

Miskolc Mathematical Notes Vol. 19 (2018), No. 2, pp. 1233–1241

ON INVESTIGATION OF SOME NON-LINEAR INTEGRAL BOUNDARY VALUE PROBLEM

I. VARGA

Received 07 November, 2018

Abstract. We suggest a constructive approach for the solvability analysis and approximate solution of certain types of partially solved Lipschitzian differential systems with mixed two-point and integral non-linear boundary conditions. The practical application of the suggested technique is shown on a numerical example.

2010 Mathematics Subject Classification: 34B15

Keywords: implicit differential systems, non-linear integral boundary conditions, parametrization technique, successive approximations

1. PROBLEM SETTING

This article uses the approach proposed in [2], [5], [4] in the case of the following non-linear boundary value problem with mixed two-point and integral restrictions

$$\frac{dx(t)}{dt} = f\left(t, x(t), \frac{dx(t)}{dt}\right), t \in [a, b],$$
(1.1)

$$g\left(x(a), x(b), \int_{a}^{b} h(s, x(s))ds\right) = d.$$
(1.2)

We suppose that $f : [a,b] \times D \times D_1 \to \mathbb{R}^n$ is a continuous function defined on a bounded sets $D \subset \mathbb{R}^n$, $D^1 \subset \mathbb{R}^n$ (domain $D := D_\rho$ will be concretized later, see (1.8), D^1 is given) and $d \in \mathbb{R}^n$ is a given vector. Moreover $f, g: D \times D \times D_2 \to \mathbb{R}^n$ and $h : [a,b] \times D \to \mathbb{R}^n$ are Lipschitzian in the following form

$$|f(t, u, v) - f(t, \widetilde{u}, \widetilde{v})| \le K_1 |u - \widetilde{u}| + K_2 |v - \widetilde{v}|, \qquad (1.3)$$

$$|g(u, w, p) - g(\widetilde{u}, \widetilde{w}, \widetilde{p})| \le K_3 |u - \widetilde{u}| + K_4 |w - \widetilde{w}| + K_5 |p - \widetilde{p}|$$
(1.4)

$$|h(t,u) - h(t,\widetilde{u})| \le K_6 |u - \widetilde{u}| \tag{1.5}$$

© 2018 Miskolc University Press

for any $t \in [a, b]$ fixed, all $\{u, \widetilde{u}\} \subset D$, $\{v, \widetilde{v}\} \subset D^1$, $\{w, \widetilde{w}\} \subset D$, $\{p, \widetilde{p}\} \subset D_2$, where

$$D_2 := \left\{ \int_a^b h(t, x(t)) dt : t \in [a, b], \ x \in D \right\}$$

and $K_1 - K_5$ are non-negative square matrices of dimension *n*. The inequalities between vectors are understood componentwise. A similar convention is adopted for the "absolute value", "max", "min" operations. The symbol I_n stands for the unit matrix of dimension n, r(K) denotes a spectral radius of a square matrix K.

By the solution of the problem (1.1), (1.2) we understand a continuously differentiable function with property (1.2) satisfying (1.1) on [a, b].

We fix certain bounded sets $D_a \subset \mathbb{R}^n$ and $D_b \subset \mathbb{R}^n$ and focus on the solutions x of the given problem with property $x(a) \in D_a$ and $x(b) \in D_b$. Instead of the non-local boundary value problem (1.1), (1.2), we consider the parameterized family of two-point "model -type" problems with simple separated conditions

$$\frac{dx(t)}{dt} = f\left(t, x(t), \frac{dx(t)}{dt}\right), \ t \in [a, b],$$
(1.6)

$$x(a) = z, x(b) = \eta,$$
 (1.7)

where $z = (z_1, z_2, ..., z_n)$, $\eta = (\eta_1, \eta_2, ..., \eta_n)$ are considered as parameters.

If $z \in \mathbb{R}^n$ and ρ is a vector with non-negative components, $O(z,\rho) := \{\xi \in \mathbb{R}^n : |\xi - z| \le \rho\}$ stands for the componentwise ρ -neighbourhood of z. For given two bounded connected sets $D_a \subset \mathbb{R}^n$ and $D_b \subset \mathbb{R}^n$, introduce the set

$$D_{a,b} := (1-\theta)z + \theta\eta, \ z \in D_a, \ \eta \in D_b, \ \theta \in [0,1]$$

and its componentwise ρ -neighbourhood by putting

$$D = D_{\rho} := O(D_{a,b}, \rho) = \bigcup_{\xi \in D_{a,b}} O(\xi, \rho)$$
(1.8)

We suppose that

$$r(K_2) < 1, r(Q) < 1,$$
 (1.9)

where

$$Q := \frac{3(b-a)}{10}K,$$
 (1.10)

$$K = K_1 + K_2 [I_n - K_2]^{-1} K_1 = [I_n - K_2]^{-1} K_1.$$

On the base of function $f:[a,b] \times D \times D^1 \to \mathbb{R}^n$ we introduce the vector

$$\delta_{[a,b],D,D^1}(f) := \frac{1}{2} \left[\max_{(t,x,y)\in[a,b]\times D\times D^1} f(t,x,y) - \min_{(t,x,y)\in[a,b]\times D\times D^1} f(t,x,y) \right]$$
(1.11)

1234

and suppose that the ρ -neighbourhood in (1.8) is such that

$$\rho \ge \frac{b-a}{2} \delta_{[a,b],D,D^1}(f).$$
(1.12)

2. MAIN STATEMENTS

The investigation of the solutions of parameterized problem (1.6) and (1.7) is connected with the properties of the following special sequence of functions well posed on the interval $t \in [a, b]$

$$x_{0}(t,z,\eta) = z + \frac{t-a}{b-a}[\eta-z] = \left[1 - \frac{t-a}{b-a}\right]z + \frac{t-a}{b-a}\eta, \ t \in [a,b],$$
(2.1)
$$x_{m+1}(t,z,\eta) = z + \int_{a}^{t} f\left(s, x_{m}(s,z,\eta), \frac{dx_{m}(s,z,\eta)}{ds}\right)ds -$$

$$-\frac{t-a}{b-a}\int_{a}^{b} f\left(s, x_{m}(s, z, \eta), \frac{dx_{m}(s, z, \eta)}{ds}\right) ds + \frac{t-a}{b-a}[\eta - z], \ t \in [a, b], \quad (2.2)$$
$$m = 0, 1, 2, ...,$$

Theorem 1. Let assumptions (1.3)-(1.5) and (1.9) hold. Then, for all fixed $(z, \eta) \in D_a \times D_b$:

1. The functions of the sequence (2.2) are continuously differentiable functions on the interval $t \in [a,b]$, have values in the domain $D = D_{\rho}$ and satisfy the two-point separated boundary conditions (1.7).

2. The sequence of functions (2.2) in $t \in [a,b]$ converges uniformly as $m \to \infty$ to the limit function

$$x_{\infty}(t,z,\eta) = \lim_{m \to \infty} x_m(t,z,\eta), \qquad (2.3)$$

satisfying the two-point separated boundary conditions (1.7).

3. The limit function $x_{\infty}(t,z,\eta)$ is the unique continuously differentiable solution of the integral equation

$$x(t) = z + \int_{a}^{t} f\left(s, x(s), \frac{dx(s)}{ds}\right) ds - \frac{t-a}{b-a} \int_{a}^{b} f\left(s, x(s), \frac{dx(s)}{ds}\right) ds + \frac{t-a}{b-a} [\eta-z],$$

$$(2.4)$$

i.e. it is the solution of the Cauchy problem for the modified system of integrodifferential equations :

$$\frac{dx}{dt} = f\left(t, x, \frac{dx(t)}{dt}\right) + \frac{1}{b-a}\Delta(z, \eta), \ x(a) = z$$
(2.5)

where $\Delta(z,\eta): D_a \times D_b \to \mathbb{R}^n$ is a mapping given by formula

$$\Delta(z,\eta) := [\eta - z] - \int_{a}^{b} f\left(s, x_{\infty}(s, z, \eta), \frac{dx_{\infty}(s, z, \eta)}{ds}\right) ds.$$
(2.6)

4. The following error estimate holds:

$$|x_{\infty}(t,z,\eta) - x_{m}(t,z,\eta)| \leq \leq \frac{10}{9} \alpha_{1}(t,a,b-a) Q^{m} (1_{n} - Q)^{-1} \delta_{[a,b],D,D^{1}}(f),$$
(2.7)

for any $t \in [a,b]$ and $m \ge 0$, where $\delta_{[a,b],D,D^1}(f)$ is given in (1.11) and

$$\alpha_1(t,a,b-a) = 2(t-a)\left(1 - \frac{t-a}{b-a}\right), \ \alpha_1(t,a,b-a) \le \frac{b-a}{2}.$$
 (2.8)

Proof. The validity of this statement can be established similarly to Theorem 1 in [4].

Theorem 2. Under the assumption of Theorem 1, the limit function $x_{\infty}(t, z, \eta)$: $[a,b] \times D_a \times D_b \to \mathbb{R}^n$ defined by (2.3) is a continuously differentiable solution of the original BVP (1.1), (1.2) if and only if the pair of vectors (z, η) satisfies the system of 2n determining algebraic equations

$$\begin{cases} \Delta(z,\eta) = \eta - z - \int_{a}^{b} f\left(s, x_{\infty}(s,z,\eta), \frac{dx_{\infty}(s,z,\eta)}{ds}\right) ds = 0, \\ \Lambda(z,\eta) = g\left(x_{\infty}(a,z,\eta), x_{\infty}(b,z,\eta), \int_{a}^{b} h(s, x_{\infty}(s,z,\eta)) ds\right) - d = 0. \end{cases}$$

$$(2.9)$$

Note, that similarly as in [3], the solvability of the determining system (2.9) on the base of (1.3)-(1.5) and (1.9) can be established by studying its m-th approximate versions:

$$\int \Delta_m(z,\eta) = \eta - z - \int_a^b f\left(s, x_m(s,z,\eta), \frac{dx_m(s,z,\eta)}{ds}\right) ds = 0,$$

$$\Lambda_m(z,\eta) = g\left(x_m(a,z,\eta), x_m(b,z,\eta), \int_a^b h(s, x_m(s,z,\eta)) ds\right) - d = 0.$$
(2.10)

where *m* is fixed.

Lemma 1. Under the assumptions of Theorem 1, for the exact and approximate determining functions defined by (2.9) and (2.10) for any $(z, \eta) \in D_a \times D_b$ and $m \ge 1$

1236

hold the following estimates:

$$|\Delta(z,\eta) - \Delta_m(z,\eta)| \le \frac{10(b-a)^2}{27} K Q^m (1_n - Q)^{-1} \delta_{[a,b],D,D_1}(f), \quad (2.11)$$

$$|\Lambda(z,\eta) - \Lambda_m(z,\eta)| \le \frac{5(b-a)}{9} [K_3 + K_4 + (b-a)K_5K_6] Q^m (1_n - Q)^{-1} \delta_{[a,b],D,D_1}(f), \quad (2.12)$$

where the matrix Q and the vector $\delta_{[a,b],D,D_1}(f)$ are given respectively in (1.10) and (1.11).

Proof. Let us fix an arbitrary $(z, \eta) \in D_a \times D_b$. Direct computation gives that

$$\int_{a}^{b} \alpha_{1}(t,a,b-a)dt = \frac{(b-a)^{2}}{3}.$$

On the base of (1.1) and (1.3), when $u \neq \tilde{u}$, we have

$$|f(t, u, v) - f(t, \widetilde{u}, \widetilde{v})| \le K |u - \widetilde{u}|,$$

where matrix K is given in (1.10). Taking into account (2.7) we obtain

$$\begin{split} |\Delta(z,\eta) - \Delta_m(z,\eta)| &= \\ = \left| \int_a^b f\left(s, x_{\infty}(s,z,\eta), \frac{dx_{\infty}(s,z,\eta)}{dt} \right) ds - \int_a^b f\left(s, x_m(s,z,\eta), \frac{dx_m(s,z,\eta)}{dt} \right) ds \right| \leq \\ &\leq K \int_a^b \frac{10}{9} \alpha_1(s,a,b) Q^m (1_n - Q)^{-1} \delta_{[a,b],D,D_1}(f) ds = \\ &= \frac{10(b-a)^2}{27} K Q^m (1_n - Q)^{-1} \delta_{[a,b],D,D_1}(f), \end{split}$$

which proves (2.11).

From (2.9) and (2.10) using the Lipschitz conditions (1.4), (1.5) and estimates (2.7), (2.8), we obtain

$$|\Lambda(z,\eta) - \Lambda_m(z,\eta)| = \left| g\left(x_{\infty}(a,z,\eta), x_{\infty}(b,z,\eta), \int_a^b h(s,x_{\infty}(b,z,\eta)) ds \right) \right) - g\left(x_m(a,z,\eta), x_m(b,z,\eta), \int_a^b h(s,x_m(s,z,\eta)) ds \right) \right| \le \le K_3 \left| x_{\infty}(a,z,\eta) - x_m(a,z,\eta) \right| + K_4 \left| x_{\infty}(b,z,\eta) - x_m(b,z,\eta) \right| +$$

$$+ (b-a) K_5 K_6 |x_{\infty}(t,z,\eta) - x_m(t,z,\eta)| \le \le \frac{5(b-a)}{9} [K_3 + K_4 + (b-a) K_5 K_6] Q^m (1_n - Q)^{-1} \delta_{[a,b],D,D_1}(f),$$

i.e. (2.12) holds also.

Based on both exact and approximate determining systems (2.9) and (2.10) let us introduce the mappings $H: D_a \times D_b \to \mathbb{R}^{2n}$ and $H_m: D_a \times D_b \to \mathbb{R}^{2n}$ by setting

$$H(z,\eta) = \begin{bmatrix} [\eta-z] - \int_{a}^{b} f\left(s, x_{\infty}(a,z,\eta), x_{\infty}(b,z,\eta), \int_{a}^{b} h(s, x_{\infty}(s,z,\eta))\right) ds, \\ g\left(x_{\infty}(a,z,\eta), x_{\infty}(b,z,\eta), \int_{a}^{b} h(s, x_{\infty}(b,z,\eta)) ds\right) - d, \\ (2.13) \\ H_{m}(z,\eta) = \begin{bmatrix} [\eta-z] - \int_{a}^{b} f\left(s, x_{m}(a,z,\eta), x_{m}(b,z,\eta), \int_{a}^{b} h(s, x_{m}(s,z,\eta))\right) ds, \\ g\left(x_{m}(a,z,\eta), x_{m}(b,z,\eta), \int_{a}^{b} h(s, x_{m}(b,z,\eta)) ds\right) - d, \\ g\left(x_{m}(a,z,\eta), x_{m}(b,z,\eta), \int_{a}^{b} h(s, x_{m}(b,z,\eta)) ds\right) - d, \\ (2.14) \end{bmatrix}$$

 $(z,\eta) \in D_a \times D_b$. We see from Theorem 2 that the critical points of the vector field H of the form (2.13) determine solutions of the non-linear boundary value problem (1.1)-(1.2). The next statement establishes a similar result based upon properties of vector field H_m explicitly known from (2.14).

Theorem 3. Assume that the conditions of Lemma 1 hold. Moreover, one can specify an $m \ge 1$ and a set

$$\Gamma := D_1 \times D_2 \subset \mathbb{R}^{2n},$$

where $D_1 \subset D_a, D_2 \subset D_b$ are certain bounded open sets such that the mapping H_m satisfies the relation

$$|H_m(z,\eta)| \succ_{\partial \Gamma} \left[\begin{array}{c} \frac{10(b-a)^2}{27} KQ^m (1_n - Q)^{-1} \delta_{[a,b],D,D_1}(f) \\ \frac{5(b-a)}{9} [K_3 + K_4 + (b-a) K_5 K_6] Q^m (1_n - Q)^{-1} \delta_{[a,b],D,D_1}(f) \end{array} \right]$$
(2.15)

on the boundary $\partial \Gamma$ of the set Ω . If, in addition

$$\deg\left(H_m,\Omega,0\right) \neq 0,\tag{2.16}$$

then there exists a pair $(z^*, \eta^*) \in D_1 \times D_2$ for which the function

$$x^*(\cdot) := x_{\infty}\left(\cdot, z^*, \eta^*\right)$$

is a solution of the non-linear boundary value problem (1.1)-(1.2).

1238

In (2.15) the binary relation $\triangleright_{\partial\Gamma}$ is defined in [1] as a kind of strict inequality for vector functions and it means that at every point on the boundary $\partial\Gamma$ at least one of the components of the vector $|H_m(z,\eta)|$ is greater than the corresponding component of the vector on the right-hand side. The degree in (2.16) is the Brouwer degree because all the vectors fields are finite-dimensional. Likewise, all the terms on the right-hand side of (2.15) are computed explicitly e.g. by using computer algebra system.

Proof. The proof can be carried out similarly as in Theorem 4 from [3]. \Box

3. EXAMPLE

Let us apply the approach described above to the system of differential equations

$$\begin{cases} \frac{dx_1(t)}{dt} = \frac{1}{2}x_2^2(t) - t\frac{dx_2(t)}{dt}x_1(t) + \frac{1}{32}t^3 - \frac{1}{32}t^2 + \frac{9}{40}t\\ \frac{dx_2(t)}{dt} = \frac{1}{2}\frac{dx_1(t)}{dt}x_1(t) - t^2x_2(t) + \frac{15}{64}t^3 + \frac{1}{80}t + \frac{1}{4} \end{cases}, \ t \in [0, 1],$$

considered with non-linear boundary conditions

$$x_1(0) x_2(1) + \left[\int_0^1 x_1(s)ds\right]^2 = -\frac{311}{14400},$$
$$x_1(1)x_2(0) - \int_0^1 x_2(s)ds = -\frac{1}{8}.$$

Introduce the vector of parameters $z = col(z_1, z_2)$, $\eta = col(\eta_1, \eta_2)$. Let us consider the following choice of the subsets D_a , D_b and D^1 :

$$D_a = D_b = \{ (x_1, x_2) : -0.1 \le x_1 \le 0.2, \ -0.2 \le x_2 \le 0.3 \},\$$
$$D^1 = \left\{ \left(\frac{dx_1}{dt}, \frac{dx_2}{dt} \right) : -0.1 \le \frac{dx_1}{dt} \le 0.3, \ -0.1 \le \frac{dx_2}{dt} \le 0.3 \right\}.$$

In this case $D_{a,b} = D_a = D_b$. For $\rho = col(\rho_1, \rho_2)$ involved in (1.12), we choose the vector $\rho = col(0.4; 0.4)$. Then, in view of (2.13) the sets (1.8) and D_2 takes the form:

$$D = D_{\rho} = \{(x_1, x_2) : -0.5 \le x_1 \le 0.6, \ -0.6 \le x_2 \le 0.7\}$$

and

 $D_2 = \{(x_1, x_2) : 0.25 \le x_1 \le 0.36, -0.6 \le x_2 \le 0.7\}.$

A direct computation shows that the conditions (1.3)-(1.5) hold with

$$K_{1} = \begin{bmatrix} 0.3 & 0.7 \\ 0.15 & 1 \end{bmatrix}, K_{2} = \begin{bmatrix} 0 & 0.6 \\ 0.3 & 0 \end{bmatrix}, K_{3} = \begin{bmatrix} 0.3 & 0 \\ 0 & 0.2 \end{bmatrix}, K_{4} = \begin{bmatrix} 0 & 0.2 \\ 0.3 & 0 \end{bmatrix}, K_{5} = \begin{bmatrix} 1.2 & 0 \\ 0 & 1 \end{bmatrix}, K_{6} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

ΤА	BL	Æ	1	

m	Z1	Z.2	η_1	η_2
0	-0.089643967	-0.0002812586	0.03176891	0.25026338
1	-0.0994489263	0.00051937347	0.0255001973	0.2504687527
4	-0.0999998827	$7.744981 \cdot 10^{-8}$	0.02500007591	0.25000011
6	-0.100000004	$-2.263731 \cdot 10^{-10}$	0.02499999973	0.24999999996
Exact	-0.1	0	0.025	0.25

and therefore $r(K_2) = \sqrt{0.18} < 1$, and in (1.10) the matrix

$$K = \begin{bmatrix} 0.4756097561 & 1.585365854 \\ 0..2926829268 & 1.475609756 \end{bmatrix},$$

$$Q = \begin{bmatrix} 0.07134146342 & 0.2378048781 \\ 0.04390243902 & 0.2213414634 \end{bmatrix}, \ r(Q) = 0.273090089272152 < 1.$$

Furthermore, in view of (1.11)

$$\delta_{[a,b],D,D^{1}}(f) := \frac{1}{2} \left[\max_{(t,x,y)\in[a,b]\times D\times D^{1}} f(t,x,y) - \min_{(t,x,y)\in[a,b]\times D\times D^{1}} f(t,x,y) \right] = \left[\begin{array}{c} 0.31\\ 0.7325 \end{array} \right],$$
$$\rho = \left[\begin{array}{c} 0.4\\ 0.4 \end{array} \right] \ge \frac{b-a}{2} \delta_{[a,b],D,D^{1}}(f) = \left[\begin{array}{c} 0.155\\ 0.36625 \end{array} \right].$$

We thus see that all conditions of Theorem 1 are fulfilled, and the sequence of functions (2.2) for this example is uniformly convergent.

Applying Maple 14, we can carried out the calculations.

It is easy to check that

$$x_1^*(t) = \frac{t^2}{8} - \frac{1}{10}, \ x_2^*(t) = \frac{t}{4}$$

is an exact continuously differentiable solution of the problem (1.1), (1.2). For a different number of approximations *m* we obtain from (2.10) the following numerical values for the introduced parameters, which are presented in Table 3.

On the Figure 1 one can see the graphs of the exact solution (solid line) and its zero (\diamondsuit) and sixth approximation (\times) for the first and second coordinates.

The error of the sixth approximation (m = 6) for the first and second components:

$$\max_{t \in [0,1]} \left| x_1^*(t) - x_{61}(t) \right| \le 1 \cdot 10^{-9}, \ \max_{t \in [0,1]} \left| x_2^*(t) - x_{62}(t) \right| \le 5 \cdot 10^{-9}.$$

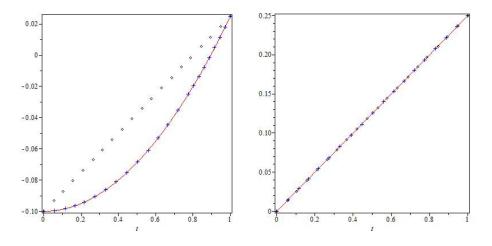


FIGURE 1.

REFERENCES

- A. Rontó and M. Rontó, "Successive approximation techniques in non-linear boundary value problems for ordinary differential equations," in *Handbook of differential equations: ordinary differential equations. Vol. IV*, ser. Handb. Differ. Equ. Elsevier/North-Holland, Amsterdam, 2008, pp. 441–592.
- [2] A. Rontó, M. Rontó, and J. Varha, "A new approach to non-local boundary value problems for ordinary differential systems," *Applied Mathematics and Computation*, vol. 250, pp. 689–700, 2015, doi: http://dx.doi.org/10.1016/j.amc.2014.11.021.
- [3] M. Rontó and Y. Varha, "Constructive existence analysis of solutions of non-linear integral boundary value problems," *Miskolc Math. Notes*, vol. 15, no. 2, pp. 725–742, 2014, doi: 10.18514/MMN.2014.1319.
- [4] M. Rontó and Y. Varha, "Successive approximations and interval halving for integral boundary value problems," *Miskolc Math. Notes*, vol. 16, no. 2, pp. 1129–1152, 2015, doi: 10.18514/MMN.2015.1708.
- [5] M. Rontó, Y. Varha, and K. Marynets, "Further results on the investigation of solutions of integral boundary value problems," *Tatra Mt. Math. Publ.*, vol. 63, pp. 247–267, 2015, doi: 10515/tmmp-2015-0035.

Author's address

I. Varga

Mathematical Faculty of Uzhhorod National University, 14 Universitetska St., 88000, Uzhhorod, Ukraine

E-mail address: iana.varga@uzhnu.edu.ua