Miskolc Mathematical Notes
Vol. 12 (2011), No 1, pp. 41-49

# New preconditioners for nonsymmetric and indefinite saddle point linear systems 

> Jun He and Ting-Zhu Huang

# NEW PRECONDITIONERS FOR NONSYMMETRIC AND INDEFINITE SADDLE POINT LINEAR SYSTEMS 

JUN HE AND TING-ZHU HUANG<br>Received 28 April, 2010


#### Abstract

In this paper, we extend the preconditioners of Sturler and Liesen [SIAM J. Sci. Comput., 26(2005): 1598-1619]. The spectral characteristics of the preconditioners are investigated and the results show that all eigenvalues of the preconditioned matrices are strongly clustered. Finally, numerical experiments are also reported for illustrating the efficiency of the presented preconditioners.


2000 Mathematics Subject Classification: Primary 34B10; Secondary 34B15; 34B20
Keywords: preconditioner, saddle point linear system, Krylov methods

## 1. Introduction

Consider the following general nonsingular saddle point linear system

$$
A \xi \equiv\left(\begin{array}{ll}
G & B^{T}  \tag{1.1}\\
C & 0
\end{array}\right)\binom{x}{y}=\binom{b}{q}=f
$$

where $G \in R^{n \times n}, B, C \in R^{n \times m}$ have full rank, $x, b \in R^{n}$ and $y, q \in R^{m}$, and the vectors $x, y$ are unknown. Here we assume that $A$ is nonsingular, that will be used in the following analysis. Under these assumptions, system (1.1) has a unique solution. This system is very important and appears in many different applications of scientific computing, such as constrained optimization [1,16], the finite element or finite difference methods of solving the Navier-Stokes equation [4-7], fluid dynamics, constrained least problems and generalized least squares problems [10-12], and the discretized time-harmonic Maxwell equations in mixed form [9].

Results for the general systems have been obtained before, for example, Murphy, Golub and Wathen [3] proposed the block-diagonal preconditioner

$$
\left(\begin{array}{ll}
G^{-1} & 0 \\
0 & \left(C G^{-1} B^{T}\right)^{-1}
\end{array}\right)
$$

This research was supported by $\operatorname{NSFC}(10926190,60973015)$.

Then the preconditioned matrices are diagonalizable and have at most three distinct eigenvalues. Hence, a Krylov subspace method will converge in at most three steps. Because such a general system is typically large and sparse, the preconditioner is expensive. Recently, Sturler and Liesen [14] considered the following preconditioner

$$
\left(\begin{array}{ll}
D^{-1} & 0 \\
0 & \left(C D^{-1} B^{T}\right)^{-1}
\end{array}\right)
$$

where $G=D-E$ and $D$ can be efficiently inverted. For such a preconditioner, one should assume that $A$ and $C D^{-1} B^{T}$ are invertible. But it may be expensive to compute $C D^{-1} B^{T}$, and the matrix $C D^{-1} B^{T}$ may be singular, so we introduce the following preconditioner

$$
\left(\begin{array}{ll}
D^{-1} & 0 \\
0 & \left(F+C D^{-1} B^{T}\right)^{-1}
\end{array}\right)
$$

where $D$ and $F+C D^{-1} B^{T}$ are invertible. We can get a suitable $F$ such that $F+C D^{-1} B^{T}$ is invertible and we can reduce the computing cost of the Schur complement. If we choose suitable $D$ and $F$, we find that all of the block diagonal preconditioners can be included. When $G$ is singular or ill-conditioned, such preconditioners can still be applied.

This paper is organized as follows. In Section 2, we will establish new preconditioners and study their spectral analysis for the saddle point systems. The related systems are given in Section 3. In Section 4, numerical experiments are given. Finally, the conclusions are presented in Section 5.

## 2. BLOCK DIAGONAL PRECONDITIONER

We split $G$ as $G=D-E$, where $D$ is easy to solve. $C D^{-1} B^{T}$ is the exact Schur complement of the matrix

$$
\left(\begin{array}{ll}
D & B^{T} \\
C & 0
\end{array}\right)
$$

In this paper, we introduce the following preconditioner which is a generalization of the preconditioners of [14]:

$$
P(D)=\left(\begin{array}{ll}
D^{-1} & 0 \\
0 & \left(F+C D^{-1} B^{T}\right)^{-1}
\end{array}\right)
$$

Then we get the left preconditioned matrix:

$$
B(F)=P(D) A=\left(\begin{array}{ll}
I-D^{-1} E & D^{-1} B^{T}  \tag{2.1}\\
\left(F+C D^{-1} B^{T}\right)^{-1} C & 0
\end{array}\right)=\left(\begin{array}{ll}
I-S & N \\
M & 0
\end{array}\right)
$$

where,

$$
\begin{aligned}
M N & =\left(F+C D^{-1} B^{T}\right)^{-1} C D^{-1} B^{T} \\
& =\left(F+C D^{-1} B^{T}\right)^{-1}\left(F+C D^{-1} B^{T}-F\right) \\
& =I+\left(-\left(F+C D^{-1} B^{T}\right)^{-1} F\right) \\
& =I+Q
\end{aligned}
$$

When $F=0, M N=I$ (it is the case in [14]), and the preconditioner reduces to the preconditioner in [14]. If $B=C, E=C^{T} W^{-1} B$ and $F=W-C D^{-1} B^{T}$, it reduces to the block diagonal preconditioner in [13] and [8].

In the following analysis, we discuss the eigendecomposition of the matrix

$$
B_{0}=\left(\begin{array}{ll}
I & N  \tag{2.2}\\
M & 0
\end{array}\right)
$$

and we assume that $Q$ is diagonalizable and $5+4 \delta_{j} \neq 0$, where $Q v_{j}=\delta_{j} v_{j}$.

Theorem 1. Let $B_{0}$ be of the form (2.2). Then $B_{0}$ has the following eigenvalues and eigenvectors:
(a) $n-m$ eigenpairs of the form $\left(1,\left[u_{j}^{T}, 0\right]^{T}\right)$, where $u_{1}, \cdots, u_{n-m}$ form a basis of $\operatorname{Null}(M)$, the nullspace of $M$.
(b) $2 m$ eigenpairs of the form $\left(\lambda^{ \pm},\left[u_{j},\left(\lambda^{ \pm}\right)^{-1}\left(M u_{j}\right)^{T}\right]^{T}\right)$, where $\lambda^{ \pm}=(1 \pm$ $\left.\sqrt{5+4 \delta_{j}}\right) / 2$, and $Q v_{j}=\delta_{j} v_{j}$. Then the eigenvector matrix $Y$ of $B_{0}$ is given by

$$
Y=\left(\begin{array}{lll}
U_{1} & U_{2} & U_{2}  \tag{2.3}\\
0 & \left(\lambda^{+}\right)^{-1} M U_{2} & \left(\lambda^{-}\right)^{-1} M U_{2}
\end{array}\right)
$$

where $U_{1}=\left[u_{1}, \cdots, u_{n-m}\right]$ and $U_{2}=\left[u_{n-m+1}, \cdots, u_{n}\right]$.

Proof. We consider the equation

$$
B_{0}\left[u^{T}, v^{T}\right]^{T}=\lambda\left[u^{T}, v^{T}\right]^{T}
$$

which is equivalent to the following two equations

$$
\begin{gather*}
u+N v=\lambda u  \tag{2.4}\\
M u=\lambda v \tag{2.5}
\end{gather*}
$$

Since $B_{0}$ is nonsingular, we can assume $\lambda \neq 0$. So from (2.5), we have

$$
v=\lambda^{-1} M u
$$

First, we assume $\lambda=1$. Substituting this into (2.4) and (2.5), we have

$$
\begin{equation*}
N v=0 \quad \text { and } \quad M u=v \tag{2.6}
\end{equation*}
$$

Since $B^{T}$ has full column rank by assumption, this implies that $v=0$ and that $B_{0}$ has only eigenpairs of the form $\left(1,\left[u_{j}^{T}, 0\right]^{T}\right)$, where $u \in \operatorname{null}(M)$.

Since $C$ has full row rank, so does $M$, and $B_{0}$ has precisely $n-m$ distinct eigenpairs of this type. Next, we assume $\lambda \neq 1$. From (2.4), we can get

$$
u=(\lambda-1)^{-1} N v
$$

Substituting this into (2.5) yields

$$
\begin{equation*}
Q v_{j}=\left(\lambda^{2}-\lambda-1\right) v_{j} \tag{2.7}
\end{equation*}
$$

Hence, $v_{j}$ must be eigenvectors of $Q$, we assume that $Q v_{j}=\delta_{j} v_{j}$. Then we solve (2.7) for $\lambda$ to yield

$$
\lambda^{ \pm}=\left(1 \pm \sqrt{5+4 \delta_{j}}\right) / 2
$$

So, the remaining $2 m$ eigenpairs are $\left(\lambda^{ \pm},\left[u_{j},\left(\lambda^{ \pm}\right)^{-1}\left(M u_{j}\right)^{T}\right]^{T}\right)$.
We are now ready to consider the perturbation bounds on the eigenvalues of $B(F)$. Throughout this paper $\|\cdot\|$ indicates the 2-norm, and we let

$$
\begin{gathered}
Y=\left(\begin{array}{lll}
U_{1} & U_{2} & U_{2} \\
0 & \left(\lambda^{+}\right)^{-1} M U_{2} & \left(\lambda^{-}\right)^{-1} M U_{2}
\end{array}\right)=\left(\begin{array}{ll}
Y_{11} & Y_{12} \\
Y_{21} & Y_{22}
\end{array}\right) \\
\gamma^{+}=\operatorname{diag}\left(\left(\lambda_{j}^{-}-1\right) /\left(\lambda_{j}^{-}-\lambda_{j}^{+}\right)\right) \\
\gamma^{-}=\operatorname{diag}\left(\left(\lambda_{j}^{+}-1\right) /\left(\lambda_{j}^{-}-\lambda_{j}^{+}\right)\right)
\end{gathered}
$$

Theorem 2. Consider matrices $B(F)$ of the form (2.1). Let $Y$ be the eigenvector matrix of $B_{0}$, as given by (2.2). Then for each eigenvalue $\lambda_{B}$ of $B(F)$ there exists an eigenvalue $\lambda$ of $B_{0}$ such that

$$
\begin{align*}
\left|\lambda_{B}-\lambda\right| & \leq\left\|Y^{-1}\left(\begin{array}{cc}
S & 0 \\
0 & 0
\end{array}\right) Y\right\|  \tag{2.8}\\
& \leq 2 \max \left(1,\left\|\gamma^{+}\right\|,\left\|\gamma^{-}\right\|\right)\left\|Y_{11}^{-1} S Y_{11}\right\|
\end{align*}
$$

Proof. Since $B_{0}$ is diagonalizable, this follows from a classic result in perturbation theory [15]. We expand the right-hand side of (2.8) (see also [3,14]

$$
\begin{aligned}
\left|\lambda_{B}-\lambda\right| & \leq\left\|\left(\begin{array}{ll}
\hat{I} Y_{11}^{-1} S Y_{11} & \hat{I} Y_{11}^{-1} S Y_{12} \\
-\left[0, \gamma^{-}\right] Y_{11}^{-1} S Y_{11} & -\left[0, \gamma^{-}\right] Y_{11}^{-1} S Y_{12}
\end{array}\right)\right\| \\
& \leq \sqrt{2} \max \left(1,\left\|\gamma^{+}\right\|,\left\|\gamma^{-}\right\|\right)\left\|\left[\begin{array}{l}
Y_{11}^{-1} S Y_{11} \\
-[0, I] Y_{11}^{-1} S Y_{11}
\end{array}\right]\right\| \\
& \leq 2 \max \left(1,\left\|\gamma^{+}\right\|,\left\|\gamma^{-}\right\|\right)\left\|Y_{11}^{-1} S Y_{11}\right\| .
\end{aligned}
$$

We can find that, if $\delta_{j} \approx-5 / 4, \gamma^{ \pm}$can be very large. So we should take a suitable $Q$ such that the value of $\delta_{j}$ are well separated from $-5 / 4$. In section 4 , we will present some choices.

Now we will derive a bound on $\left\|Y_{11}^{-1} S Y_{11}\right\|$, following the approach in [3, 14]. Recall that $Y_{11}=\left[\begin{array}{cc}U_{1} & U_{2}\end{array}\right]$, where $U_{1}^{T} U_{1}=I$ and $U_{2}=N V$ with unit columns. Let $U_{2}=V_{2} \Theta$, where $V_{2}^{T} V_{2}=I$. Furthermore, denote $\omega_{1}=\left\|U_{1}^{T} V_{2}\right\|$.

Theorem 3. Define $Y_{11}, S, U_{1}, U_{2}, V_{2}, \Theta$ and $\omega_{1}$ as above, and let $\kappa($.$) denote$ the 2-norm condition number. Then

$$
\left\|Y_{11}^{-1} S Y_{11}\right\| \leq \kappa(\Theta)\left(\frac{1+\omega_{1}}{1-\omega_{1}}\right)^{1 / 2}\|S\|
$$

The proof is similar to that of Lemma 2.3 in [14].

## 3. FIXED-POINT METHOD AND ITS RELATED SYSTEM

We can derive the following splitting from (2.1):

$$
B(F)\binom{x}{y}=\left(\begin{array}{ll}
I-S & N  \tag{3.1}\\
M & 0
\end{array}\right)\binom{x}{y}=\left(B_{0}-\left(\begin{array}{ll}
S & 0 \\
0 & 0
\end{array}\right)\right)\binom{x}{y}=\left\{\begin{array}{l}
f \\
g
\end{array}\right\}
$$

Note that

$$
B_{0}^{-1}=\left(\begin{array}{ll}
I_{n}-N(M N)^{-1} M & N(M N)^{-1}  \tag{3.2}\\
(M N)^{-1} M & -(M N)^{-1}
\end{array}\right)
$$

We left-multiply (3.1) by $B_{0}^{-1}$ to yield the fixed-point iteration

$$
\binom{x_{k+1}}{y_{k+1}}=\left(\begin{array}{ll}
\left(I-N(M N)^{-1} M\right) S & 0  \tag{3.3}\\
\left((M N)^{-1} M\right) S & 0
\end{array}\right)\binom{x_{k}}{y_{k}}+\binom{\widehat{f}}{\widehat{g}}
$$

So we can get the related system for the fixed-point iteration

$$
\begin{equation*}
\left(I-\left(I-N(M N)^{-1} M\right) S\right) x=\widehat{f} \tag{3.4}
\end{equation*}
$$

Theorem 4. The spectral radius of the fixed point iteration matrix in (3.3) and the eigenvalues $\lambda_{R}$ of the related system matrix in (3.4) satisfy

$$
\left.\rho\left(I-\left(I-N(M N)^{-1} M\right) S\right), \begin{array}{c}
\|S\|  \tag{3.5}\\
\left|1-\lambda_{R}\right|
\end{array}\right\} \leq \frac{\|}{\left(1-\omega_{1}^{2}\right)^{1 / 2}}
$$

where $\omega_{1}$ is the largest singular value of $U_{1}^{T} U_{2}$.

$$
\begin{aligned}
\text { Proof. Let } \widehat{N}=N(M N)^{-1}, \widehat{M} & =M . \text { We have } \\
(I-\widehat{N} \widehat{M}) U_{1} & =U_{1}, \quad(I-\widehat{N} \widehat{M}) U_{2}=0 .
\end{aligned}
$$

Thus

$$
(I-\widehat{N} \widehat{M}) S=\left(U_{1}, U_{2}\right)\left(\begin{array}{ll}
I_{n-m} & 0 \\
0 & 0
\end{array}\right)\left(U_{1}, U_{2}\right)^{-1} S
$$

Then, similary to the proof of Theorem 4.4 in [3], we have

$$
\left.\rho\left(I-\left(I-N(M N)^{-1} M\right) S\right), \begin{array}{c}
\|S\| \\
\left|1-\lambda_{R}\right|
\end{array}\right\} \leq \frac{\left.\omega_{1}^{2}\right)^{1 / 2}}{(1-. . . ~}
$$

Generally, this leads to better clustering and tighter bounds for the related system than for the block-diagonally preconditioned system. Because of these advantages, the related system will generally have faster convergence than the block-diagonally preconditioned system, as we will see it in section 4.

## 4. NUMERICAL EXAMPLES

All the numerical experiments were performed with MATLAB 7.0. In all of our runs we used a zero initial guess. The stopping criterion is $\left\|r^{(k)}\right\|_{2} /\left\|r^{(0)}\right\|_{2} \leq 10^{-6}$, where $r^{(k)}$ is the residual vector after the $k$-th iteration. The right-hand side vectors $b$ and $q$ are taken such that the exact solutions $x$ and $y$ are both vectors with all of their components equal to 1 . The initial guess is chosen to be the zero vector. We will use preconditioned GMRES(10) to solve the saddle point-type systems. Our numerical experiments are similar to ones in [2]. The matrices considered are taken from [2] with a slightly altered notations. We construct the saddle point-type matrix $A$ from a transformed matrix $\hat{A}$ of the following form

$$
\hat{A}=\left(\begin{array}{lll}
F_{1} & 0 & B_{u}^{T} \\
0 & F_{2} & B_{v}^{T} \\
B_{u} & B_{v} & 0
\end{array}\right)
$$

where $G=\left(\begin{array}{ll}F_{1} & 0 \\ 0 & F_{2}\end{array}\right)$ is positive real. The matrix $\hat{A}$ arises from the discretization by the maker and cell finite direrence scheme of a leaky two dimensional liddriven cavity problem in a square domain $(0 \leq x \leq 1 ; 0 \leq y \leq 1)$. Then the matrix ( $B_{u}, B_{v}$ ) is replaced by a random matrix $\hat{B}$ with the same sparsity as $\left(B_{u}, B_{v}\right)$, replaced by $B_{1}=\hat{B}(1: m, 1: m)-\frac{3}{2} I_{m}$, such that $B_{1}$ is nonsingular. Denote $B_{2}=\hat{B}(1: m, m+$ $1: n)$, then we have $B=\left(B_{1}, B_{2}\right)$ with $B_{1} \in R^{m, m}$ and $B_{2} \in R^{m, n-m}$. Obviously, the resulting saddle point-type matrix

$$
A=\left(\begin{array}{ll}
G & B^{T} \\
B & 0
\end{array}\right)
$$

satisfies that $\operatorname{rank}\left(B^{T}\right)=\operatorname{rank}(B)=m$.
From the matrix $A$ we construct the following saddle point-type matrices:

$$
A_{1}=\left(\begin{array}{ll}
G_{1} & B^{T} \\
B & 0
\end{array}\right)
$$

where $G_{1}$ is constructed from $G$ by replacing its first $\frac{m}{4}$ rows and columns with zero entries. Note that $G_{1}$ is semipositive real and its nullity is $\frac{m}{4}$.

In our numerical experiments the matrix $W$ in the augmentation block preconditioners is taken as $W=I_{m}$ and the mesh $h=1 / 16$. During the implementation of our augmentation block preconditioners, we assume

$$
P 1=\left(\begin{array}{ll}
D^{-1} & 0 \\
0 & \left(C D^{-1} B^{T}\right)^{-1}
\end{array}\right)
$$

where $F=0, D=G_{1}+10 B^{T} C$, and

$$
P 2=\left(\begin{array}{ll}
D^{-1} & 0 \\
0 & I
\end{array}\right)
$$

where $F=I-C D^{-1} B^{T}, D=G_{1}+B^{T} C$,

$$
P 3=\left(\begin{array}{ll}
D^{-1} & 0 \\
0 & \left(0.01 C D^{-1} B^{T}\right)^{-1}
\end{array}\right)
$$

where $F=1.1 C D^{-1} B^{T}, D=G_{1}+10 B^{T} C$, respectively.


Figure 1. Spectrum of $A$ and $P^{-1} A$ when $h=\frac{1}{16}(n+m=736)$.
On Figure 1, we can observe that that the eigenvalues of $P^{-1} A$ are strongly clustered, which is expected by Theorem 2.1 and Theorem 2.2. In our example,
we compared the three different preconditioners. On Figure 2, we see that the choice


Figure 2. Convergence curve and total numbers of inner GMRES iterations when $h=\frac{1}{16}(n+m=736)$.
of a suitable $F$ improves the results.

## 5. Conclusion

In this paper, we extended the block positive definite preconditioner introduced in [3], and we proved some of its properties. Then, we gave numerical examples in order to illustrate the efficiency of our method.

## REFERENCES

[1] A. Björck, "Numerical stability of methods for solving augmented systems," in Recent developments in optimization theory and nonlinear analysis, ser. Contemp. Math., vol. 204. P.O. Box 6248, 201 Charles St., Providence RI 02940: American Mathematical Society, 1995, pp. 51-60.
[2] Z.-H. Cao, "Augmentation block preconditioners for saddle point-type matrices with singular $(1,1)$ blocks," Numer. Linear Algebra Appl., vol. 15, no. 6, pp. 515-533, 2008.
[3] E. de Sturler and J. Liesen, "Block-diagonal and constraint preconditioners for nonsymmetric indefinite linear systems. i. Theory," SIAM J. Sci. Comput., vol. 26, no. 5, pp. 1598-1619, 2005.
[4] H. Elman and D. Silvester, "Fast nonsymmetric iterations and preconditioning for Navier-Stokes equations," SIAM J. Sci. Comput., vol. 17, no. 1, pp. 33-46, 1996.
[5] H. C. Elman and G. H. Golub, "Inexact and preconditioned Uzawa algorithms for saddle point problems," SIAM J. Numer. Anal., vol. 31, no. 6, pp. 1645-1661, 1994.
[6] H. C. Elman, D. J. Silvester, and A. J. Wathen, "Iterative methods for problems in computational fluid dynamics," in Iterative methods in scientific computing. Singapore: Springer, 1997, pp. 271-327.
[7] B. Fischer, A. Ramage, D. J. Silvester, and A. J. Wathen, "Minimum residual methods for augmented systems," BIT, vol. 38, no. 3, pp. 527-543, 1998.
[8] C. Greif and D. Schötzau, "Preconditioners for saddle point linear systems with highly singular $(1,1)$ blocks," Electron. Trans. Numer. Anal., vol. 22, pp. 114-121, 2006.
[9] C. Greif and D. Schötzau, "Preconditioners for the discretized time-harmonic Maxwell equations in mixed form," Numer. Linear Algebra Appl., vol. 14, no. 4, pp. 281-297, 2007.
[10] C. Li, B. Li, and D. J. Evans, "A generalized successive overrelaxation method for least squares problems," BIT, vol. 38, no. 2, pp. 347-355, 1998.
[11] M. F. Murphy, G. H. Golub, and A. J. Wathen, "A note on preconditioning for indefinite linear systems," in Tech. Report. Stanford University: SCCM-99-03, 1999.
[12] S. G. Nash and A. Sofer, "Preconditioning reduced matrices," SIAM J. Matrix Anal. Appl., vol. 17, no. 1, pp. 47-68, 1996.
[13] T. Rees and C. Greif, "A preconditioner for linear systems arising from interior point optimization methods," SIAM J. Sci. Comput., vol. 29, no. 5, pp. 1992-2007, 2007.
[14] C. Siefert and E. de Sturler, "Preconditioners for generalized saddle-point problems," SIAM J. Numer. Anal., vol. 44, no. 3, pp. 1275-1296, 2006.
[15] G. W. Stewart and J. G. Sun, Matrix perturbation theory, ser. Computer Science and Scientific Computing. Boston, MA: Academic Press, Inc., 1990.
[16] S. Wright, "Stability of augmented system factorizations in interior-point methods," SIAM J. Matrix Anal. Appl., vol. 18, no. 1, pp. 191-222, 1997.

## Authors' addresses

## Jun He

University of Electronic Science and Technology of China, School of Mathematical Sciences, 610054, Chengdu, Sichuan, P. R. China

E-mail address: hejunfan1@163.com
Ting-Zhu Huang
University of Electronic Science and Technology of China, School of Mathematical Sciences, 610054, Chengdu, Sichuan, P. R. China

E-mail address: tzhuang@uestc.edu.cn or tingzhuhuang@126.com

