1− (
n

n+1
)λ = [1− (1− 1

n+1
)λ]≤ λ

n+1
.

Then, we have

pn+1 ≤ (n+1)λ((
n

n+1
)λ)d(xn+m,xn)+(n+1)λ

Λ(
λ

n+1
)λ

ψ(
λ

n+1
)[1+3cn]

µ

≤ nλd(xn+m,xn)+Λ(λ)λ
ψ(

λ

n+1
)[1+3cn]

µ

≤ nλd(gxn+m,gxn)+Λ(λ)λ
ψ(

λ

n+1
)[1+3cn]

µ.
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Now, we have

pn+1 ≤ pn +C(λ)λ
ψ(

λ

n+1
)

≤ pn−1 +C(λ)λ
ψ(

λ

n
)+C(λ)λ

ψ(
λ

n+1
)

· · ·

≤ p0 +C(λ)λ[ψ(
λ

1
)+ψ(

λ

2
)+ · · ·+ψ(

λ

n+1
)].

Now, p0 = 0 gives that

pn ≤C(λ)λ
n+1

∑
k=1

ψ(
λ

k
).

After division by nλ, we will obtain

pn

nλ
= d(gxn+m,gxn)≤

C(λ)λ

nλ

n

∑
k=1

ψ(
λ

k
).

On taking limit as n→∞, we have {gxn}, a Cauchy sequence. For each ε ∈ [0,1], we
have

d(gxn,gxn+1)≤ α(xn−1,xn)d(gxn,gxn+1)

≤ (1− ε)

2
d(xn−1,xn)+Λε

λ
ψ(ε)[1+‖xn−1‖+‖xn‖+‖xn+1‖]µ,

≤ (1− ε)

2
d(xn−1,xn)+Λε

λ
ψ(ε)[1+3c]µ,

for each ε ∈ [0,1]. Hence {gxn} is a Cauchy sequence in a complete metric space
(X ,d). Since A0 is closed (Lemma 2), there exists an element x∗ in A0 such that
lim
n→∞

d(gxn,gx∗) = 0. Now

d(gx∗,B)≤ d(gx∗,T xn)

≤ d(gx∗,gxn+1)+d(gxn+1,T xn)

= d(gx∗,gxn+1)+d(A,B)

≤ d(gx∗,gxn+1)+d(gx∗,B),

gives that
d(gx∗,B)≤ d(gx∗,T xn)≤ d(gx∗,gxn+1)+d(gx∗,B).

Note that {gxn} converges to gx∗ and d(gx∗,T xn)→ d(gx∗,B). As {T xn}⊆B and B is
approximately compact with respect to A, {T xn} has a subsequence, which converges
to some y in B hence d(gx∗,y) = d(A,B), that is, gx∗ ∈ A0. Since A0 ⊆ g(A0), there
exist some u ∈ A0 such that

d(gu,T x∗) = d(A,B) = d(gxn+1,T xn),
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where x∗, xn ∈ A0, α(x∗,u)≥ 1 for all n ∈ N. Since g is expansive mapping, we have
to show that u = x∗. If not, then

d(u,xn+1)≤ α(x∗,xn)d(gu,gxn+1)

≤ (1− ε)

2
d(x∗,xn)+Λε

λ
ψ(ε)[1+‖x∗‖+‖xn‖+‖xn+1‖]µ,

on taking limit as n→ ∞, and ε→ 0+ gives

d(u,x∗)≤ α(x∗,x∗)d(gu,gx∗)≤ 0

a contradiction. Hence d(gx∗,T x∗) = d(gu,T x∗) = d(A,B), that is, x∗ is the optimal
coincidence point of the pair (g,T ).

To prove uniqueness: Suppose that y∗ be another point in A0 such that d(gy∗,Ty∗)
= d(A,B), such that α(x∗,y∗)≥ 1. Note that

d(gx∗,gy∗)≤ α(x∗,y∗)d(gx∗,gy∗)

≤ (1− ε)

2
d(x∗,y∗)+Λε

λ
ψ(ε)[1+‖x∗‖+‖x∗‖+‖x∗‖]µ,

and hence

d(x∗,y∗)≤ d(gx∗,gy∗)≤ (1− ε)

2
d(x∗,y∗)+Λε

λ
ψ(ε)[1+‖x∗‖+‖x∗‖+‖x∗‖]µ.

Apply ε→ 0+, then the above inequality gives a contradiction. The result follows.
�

Example 2. Let X = R2. We know that X is a complete metric space with respect
to usual metric d : X×X→ [0,∞) defined by d(x,y) = |x− y| . Let A = {(x,2) | x∈R
} and B = {(x,0) | x ∈ Rand x ≥ −3} be two closed subsets of X . Note that B is
compact and so B is approximately compact with respect to A. Note that d(A,B) =
2, A0 = {(x,2) | x ∈ R and x≥−3} ⊂ A and B0 = {(x,0) | x ∈ R and x≥−3} ⊂ B.
Define a mapping T : A→ B as:

T (x,2) = (2x+3,0) and g(x,2) = (3x,2).

Obviously, T (A0) ⊆ B0. Further, suppose that α(x,y) = e|x−y| and ψ(t) = tet for all
x,y ∈ X and t ≥ 0. If, we choose λ = 1 then µ ∈ [0,1] take µ = λ. For simplicity,
take x0 = (0,2) and ε = 1

10 . If u = (u1,2),v = (v1,2),x = (x1,2) and y = (y1,2) ∈ A
satisfies:

d(gu,T x) = d(A,B) and d(gv,Ty) = d(A,B).
Which implies that

u1 =
2
3

x1 +1 and v1 =
2
3

y1 +1.

Now, it is straightforward to check that the pair (g,T ) satisfies the generalized α−
Pata-proximal admissible contraction for 140.2498021|x1−y1|

|1+x1+y1+v1| ≤ Λ, where
|x1−y1|

|1+x1+y1+v1| ≤ 1 for all x1,y1,v1 ∈ A0 and x1 6= y1, hence 140.2498021≤ Λ. Assume,
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Λ = 141. Moreover x = (−3,2) is the only Pata-type coincidence best proximity
point of pair (g,T ).

Corollary 1. If T : A→ B is α−Pata-proximal contraction of type-I, α−proximal
admissible with A0 6= φ and T (A0) ⊆ B0 for any t > 0. Then T has a unique best
proximity point x∗ in A0 provided that A0 is proximal T−orbitally complete.

Proof. Take gx = IA in the proof of Theorem (2). �

Example 3. Let X = R2. We know X is a complete metric space with respect to
usual metric d : X ×X → [0,∞) defined as d(x,y) = |x− y| . Let A = {(x,1) | x ∈ R
and x ≥ −1} and B = {(x,0) | x ∈ Rand x ≥ −3} be two closed subsets of X . Note
that, B is compact and so B is approximately compact with respect to A. Note that

d(A,B) = 1, A0 = A and B0 = {(x,0) | x ∈ R and x≥−1} ⊂ B.

Define a mapping T : A→ B as:

T (x,1) = (2x+1,0).

Obviously, T (A0) ⊆ B0. Further, suppose that α(x,y) = e|x−y| for all x,y ∈ X and
ψ(t) = tet for all t ≥ 0. If, we choose λ = 1 then µ ∈ [0,1] take µ = λ. For simplicity,
take x0 = (0,1) and ε = 1

10 . If u = (u1,1),v = (v1,1),x = (x1,1) and y = (y1,1) ∈ A
satisfies the following

d(u,T x) = d(A,B) and d(v,Ty) = d(A,B),

if
u1 = 2x1 +1 and v1 = 2y1 +1.

Now, It is straight forward to check that T is α− Pata-proximal admissible contrac-
tion of type-I for 140.2498021|x1−y1|

|1+x1+y1+v1| ≤ Λ, where |x1−y1|
|1+x1+y1+v1| ≤ 1 for all x1,y1,v1 ∈ A0

and x1 6= y1, hence 140.2498021 ≤ Λ. Assume that Λ = 141 and after simple cal-
culation one can find that x = (−1,1) is the only Pata type best proximity point of
mapping T .

4. APPROXIMATION RESULTS IN ORDERED STRUCTURES

In this section, we prove results in ordered metric spaces.
From now onwards, a 3− tuple (X ,d,�) is called a partially ordered metric space

if (X ,�) is a partially ordered set and (X ,d) is a metric space. Unless otherwise
stated, it is assumed that A, B are nonempty closed subsets of partially ordered metric
space (X ,d,�).

Definition 9 ([11]). A mapping T : A −→ B is called (a) nondecreasing or order
preserving if for any x,y in A with x � y, we have T x � Ty (b) nonincreasing or
ordered reversing if for any x,y in A with x � y, we have T x � Ty (c) monotone if it
is order preserving or order reversing.
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Definition 10 ([11]). A mapping T : A −→ B is said to be a ordered contraction
if for any x,y ∈ A with x� y, we have d(T x,Ty)≤ d(x,y).

Definition 11 ([11]). A mapping T : A −→ B is said to be a proximal order pre-
serving if for any u,v,x and y in A, the following implication holds:

x� y
d(u,T x) = d(A,B)
d(v,Ty) = d(A,B)

 implyu� v.

If A = B, then proximal order preserving mapping will become order preserving.

Definition 12 ([11]). A mapping T : A −→ B is said to be a proximal order
reversing if for any u,v,x and y in A, the following implication holds:

x� y
d(u,T x) = d(A,B)
d(v,Ty) = d(A,B)

 implyu� v.

If A = B, then proximal order reversing mapping will become order reversing.
We start with the following result.

Lemma 4 ([11]). If A0 6= φ and T (A0) ⊆ B0. Then, for a ∈ A0, there exists a
sequence {xn} ⊂ A0 such that

x0 = a,
d(xn+1,T xn) = d(A,B), for all n ∈ N with (xn,xn+1) ∈ ∆.

}
(4.1)

Proof. As x0 = a ∈ A0 and T (A0) ⊆ B0, there exist x1 ∈ A0 such that
d(x1,T x0) = d(A,B) where (x0,x1) ∈ ∆. Also T x0 ∈ T (A0)⊆ B0, there exist x2 ∈ A0,
such that d(x2,T x1) = d(A,B) where (x1,x2)∈ ∆. Continuing this way, we can obtain
a sequence {xn} ⊂ A0 that satisfies the condition (4.1). �

Definition 13. A sequence {xn}⊂A0 satisfying the condition (4.1) is called ordered
proximal Picard sequence starting with a ∈ A0.

Definition 14. A set A0 is ordered proximal T−orbitally complete if and only if
every Cauchy sequence {xn} is ordered proximal Picard sequence starting with some
x0 ∈ A0 converges to an element in the set A0.

Lemma 5. Let T : A → B be continuous, proximally monotone and α− Pata-
proximal admissible contraction of type-II mapping with A0 6= ∅ and T (A0) ⊆ B0.
Suppose that each pair of elements in partially ordered complete metric spaces
(X ,d,�) has a lower and upper bound. Then A0 is proximal T−orbitally complete
provided that T is one to one on A0 also there exist a function α : A×A→ [0,∞) such
that (x,y) ∈ ∆ and α(x,y)≥ 1 for all x,y ∈ A.
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Proof. Consider a function α : A×A→ [0,∞) such that

α(x,y) =
{

1 if (x,y) ∈ ∆,
0 otherwise. (4.2)

Let x0 be a given point in A0. Suppose that {xn} is an ordered proximal Picard
sequence starting with x0. As (X ,d,�) is complete and A is closed, there exist some
x∗ in A such that limn→∞ d(xn,x∗) = 0. As {xn} is a ordered proximal Picard sequence
starting with x0, we have

d(xn,T xn−1) = d(A,B) and d(xn+1,T xn) = d(A,B)

with (xn−1,xn) belong to the set of all ordered proximal Picard sequence starting
with x0, for all n ∈ N. Since T is an α− Pata-proximal admissible contraction of
type-II and function α defined in (4.2) which agrees with the α−proximal admissible
function defined on A×A, rest of proof follows from the arguments on the same lines
as in Theorem (3). �

Theorem 3. Let T : A→ B be a continuous, proximally monotone and α− Pata-
proximal admissible contraction of type-II with A0 6= φ and T (A0) ⊆ B0. Suppose
that each pair of elements in partially ordered complete metric spaces (X ,d,�) has
a lower and upper bound. If B is approximately compact with respect to A, then T
has a unique best proximity point x∗ in A0 for all (x,y) ∈ ∆ such that α(x,y)≥ 1 for
all x,y ∈ A.

Proof. Let x0 be a given point in A0. From Lemma (4), the set of ordered proximal
Picard sequence starting with x0 is nonempty and {xn} belong to the set of ordered
proximal Picard sequence starting with x0 in A0. We can obtain a sequence {xn} in
A0 such that it satisfies

d(xn,T xn−1) = d(A,B), d(xn+1,T xn) = d(A,B) (4.3)

for all n ∈ N. Define a function α : A×A→ [0,∞), which satisfies (4.2). Also, func-
tion α agrees with the α−proximal admissible function defined on A×A. Since T is
an α− Pata-proximal admissible contraction of type-II. Following arguments similar
to those in the proof of Lemma (3) and Theorem (1), we can show the existence and
uniqueness of best proximity point in partially ordered metric spaces. �

Theorem 4. Let g : A→ A be an expansive mapping and T : A→ B be an α−
proximal admissible with A0 6= φ, T (A0) ⊆ B0 and A0 ⊆ g(A0) for any t > 0. If B is
approximately compact with respect to A and the pair (g,T ) is generalized α−Pata-
proximal contraction. Then the pair (g,T ) has a unique optimal coincidence point
x∗ in A0 provided that α(x,y)≥ 1 for all x,y ∈ A.

Proof. By Lemma (4), the set of ordered proximal Picard sequence starting with
x0 is nonempty. Let x0 be a given point in A0. As T (A0)⊆ B0 and A0 ⊆ g(A0), we can
choose an element x1 ∈ A0 such that d(gx1,T x0) = d(A,B), where (x0,x1) ∈ ∆. Also,
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T x1 ∈ T (A0)⊆ B0, and A0⊆ g(A0), it follows that there exist an element x2 ∈ A0 such
that d(gx2,T x1) = d(A,B), since T is ordered, where (gx1,gx2) ∈ ∆. Continuing this
way, we can obtain a sequence {gxn} in A0 such that it satisfies

d(gxn,T xn−1) = d(A,B) and d(gxn+1,T xn) = d(A,B), (4.4)

where (xn−1,xn) ∈ ∆. Also, define a function α : A×A→ [0,∞) by

α(x,y) =
{

1 if (x,y) ∈ ∆,
0 otherwise. (4.5)

Which agrees with α−proximal admissible function. Following the same lines of the
proof of Theorem (2), we have the result. �

Corollary 2. If T : A→ B is an α− Pata-proximal admissible contraction of type-
I with A0 6= φ and T (A0)⊆ B0 for any t > 0. Then T has a unique best proximity point
x∗ in A0 provided that B is approximately compact with respect to A.

Example 4. Suppose that X = [0,1]×R is an orderded metric space (X ,d,�),
where d(x,y) = |x− y| and x � y is defined as x ≤ y. If A = {(0,x) : x ∈ R} and
B = {(1,y) : y≤ 0, y ∈ R}. Note that

d(A,B) = 1, A0 = {(0,0)} and B0 = {(1,0)}.
Define T : A→ B as:

T (0,x) = (1,2x).
Obviously, T (A0) = B0. Note that the points u = (0,x1),v = (0,x2),x = (0,y1) and
y = (0,y2) in A satisfy d(u,T x) = d(A,B) and d(v,Ty) = d(A,B), if x1 = 2y1 and
x2 = 2y2. Also, mapping T satisfies the condition of α− Pata-proximal admissible
contraction of type-I, where ψ(t) =

√
t. Thus all the conditions of the Corollary (2)

are satisfied. Moreover, (0,0) is the only best proximity point of T in A0.

Corollary 3. Let g : A→ A be a isometric mapping and T : A→ B with A0 6= φ,
T (A0)⊆ B0 and A0 ⊆ g(A0) for any t > 0. If B is approximately compact with respect
to A and the pair (g,T ) is generalized α−Pata-proximal contraction. Then the pair
(g,T ) has a unique optimal coincidence point x∗ in A0.

5. APPLICATION

As an application of our results, we prove some new fixed point theorems as fol-
lows.

We start with the following fixed point theorem:

Theorem 5. Let (X ,d) be a complete ordered metric space, and α : A×A→ R.
Let T : X → X be a continuous and α−admissible mapping satisfying

i): α(x,y)d(T x,Ty)≤ (1− ε)

2
d(x,y)+Λελψ(ε)[1+‖x‖+‖y‖+‖v‖]µ.

ii): There exist x0 ∈ X such that α(x0,T x0)≥ 1.
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Then T has a fixed point x∗ ∈ X and {T nx0} converges to x∗.

Proof. Let A = B = X . We prove that T is an α− Pata-proximal admissible con-
traction of type-I. Let x,y,u,v ∈ X , satisfy the following conditions: (x,y) ∈ ∆,

d(u,T x) = d(A,B),
d(v,Ty) = d(A,B).

Since X is complete ordered metric space, then (T x,Ty) ∈ ∆, Since d(A,B) = 0, so
we have u = T x and v = Ty, hence (u,v) ∈ ∆. Since T satisfies condition (i), we have

α(x,y)d(u,v) = α(x,y)d(T x,Ty)

≤ (1− ε)

2
d(x,y)+Λε

λ
ψ(ε)[1+‖x‖+‖y‖+‖v‖]µ,

which implies that

α(x,y)d(u,v)≤ (1− ε)

2
d(x,y)+Λε

λ
ψ(ε)[1+‖x‖+‖y‖+‖v‖]µ,

and hence T is an α− Pata-proximal admissible contraction of type-I. Let α(x,y)≥ 1,
d(u,T x) = d(A,B),
d(v,Ty) = d(A,B).

Since T is an α−ordered admissible mapping. Applying condition (ii), there exists
x0 ∈ X such that α(x0,T x0)≥ 1. If we choose x1 = T x0, then we obtain that

α(x0,x1)≥ 1 and d(A,B) = d(x1,T x0) = d(T x0,T x0).

Set B is approximately compact with respect to A, the conditions of Corollary (1) are
satisfied, so there exists x∗ ∈ X such that d(x∗,T x∗) = 0 = d(A,B), which implies that
T x∗ = x∗. �

CONCLUSION

In this paper, we defined α− Pata-proximal admissible contraction of type-I and
type-II in the framework of a complete metric space. Further, we obtained the best
proximity point and optimal coincidence point results for such mappings. We proved
the results which extends and generalize the existing results in [7,8,10]. In case, fixed
points of mappings introduced in this paper do not exists, the results helps to obtain
the approximate fixed points. To elaborate these concepts and support the results,
some examples are presented.
Further, we developed some approximation results in complete ordered metric space
which shows the validity of obtained results in ordered structure. Under some restric-
tion, specially for self mapping, we obtained a fixed point result as an application of
our result.
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[8] Z. Kadelburg and S. Radenović, “Fixed point theorem under Pata-type conditions

in metric spaces.” J. of Egyptian Math. Soc., vol. 24, pp. 77–82, 2016, doi:
http://dx.doi.org/10.1016/j.joems.2014.09.001.

[9] E. A. Karapinar and I. M. Erhan, “Best proximity point on different type contractions.” Appl.
Math. Inf. Sci., vol. 5, no. 3, pp. 558–569, 2011.

[10] V. Pata, “A fixed point theorem in metric spaces.” J. Fixed Point Theory Appl., vol. 10, pp. 299–
305, 2011, doi: https://doi.org/10.1007/s11784-011-0060-1.

[11] S. Sadiq Basha, “Best proximity point theorems on partially ordered sets.” Optim. Lett., 2013, doi:
https://doi.org/10.1007/s11590-012-0489-1.

[12] N. Shahzad, S. Sadiq Basha, and R. Jeyaraj, “Common best proximity points: global optimal
solutions.” J. Optim. Theory Appl., vol. 148, pp. 69–78, 2011, doi: https://doi.org/10.1007/s10957-
010-9745-7.

[13] S. Wang, B. Li, Z. Gao, and K. Iseki, “Some fixed point theorems on expansion mappings.” Math.
Jpn. , vol. 29, pp. 631–636, 1984.

Authors’ addresses

N. Saleem
Nonlinear Analysis Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam

Department of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam
E-mail address: naeem.saleem@tdtu.edu.vn

M. Abbas
Government College University, Department of Mathematics, Lahore, Pakistan.

China Medical University, Taichung 404, Taiwan
E-mail address: abbas.mujahid@gmail.com

B. Bin-Mohsin
Department of Mathematics, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
E-mail address: balmohsen@ksu.edu.sa

S. Radenović
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