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Abstract. We suggest a constructive approach for the solvability analysis and approximate solu-
tion of certain types of partially solved Lipschitzian differential systems with mixed two-point
and integral non-linear boundary conditions. The practical application of the suggested technique
is shown on a numerical example.
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1. PROBLEM SETTING

This article uses the approach proposed in [2], [5], [4] in the case of the following
non-linear boundary value problem with mixed two-point and integral restrictions

dx.t/

dt
D f

�
t;x.t/;

dx.t/

dt

�
; t 2 Œa;b� ; (1.1)

g

0@x.a/;x.b/; bZ
a

h.s;x.s//ds

1AD d: (1.2)

We suppose that f W Œa;b�� D �D1 ! Rn is a continuous function defined on a
bounded sets D � Rn , D1 � Rn (domain D WD D� will be concretized later, see
(1.8), D1 is given ) and d 2 Rn is a given vector. Moreover f; gW D �D �D2!
Rn and h W Œa;b��D! Rn are Lipschitzian in the following form

jf .t;u;v/�f .t;eu;ev/j �K1 ju�eujCK2 jv�evj ; (1.3)

jg.u;w;p/�g.eu;ew;ep/j �K3 ju�eujCK4 jw�ewjCK5 jp�epj (1.4)

jh.t;u/�h.t;eu/j �K6 ju�euj (1.5)
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for any t 2 Œa;b� fixed, all fu;eug�D; fv;evg�D1; fw;ewg�D; fp;epg�D2;where

D2 WD

8<:
bZ
a

h.t;x.t//dt W t 2 Œa;b� ; x 2D

9=;
and K1 �K5 are non-negative square matrices of dimension n: The inequalities
between vectors are understood componentwise. A similar convention is adopted
for the ”absolute value”, ”max”, ”min” operations. The symbol In stands for the unit
matrix of dimension n, r.K/ denotes a spectral radius of a square matrix K:

By the solution of the problem (1.1), (1.2) we understand a continuously differen-
tiable function with property (1.2) satisfying (1.1) on Œa;b�.

We fix certain bounded sets Da � Rn and Db � Rn and focus on the solutions x
of the given problem with property x.a/ 2 Da and x.b/ 2 Db: Instead of the non-
local boundary value problem (1.1), (1.2), we consider the parameterized family of
two-point ”model -type ” problems with simple separated conditions

dx.t/

dt
D f

�
t;x.t/;

dx.t/

dt

�
; t 2 Œa;b� ; (1.6)

x.a/D ´; x.b/D �; (1.7)
where ´D .´1;´2; :::;´n/; �D .�1;�2; :::;�n/ are considered as parameters.

If ´ 2 Rn and � is a vector with non-negative components,
O.´;�/ WD f� 2 Rn W j��´j � �g stands for the componentwise � -neighbourhood
of ´: For given two bounded connected sets Da � Rn and Db � Rn; introduce the
set

Da;b WD .1��/´C��; ´ 2Da; � 2Db; � 2 Œ0;1�

and its componentwise ��neighbourhood by putting

D DD� WDO.Da;b;�/D [
�2Da;b

O .�;�/ (1.8)

We suppose that
r.K2/ < 1; r.Q/ < 1; (1.9)

where

Q WD
3.b�a/

10
K; (1.10)

K DK1CK2 ŒIn�K2�
�1K1 D ŒIn�K2�

�1K1:

On the base of function f W Œa;b��D�D1! Rn we introduce the vector

ıŒa;b�;D;D1.f / WD
1

2

�
max

.t;x;y/2Œa;b��D�D1
f .t;x;y/� min

.t;x;y/2Œa;b��D�D1
f .t;x;y/

�
(1.11)
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and suppose that the ��neighbourhood in (1.8) is such that

� �
b�a

2
ıŒa;b�;D;D1.f /: (1.12)

2. MAIN STATEMENTS

The investigation of the solutions of parameterized problem (1.6) and (1.7) is con-
nected with the properties of the following special sequence of functions well posed
on the interval t 2 Œa;b�

x0 .t;´;�/D ´C
t �a

b�a
Œ��´�D

�
1�

t �a

b�a

�
´C

t �a

b�a
�; t 2 Œa;b� ; (2.1)

xmC1.t;´;�/D ´C

tZ
a

f

�
s;xm.s;´;�/;

dxm.s;´;�/

ds

�
ds�

�
t �a

b�a

bZ
a

f

�
s;xm.s;´;�/;

dxm.s;´;�/

ds

�
dsC

t �a

b�a
Œ��´� ; t 2 Œa;b� ; (2.2)

mD 0;1;2; :::;

Theorem 1. Let assumptions (1.3)-(1.5) and (1.9) hold. Then, for all fixed .´;�/2
Da�Db :

1. The functions of the sequence (2.2) are continuously differentiable functions on
the interval t 2 Œa;b� ; have values in the domain D DD� and satisfy the two-point
separated boundary conditions (1.7).

2. The sequence of functions (2.2) in t 2 Œa;b� converges uniformly as m!1 to
the limit function

x1 .t;´;�/D lim
m!1

xm.t;´;�/; (2.3)

satisfying the two-point separated boundary conditions (1.7).
3. The limit function x1 .t;´;�/ is the unique continuously differentiable solution

of the integral equation

x.t/D ´C

tZ
a

f

�
s;x.s/;

dx.s/

ds

�
ds�

t �a

b�a

bZ
a

f

�
s;x.s/;

dx.s/

ds

�
dsC

C
t �a

b�a
Œ��´� ; (2.4)

i.e. it is the solution of the Cauchy problem for the modified system of integro-
differential equations :

dx

dt
D f

�
t;x;

dx.t/

dt

�
C

1

b�a
�.´;�/; x .a/D ´ (2.5)
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where �.´;�/ WDa�Db! Rn is a mapping given by formula

�.´;�/ WD Œ��´��

bZ
a

f

�
s;x1 .s;´;�/ ;

dx1 .s;´;�/

ds

�
ds: (2.6)

4.The following error estimate holds:

jx1 .t;´;�/�xm .t;´;�/j6

6
10

9
˛1.t;a;b�a/Q

m .1n�Q/
�1 ıŒa;b�;D;D1.f /; (2.7)

for any t 2 Œa;b� and m� 0; where ıŒa;b�;D;D1.f / is given in (1.11) and

˛1.t;a;b�a/D 2.t �a/

�
1�

t �a

b�a

�
; ˛1.t;a;b�a/�

b�a

2
: (2.8)

Proof. The validity of this statement can be established similarly to Theorem 1 in
[4]. �

Theorem 2. Under the assumption of Theorem 1, the limit function x1 .t;´;�/ W
Œa;b��Da �Db ! Rn defined by (2.3) is a continuously differentiable solution of
the original BVP (1.1), (1.2) if and only if the pair of vectors (´;�) satisfies the
system of 2n determining algebraic equations8̂̂̂<̂

ˆ̂:
�.´;�/D ��´�

bR
a

f
�
s;x1 .s;´;�/ ;

dx1.s;´;�/
ds

�
ds D 0;

�.´;�/D g

 
x1 .a;´;�/ ;x1 .b;´;�/ ;

bR
a

h.s;x1 .s;´;�//ds

!
�d D 0:

(2.9)

Note, that similarly as in [3], the solvability of the determining system (2.9) on
the base of (1.3)-(1.5) and (1.9) can be established by studying itsm�th approximate
versions:

8̂̂̂<̂
ˆ̂:
�m.´;�/D ��´�

bR
a

f
�
s;xm .s;´;�/ ;

dxm.s;´;�/
ds

�
ds D 0;

�m .´;�/D g

 
xm .a;´;�/ ;xm .b;´;�/ ;

bR
a

h.s;xm .s;´;�//ds

!
�d D 0:

(2.10)
where m is fixed.

Lemma 1. Under the assumptions of Theorem 1; for the exact and approximate
determining functions defined by (2.9) and (2.10) for any .´;�/2Da�Db andm� 1
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hold the following estimates:

j�.´;�/��m .´;�/j �
10.b�a/2

27
KQm .1n�Q/

�1 ıŒa;b�;D;D1
.f /; (2.11)

j�.´;�/��m .´;�/j �
5.b�a/

9
ŒK3CK4C

C.b�a/K5K6� Q
m .1n�Q/

�1 ıŒa;b�;D;D1
.f /; (2.12)

where the matrix Q and the vector ıŒa;b�;D;D1
.f / are given respectively in (1.10)

and (1.11).

Proof. Let us fix an arbitrary .´;�/ 2Da�Db: Direct computation gives that
bZ
a

˛1.t;a;b�a/dt D
.b�a/2

3
:

On the base of (1.1) and (1.3), when u¤eu , we have

jf .t;u;v/�f .t;eu;ev/j �K ju�euj ;
where matrix K is given in (1.10). Taking into account (2.7) we obtain

j�.´;�/��m .´;�/j D

D

ˇ̌̌̌
ˇ̌
bZ
a

f

�
s;x1 .s;´;�/ ;

dx1 .s;´;�/

dt

�
ds�

bZ
a

f

�
s;xm .s;´;�/ ;

dxm .s;´;�/

dt

�
ds

ˇ̌̌̌
ˇ̌�

�K

bZ
a

10

9
˛1.s;a;b/Q

m .1n�Q/
�1 ıŒa;b�;D;D1

.f /ds D

D
10.b�a/2

27
KQm .1n�Q/

�1 ıŒa;b�;D;D1
.f /;

which proves (2.11).
From (2.9) and (2.10) using the Lipschitz conditions (1.4), (1.5) and estimates

(2.7), (2.8), we obtain

j�.´;�/��m .´;�/j D

ˇ̌̌̌
ˇ̌g
0@x1 .a;´;�/ ;x1 .b;´;�/ ; bZ

a

h.s;x1 .b;´;�//ds/

1A�
� g

0@xm .a;´;�/ ;xm .b;´;�/ ; bZ
a

h.s;xm .s;´;�//ds

1Aˇ̌̌̌ˇ̌�
�K3 jx1 .a;´;�/�xm .a;´;�/jCK4 jx1 .b;´;�/�xm .b;´;�/jC
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C.b�a/K5K6 jx1 .t;´;�/�xm .t;´;�/j �

�
5.b�a/

9
ŒK3CK4C .b�a/K5K6� Q

m .1n�Q/
�1 ıŒa;b�;D;D1

.f /;

i.e. (2.12) holds also. �

Based on both exact and approximate determining systems (2.9) and (2.10) let us
introduce the mappings H WDa�Db! R2n and Hm WDa�Db! R2n by setting

H .´;�/D

266664
Œ��´��

bR
a

f

 
s;x1 .a;´;�/ ;x1 .b;´;�/ ;

bR
a

h.s;x1 .s;´;�//

!
ds;

g

 
x1 .a;´;�/ ;x1 .b;´;�/ ;

bR
a

h.s;x1 .b;´;�//ds

!
�d;

377775
(2.13)

Hm .´;�/D

266664
Œ��´��

bR
a

f

 
s;xm .a;´;�/ ;xm .b;´;�/ ;

bR
a

h.s;xm .s;´;�//

!
ds;

g

 
xm .a;´;�/ ;xm .b;´;�/ ;

bR
a

h.s;xm .b;´;�//ds

!
�d;

377775
(2.14)

.´;�/ 2Da �Db: We see from Theorem 2 that the critical points of the vector field
H of the form (2.13) determine solutions of the non-linear boundary value problem
(1.1)-(1.2). The next statement establishes a similar result based upon properties of
vector field Hm explicity known from (2.14).

Theorem 3. Assume that the conditions of Lemma 1 hold. Moreover, one can
specify an m� 1 and a set

� WDD1�D2 � R2n;

whereD1 �Da;D2 �Db are certain bounded open sets such that the mappingHm
satisfies the relation

jHm .´;�/jB@�

"
10.b�a/2

27
KQm .1n�Q/

�1 ıŒa;b�;D;D1
.f /

5.b�a/
9

ŒK3CK4C .b�a/K5K6� Q
m .1n�Q/

�1 ıŒa;b�;D;D1
.f /

#
(2.15)

on the boundary @� of the set ˝. If, in addition

deg.Hm;˝;0/¤ 0; (2.16)

then there exists a pair .´�;��/ 2D1�D2 for which the function

x�.�/ WD x1
�
�;´�;��

�
is a solution of the non-linear boundary value problem (1.1)-(1.2).
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In (2.15) the binary relation B@� is defined in [1] as a kind of strict inequality
for vector functions and it means that at every point on the boundary @� at least
one of the components of the vector jHm .´;�/j is greater than the corresponding
component of the vector on the right-hand side . The degree in (2.16) is the Brouwer
degree because all the vectors fields are finite-dimensional. Likewise, all the terms on
the right-hand side of (2.15) are computed explicitly e.g. by using computer algebra
system.

Proof. The proof can be carried out similarly as in Theorem 4 from [3]. �

3. EXAMPLE

Let us apply the approach described above to the system of differential equations(
dx1.t/
dt
D
1
2
x22.t/� t

dx2.t/
dt

x1.t/C
1
32
t3� 1

32
t2C 9

40
t

dx2.t/
dt
D
1
2
dx1.t/
dt

x1.t/� t
2x2.t/C

15
64
t3C 1

80
tC 1

4

; t 2 Œ0;1� ;

considered with non-linear boundary conditions

x1.0/ x2.1/C

24 1Z
0

x1.s/ds

352 D� 311

14400
;

x1.1/x2.0/�

1Z
0

x2.s/ds D�
1

8
:

Introduce the vector of parameters ´D col.´1;´2/; �D col.�1;�2/: Let us consider
the following choice of the subsets Da, Db and D1 W

Da DDb D f.x1;x2/ W �0:1� x1 � 0:2; �0:2� x2 � 0:3g ;

D1 D

��
dx1

dt
;
dx2

dt

�
W �0:1�

dx1

dt
� 0:3; �0:1�

dx2

dt
� 0:3

�
:

In this case Da;b D Da D Db: For � D col.�1;�2/ involved in (1.12), we choose
the vector �D col.0:4I0:4/. Then, in view of (2.13) the sets (1.8) and D2 takes the
form:

D DD� D f.x1;x2/ W �0:5� x1 � 0:6; �0:6� x2 � 0:7g

and
D2 D f.x1;x2/ W 0:25� x1 � 0:36; �0:6� x2 � 0:7g :

A direct computation shows that the conditions (1.3)-(1.5) hold with

K1 D

�
0:3 0:7

0:15 1

�
;K2 D

�
0 0:6

0:3 0

�
; K3 D

�
0:3 0

0 0:2

�
;

K4 D

�
0 0:2

0:3 0

�
;K5 D

�
1:2 0

0 1

�
; K6 D

�
1 0

0 1

�
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TABLE 1.

m ´1 ´2 �1 �2
0 -0.089643967 -0.0002812586 0.03176891 0.25026338
1 -0.0994489263 0.00051937347 0.0255001973 0.2504687527
4 -0.0999998827 7.744981�10�8 0.02500007591 0.25000011
6 -0.1000000004 -2.263731�10�10 0.02499999973 0.2499999996

Exact -0.1 0 0.025 0.25

and therefore r.K2/D
p
0:18 < 1; and in (1.10) the matrix

K D

�
0:4756097561 1:585365854

0::2926829268 1:475609756

�
;

QD

�
0:07134146342 0:2378048781

0:04390243902 0:2213414634

�
; r.Q/D 0:273090089272152 < 1:

Furthermore, in view of (1.11)

ıŒa;b�;D;D1.f / WD
1

2

�
max

.t;x;y/2Œa;b��D�D1
f .t;x;y/� min

.t;x;y/2Œa;b��D�D1
f .t;x;y/

�
D

D

�
0:31

0:7325

�
;

�D

�
0:4

0:4

�
�
b�a

2
ıŒa;b�;D;D1.f /D

�
0:155

0:36625

�
:

We thus see that all conditions of Theorem 1 are fulfilled, and the sequence of
functions (2.2) for this example is uniformly convergent.

Applying Maple 14, we can carried out the calculations.
It is easy to check that

x�1 .t/D
t2

8
�
1

10
; x�2 .t/D

t

4

is an exact continuously differentiable solution of the problem (1.1), (1.2). For a
different number of approximationsmwe obtain from (2.10) the following numerical
values for the introduced parameters, which are presented in Table 3.

On the Figure 1 one can see the graphs of the exact solution (solid line) and its
zero (Þ) and sixth approximation (�) for the first and second coordinates.

The error of the sixth approximation (mD 6) for the first and second components:

max
t2Œ0;1�

ˇ̌
x�1 .t/�x61.t/

ˇ̌
� 1 �10�9; max

t2Œ0;1�

ˇ̌
x�2 .t/�x62.t/

ˇ̌
� 5 �10�9:
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FIGURE 1.
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