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Abstract. In this research work, we employ the critical point theory based on the variational
structure to prove the existence of at least three distinct weak solutions for an overdetermined
system of nonlinear fractional partial Fredholm-Volterra integro-differential equations.
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1. PRELIMINARIES

The study of partial differential equations (PDE’s) started in the 18th century and
it’s area has been growing steadily in the past century. The analysis of physical mod-
els has remained to the present day one of the fundamental concerns of the develop-
ment of PDE’s. PDEs can be used for modelling a wide range of physical phenomena,
encountered in statistical mechanics, mathematical physics, theoretical neuroscience,
fluid dynamics and mathematical finance. On one side PDEs can be used to describe
a wide variety of phenomena such as sound, heat, diffusion, electrostatics, electro-
dynamics, fluid dynamics, elasticity, or quantum mechanics. On the other side PDE’s
also became an essential tool in other branches of mathematics. Thus the theory of
ordinary and partial differentia equations is a powerful theory to give a solution to
engineering problems (see [22,23,25-28]). This theory can be generalized as theory
of the overdetermined systems of differential and partial differential equations where
it has been developed through some research works, e.g. [6, 10,24,30,31,34]. On
the other hand, to deal with the process having delay, it is not more convenient tool
to apply an ordinary or partial differential equation. Instead, a convenient approach
to resolve these kind of problems is to employ integro-differential equations. Many
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mathematical models of physical phenomena lead to integro-differential equations

[”” b ]'

Consider the overdetermined system of nonlinear fractional partial Fredholm-Vol-
terra integro-differential equations as follows:

tD;(‘i (ai(t)OD?iui(t)) = A'Ful (Z’Ml(t)"" ,un(t))
+ K (67 b (g (1)de
+f(;k2,i (t,T)hz’i(ui(T))dT, i = 1, 1
wi(t) = fiOuiO)+ fif ki (6,0 h i (ui()de
+f0tk2,i (t,t) h2,i(ui(r))dr, i=1,---,n;
u;(0)= u;j(T)=0, i=1,---,n.

(1.1)

where t € (0,T), A is a positive real parameter, 0 < o; < 1, a;(¢t) € L*°[0,T],
a; = essinflo,rai(t) >0, f; :[0,T] — R is a continuous function with the max-

imum norm || f; ||eoc = maxo<;<7 | fi (t)| = Ml.f, F :[0,T]x R" — R is a function to
the extent that F(¢,u1,---,uy) is continuous with respect to ¢ and continuously differ-
entiable with respect to u; i.e. F(-,uy,--,uy) € C[0,T]and F(¢,-,---,-) € C1(R"),
and further, k1 (-,-) k2, (-,-) € C([0,T],[0,T]) hence the kernels k1 ; and k, ; are
bounded by for example L; and M;, respectively. Also, we suppose h1,;,h2,; : R— R
are Lipschitz continuous functions with the Lipschitz constants L’ > 0 and M/ > 0,
ie. |h1,i(81) —h1i(82)] < L6 — 82l and |ho,i (81) — h2,i($2)] < M[|1 — &o] for
every £1,8, e Randi = 1,---,n. Moreover, Fs denotes the partial derivative of F
with respect to s and, ; D; and ¢ D! are the right and left Riemann-Liouville type of
fractional derivatives of order y which are defined by [14]

y B 1 d T ou(s)
ODtu(z)_F(l_y)dt/O s (12)
1 d (T us)
ri—pd), G-or°

(DYu(t) =— (1.3)

The standard and typical approach to study the existence of solutions to the non-
linear fractional boundary value problems is the fixed point theory, see for example
[1,4,16,35]. But, another well-developed, successful and recently more attracting
method is the calculus of variation to investigate the existence of solutions to the dif-
ferential equation with type of integer order and very recently fractional order, the
readers are referred to [7,11-13,17-21,32,33,36] and the references therein to attain
more information about this approach.

Here, the well-known three critical points theorem due to Bonanno and Marano
[5] is considered. Then the existence of at least three different weak solutions to
the overdetermined system (1.1) is proved. In fact, the main steps to apply this the-
orem is to define two convenient functionals which satisfy all conditions of theorem’s
assumptions.
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2. THREE DISTINCT WEAK SOLUTIONS

In order to prove the existence of at least three weak solutions (1.1), some Theor-
ems and Definitions are recalled in this literature.

Definition 1. Consider 0 <o; <1,i =1,---,n, the fractional derivative space Eg i
is defined by the closure of C§® ([0, T], R) i.e. ES” = Cy° ([0, T], R) with respect to
the following weighted norm

1

T T 2
- 2
ullay = ( [ ar(0) o D% () dr + / |u(z)|2dz) , @.1)
0 0
forallu e Egi,i =1,---,n.

Lemma 1 ([11]). If% <a;j <1 then forallu e Egi, i=1,---,n,

ey

hllze = gy lo D llz2, (2:2)
1
(2)
ai—1 .
[u]loo < WHOD/””L% (2.3)
1 1
Remark 1. The following inequalities for i = 1,---,n, are straightforward from
Lemma 1,
(1) 1
T T o > 2
[ullz2 < m /0 ai(t)}ODtl“(l)| dar ) (2.4)
2)

1

T35 T o s %
||u||oo§F(Oﬁ)\/m(/0 ai (1) |oDF u ()| dt) : (2.5)

Remark 2. The norm which is defined by equation (2.1) is equivalent to the fol-
lowing norm

2

T
||u||al.:(/ a,~(t)|0D;"fu(z)|2dt) forallue Ey',i =1,---,n.  (2.6)
0

The norm (2.6) is the norm that we need. Now, define X = Hi:'l' Eg I augmented
to the norm

n
1Ulx = luilla;. wi € Eg's U= (ui.ug. - up) € X. 2.7)

i=1
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Definition 2. U = (u,us,---,u,) € X is called the weak solution of the system
(1.1) if the following equation satisfies

n T
0=>"[ ai(®oDfu;i(t)oDy v;(t)dt
0

i=1
n T T
- ki,i(¢,7)hyi(ui i (t)drd
;/0 /0 i (t, 1) hy i (ui (7))v; (¢)dede
n T ,t (2.8)
- ki (2,7)ha,i(u; i (t)drd
;/0 /0 2,i (t,7) ha i (ui(v))v; (¢)drdt
T n
_k/ ZF,,,. (¢ ur (1), ,un (1)) vi (1)de
0

i=1
for every V = (v1,v2,---,vp) € X.
Remark 3. Notice that we have used the number of n equations of the system (1.1)
to define the weak solution. In fact, we use the remain equations, the number of n

integral equations, directly to define an operator, in what follows, so that its Gateaux
derivative is some parts of the equation (2.8).

o

Definition 3. Define the operator H; : Eg ' — E," as

1 T
Hiwi (1) = 5 /0 kv (1, 1) b i g (2))ug (0)de
2.9)

1! 1
3 [ (o) s (D (0 =3 00,
0
forallt € [0,T] and for 1 <i <n.
From the system (1.1), it is straightforward to see
(i (1) +6v; (1))* = fi (1) (ui () + v; (1))

T
+ / i (10 s (i (2) + 00 (0) i (1) + 0v; (£))de
0

t
+/ ko (t,t)hai(ui(t) +60v; (7)) (u;(t) + Ov; (¢))dz.
0 (2.10)
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The Gateaux derivative of H; is

d\1 (T
Hj(u; (1) (v; (1)) = @gifo ky,i(t,t)hyi(ui(r)+0v; (1)) (u; (t) + Ov; (t))dr

t
+ %[0 ka,i (t,7) ha,i (ui () + Ovi () (i (2) + Ovi (1)) de

—%ﬁaxW0>+ema»%

0=0

_d)r INCI PR 2
_d9§2(ul(t)+8vl(t)) 2f,(t)(u,(t)+9vl(t))

1
_ Efi(t)(ui(t) + 0v; (t))z}

= u; (D (1) — fi (Ou; ()i (1)
= (ui (1) = fi(Ou; ()i (1)

T
:AkumﬂMAWMWNMr

0=0

t
+/kumﬂMAWWNMMt
0

(2.11)
The following theorem is recalled form [5] to obtain at least three distinct critical
points.

Theorem 1 ([5, Theorem 3.6]). Let X be a reflexive real Banach space and
@ : X — R a sequentially weakly lower semicontinuous, coercive and continuously
Gdateaux differentiable in which its Gdteaux derivative has a continuous inverse on
X*, moreover, suppose that W : X — R be a sequentially weakly upper semicontinu-
ous and continuously Gdteaux differentiable functional in which its Gdteaux deriv-
ative is compact, such that @(0) = ¥(0) = 0. Suppose also there exist r € R and
up € X with0 <r < ®(uy), satisfying

v
(1) SUPyep1 (oo, W) < rHal
2) forall A € A, := ]Sjg:; Supueqs—l(]r_oo,r])&”(u)]’ the functional ® — AV is

coercive.
Then for any A € A, the functional ® — A admits at least three distinct critical
points in X.

The main result of this paper states the existence of at least different three weak
solutions of the system (1.1). For convenience we set the following notations: 8; =
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max {L;L;, M;M]},
ZeiT2ai+l+M[fT2al’
(F(@))?a; e —1) °

0 =mini<j<u{0i}, 0 =1

T2(¥i—l
M = max 7 , (2.12)
L=i<n ( (I () a; (20 — 1) —20; T2 +1 — M7 T2
l n
T(c)= {E = (£1,62,-- ,Ep) e R : 52;3 < c} , ¢>0, (2.13)
i=1
and
TZ(X,'
L = max { 5 } (2.14)
t=izn o (M + 1)

The main result is as follows:

Theorem 2. Suppose F : [0,T] x R® — R is a function such that
F(uy,--,up) € C[0,T], F(t,-,---,-) € CL(R") and F(t,0,---,0) =0 forall t €
[0,T]. Set

S (heili2, —2 g Hi s 0)dr)
2 [T F(t,w1(t),- wn (1))dt

and
_ r
=— .

fO sup(SI ;o En) €Y (Mr) F(Z’ El L) én)d[
If there exist a constant r > 0 and a vector-valued function
£2(t) = (w1(2),-++ ,wn(t)) such that

(HO) 3 <o <1,

720 +1 S 2y

(H1) 20;T 2_—i-Ml T <1

I'(@i)"a; (2e;—1)
T

(H2) Y0 llwill2, = 2r +25°0_ fo Hi(w; (0))dt;
(H3) 0 <¥;
(H4) liminfvi:|5i|_,+oo

N

F(t,i"l ,'",En) < ;
Y1 I&1? 2Ly

Then for any A € A =)o, 0|, the system (1.1) has at least three different weak solu-
tionsin X.

Proof. Consider the space X = ]—[ii'f Ey" equipped with the norm [|U ||x defined
by (2.7) which is a reflexive and separable Banach space. For any given
U= (ui(t),---,un(t)) € X, we present the functionals @,¥ : X — R as follows:

1" n T
o) =3 Y il Y fo Hy g (1)dt, 2.15)

i=1 i=1
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and
T
wa0=/'mea»~wAmw. 2.16)
0

These functionals are well-defined Gateaux differentiable and for all
V = (v17v27.'. 7v}’l) € Xa

n T
POV =Y [ a@oD @0 o

i=1
no AT T

- k1,i (2,7) hyi (ui i (t)drd
;/O/O i (¢, ) hyi(ui(7))v; (¢)dede
n T pt

- ki (t,7)ha,i(u; i (t)drdt,
;/0/0 2,i (1,7) h2,i (u; (7)) v; (¢)drde

and

T n
VO = [ Fu an . )i
i=1
Notice that @’ (U),¥'(U) € X™* in where X* is dual space of X. It can be easily
proved that the functional @ is sequentially weakly lower semicontinuous and its
Gaiteaux derivative has a continuous inverse on X *. Furthermore, since |k ; (f,7)] <
L; and |k2,; (t,7)] < M; for 0 <t,v < T and besides, h;,; and hy; are Lipschitz
continuous functions with the Lipschitz constants L > 0 and M/ > 0, hence

1 T
mwmnziﬁkumﬂMAmmmer

. %/Ot ki (8,7) hai (ui (T))u; (1)dT — %fz(l)(uz(f))Z

—

1 1
i ()ITL; L [Juilloo + §|ui(t)|tMiMi/””i lloo + EM,'f”ui 156

< _
-2

—

1 1
< STLL} i3 + 5 TM M i 36 + 5 M7 i 12
1
< 6T i |30 + 5 M7 i 13

1
= (6T + 3 M) i 5.
(2.17)
Equations (2.5), (2.6) and (2.15) imply

1 n T
o) =5 Y Il =Y [ Hitu

i=1 i=1
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=3 bl =3 [ O + 3l o

i=1 i=1

1 & " 1
=2 2 luille, = D@7+ oM Tl 3

i=1 i=1
> =) Muillg, =) 6T+ -M;T) - lJui g,
27— 200 (@) aiCe—1)

n 2 +1 S 2
A (1T M e,
24 (I ()" a; (2 — 1)

l n
=52 oiluil,

i=1

o n
2
> > ) luillg,

i=1

=2u|
- 2 X7

we know that o is positive because each o; is positive by assumption (H1), thus
lim /|y —+00 P(U) = +00 hence it is coercive. Let us to prove the functional ¥ is
definitely sequentially weakly upper semicontinuous and its derivative ¥’ : X — X*
is a compact operator. If limy;,— 400 Uy — U in X where

Un(t) = (um,1(1).-++ ,um,n(t)), then absolutely Uy, converges uniformly to U on
the interval [0, T'], then

T
limsup ¥ (Uy,) < / limsup F (t,um,l(t),--- ,um,n(t)) dr
0

m—+00 m—+00

T
:/ F(t,ul(l),"‘,un(t))dt
0

=wv(U).
Hence V¥ is sequentially weakly upper semicontinuous. Moreover, since
F(t,++,) € C'(R") then forall € [0, T]
lim F (t’”m,l(t)»"‘ ’um,n(t)) = F(t,uy(t), .-, un(t))
m——+00

Now, the Lebesgue control convergence theorem yields ¥/ (U,,) — ¥/(U) strongly,
so it results in that ¥’ is strongly continuous on X. Therefore, ¥’ : X — X* is a
compact operator.
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Suppose that Uy(z) = (0,---,0) and U;(¢) = £2(¢) then
P(Uop(1)) =¥ (Uo(1)) =0
and the assumption (H2) yields directly

0<r=3 ol By / Hi(w; (0)dt = B(UY).

i=1 i=1
Equations (2.5), (2.6), (2.12) and (2.13), imply
& (-0, r)={UecX :®U)<r}

UeX: Z||u,||al Z[ H; (u; (t))dt<r}

1—1 i=1

UeX:
_Z” z“a, Z/ O; T+ = Mf)||ul |12, dt <r%
i=1 i=1

UeX: Z(F(al)) a; o — )Huz”?,o

T2a -1

i=1

—Z(e T2 + MfT)nu,uoo }

i=1

UeX:

2”: (T'())?a@; (20 — 1) =26, T2 +1 _ g/ 720

2
o i 126 <

i=1

UeX: ZM;nu, 12, <r§

UeX:

1 n
§Z|u,~(t)|2 < Mr, forallt € [0,T]
i=1
ST Mr),

11
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which leads to the following relation

T
sp W(U)=  sup /1F@m@wwW@Nt
Ued1(]—oc0,r]) Ued—1(]—o0,r]) /0

T
< sup /F(l‘,élﬁ”vén)d[

EeT(Mr)J0

T
:/(; sup  F(t,&1,---,&n)d.

ZeT(Mr)

By (H3), we have

T
SUPy ed—1(]—00,r]) v (U) SUPy e®—1(]—00,r]) -fO F(t,uy(t), - ,un(t))de

r r
- foT supgermr) F (2,61, . §p)dt
r
_ 2y o). o) .18
Sy il =230y fy Hile;(0)de
_ (@)
P(2(1))
_Y(Uy)
Uy’

thus, supyeg—1 (oo, ¥ (U) <7 gggi; and hence the hypothesis (1) of Theorem 1

is valid.
By assumption (H4) there exits two constants i, & € R with the properties

T
Ko Jo supzerr F(t.61.+ &n)dt
o r ’

(2.19)
and for allZ € R" : F(t,E1,-.£n) < TZIE, 2 +e,

for all ¢ € [0, T]. Then clearly for a fixed U = (u1(¢),---,un(t)) € X, we have

F(tu(0), - un(1)) < T,_leu (O +e, (220

for all t € [0, T]. Now, in the next step we have to show the coercivity of the func-
tional @(U)— AW (U), suppose A € A, then bringing into accounts (2.4), (2.5), (2.14),
(2.19) and (2.20), we have
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1 n
W) =AW =2 luillg,

i=1

-y / Hi i (1)d — 2 / F (i (1), un (1)

i=1

zEZnuini /(9 T oMl
i=1

i=1

T
—)L/(; F(t,ui(), - ,u,(t))de

1 n
> 2 > il YTt M T i

i=1 i=1

[ (S
lui ()| |dt —ATe
" 2Lo P
2a;—1

1 o R 1
> S w2 =Y 6T+ =M T w2,
2§:|| G = O 4 M T il

i=1 i=1

TZ(x,'
2Lo Z (I + 1))25-

2
lluillq, —ATe

TZO(,' )
- —§ 'l § j A2 —AT
7 2 oilluille; - 2Lo 2 (I(e; +1)%d; Iilla, = AT

i=1

1 & Al
> 5D olluilg, —72 luilla, —ATe

i=1 i=1

1 ur z 5
. . lus12, = ATe,
2( T én)dt)z 7

Jo suPzermr) F(t.61,+, i=1

since term ( o — - is clearly positive from (2.19), then
1 ( fOTsuPEeT(Mr)F(l,‘g”l,-",én)dt) y postv ( )
lim ~ (®(U)—-A¥(U)) = +o0. 2.21)
U llx—>+o0

Therefore, it is verified that @ — AW is coercive and then the hypothesis (2) of The-
orem 1 is also established. Applying Theorem 1 and taking into account that the
weak solutions of the system (1.1) are exactly constructed through the equation
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®'(U)— AP/ (U) = 0, we conclude that the system (1.1) has at least three distinct
weak solutions in X for A € A and then the proof is completed. n
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