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Abstract. In the first part of this work we present some basics about the connection of exponen-
tial dichotomy and Floquet-theory. Then we study some stability notions of linear differential
equations based on the concept of the exponential and ordinary dichotomy. More precisely we
shall show that the definition of the asymptotical (Lyapunov-) stability can be formulated by us-
ing the exponential dichotomy. In the main part of the paper we consider parameter dependent
non-autonomous linear and autonomous nonlinear systems which have at a certain value of the
parameter an asymptotically stable solution. Then we examine the question how much the para-
meter can be changed such that the solution remains asymptotically stable. Finally, we study the
orbital stability of periodic solutions of autonomous systems applying the previous results.
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1. INTRODUCTION

In many fields of the applied mathematics it may often happen that when we would
like to study a phenomenon when we don’t know the exact mathematical model or
the system of the differential equations which describe the given phenomenon. For
example it may happen that there are some parameters in the mathematical model,
which depend on the variables of the system or on environmental factors etc. In many
cases the exact values of these parameters are not known because we can just meas-
ure or estimate them, or even although if we can calculate somehow the exact values
of the parameters but we can not give their exact value numerically. In these cases
we can study the qualitative behaviour of the model with the estimated values of the
parameters. Therefore, it is a legitimate expectation that the qualitative behaviour of
the model with the estimated parameters must be the same as the behaviour of the ex-
act model. However, often we couldn’t verify the correspondence of the qualitative
properties of these two models. But we can get bounds and intervals for the para-
meters such that we can prove theoretically that if the parameters are within these
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bounds or intervals, then the behaviour of the unknown functions in the models do
not change, which means that the estimated model reflects faithfully the exact model,
and consequently, the studied phenomenon, too.

The objective of this paper is to study the Lyapunov stability of the solutions of
system of differential equations in the form

Px D f .id;x;�/; (1.1)

where � is a parameter. More precisely, we would like to know that if with a certain
value of the parameter �0 a solution of system (1.1) is asymptotically stable, then
under what conditions we can prove that the solution remains asymptotically stable,
if the parameter changes are sufficiently small.

In this paper we are going to use the notion of the exponential dichotomy and
two results of the theory of the exponential dichotomy: the relation between the
exponential dichotomy and the stability of linear systems, and a theorem about the
roughness of the exponential dichotomy.

It is well known that the qualitative properties of the solutions of systems of or-
dinary differential equations depend continuously on the parameters of the right hand
side. In this paper we use the robustness of the exponential dichotomy in order to
show that the stability properties of the system change continuously.

The paper is organized as follows: in Section 2 we present the basic notions and
theorems with respect to the exponential dichotomy and the Floquet theory, which
we will use in the next section, then in Section 3 we are going to study the stabil-
ity of different types of solutions of system (1.1): firstly the stability of (the trivial
solution) of linear systems, then the stability of the equilibrium point of autonomous
(but not necessarily linear) systems, and finally the stability of periodic solutions of
autonomous systems.

2. MATHEMATICAL BACKGROUND: THE USED FRAMEWORK AND TOOLS

2.1. Exponential dichotomy

In the theory of the exponential dichotomy we study systems of linear differential
equations. There are a lot of papers where the authors study linear systems in general
cases, for example with arbitrary finite dimensional phase space or infinite phase
space (cf. [5]). In this paper we use simply the usual phase space .Rn;k � k/, where
k � k denotes an arbitrary vector norm. Let us consider the linear system

Px D Ax; (2.1)

where A 2 C.J;Rn�n/ with a fixed dimension n 2 N and interval J WD Œ�;C1/,
where � 2 R. Let us denote the fundamental matrix of system (2.1) by ˚ , i.e. let ˚
be a regular matrix solution of (2.1). Thus, the entire solution ' of system (2.1) with
an initial condition x.�/D � has the form

'.t/D�.t;�/� WD ˚.t/˚�1.�/� .t 2 J /
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where �.�; �/ denotes the Cauchy matrix of (2.1).
In this paper we will use the definition of the exponential dichotomy in the sense

discussed in the book of Coppel (cf. [1]).

Definition 1 (cf. [1]). The equation (2.1) is said to possess an exponential di-
chotomy if there exist a projection P and positive constants K1, K2, ˛1, ˛2 such
that

k˚.t/P˚�1.s/k �K1e
�˛1.t�s/ .t � s/;

k˚.t/.I �P /˚�1.s/k �K2e
�˛2.s�t/ .s � t /:

(2.2)

It is said to possess an ordinary dichotomy if the inequalities (2.2) hold with ˛1 D
˛2 D 0.

In the autonomous case, i. e. when A is a constant matrix, we can easily determine
the existence of the exponential dichotomy by looking for the eigenvalues of the
coefficient matrix.

Proposition 1 (cf. [1], [6]). Let A 2 Rn�n be a matrix and let us consider the
autonomous system

Px D Ax: (2.3)
It has an exponential dichotomy on J WD Œ0;C1/ if and only if no eigenvalue of
the constant matrix A has zero real part. It has an ordinary dichotomy, if and only
if all eigenvalues of A with zero real part are semisimple (which means that these
eigenvalues are simple roots of the minimal polynomial of A). In each case we can
take the projection P as the spectral projection defined by

P WD
1

2�{

Z



.´I �A/d´: (2.4)

To prove the main results of this paper we are going to use the following theor-
ems: the first states the roughness of the exponential dichotomy, the second gives
the relation between the exponential dichotomy and the Lyapunov-stability of linear
systems.

Theorem 1 (cf. [4]). Let us assume that the linear system with continuous coeffi-
cients

Px D Ax (2.5)
possesses an exponential dichotomy on J WD Œ0;C1/ with some constants K1, K2,
˛1, ˛2 > 0 and projection P . Let B a matrix valued function with continuous coeffi-
cients defined on the interval J . If for the function B the inequality

limsup
s!C1

kB.s/k<

�
K1

˛1
C
K2

˛2

��1
(2.6)
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holds, then system
Px D .ACB/x: (2.7)

possesses an exponential dichotomy on the interval J with projection Q, where Q is
similar to P .

In Definition 1 we can assume that K1 D K2 DW K and ˛1 D ˛2 DW ˛, and if we
use these constants, the upper bound at condition (2.6) is the following:

limsup
s!C1

kB.s/k<
˛

2K
: (2.8)

In Section 3 the other key theorem will be the following result, which connects the
notion of the exponential dichotomy and the stability of linear systems.

Theorem 2 (cf. [2]). The linear system (2.1) is
(1) asymptotically stable if and only if it admits an exponential dichotomy with

projection P D I , furthermore
(2) stable if and only if it admits an ordinary dichotomy with projection P D I .

2.2. Some basics from the Floquet-theory

In the last part of Section 2 we are going to study the stability of periodic orbits (of
parameter dependent systems) using some tools from the Floquet theory, therefore
in this subsection we summarize the necessary results about the stability of periodic
orbits and some relevant fields.

Let A 2 C.R;Rn�n/ be a matrix-valued function, for which A.t CT / D A.t/ is
fulfilled for each t 2 R with some period T > 0. Let us consider the linear system
with periodic coefficient matrix

Px D Ax: (2.9)
Let us denote by C the principal or monodromy matrix of (2.9):

C WD�.T;0/:

Following from the well-known Floquet Theorem, we can write the Cauchy matrix
of system (2.9) in a special form.

Theorem 3 (Floquet). The fundamental matrix of (2.9) can be written in the form

�.t;0/D P.t/eBt .t � 0/;

where P 2 C1.Œ0;C1/;Rn�n/ is a regular T -periodic matrix, P.0/ D I and B 2
Rn�n is a constant matrix.

The eigenvalues of these two matrices C and B play an important role at the
investigation of the stability of system (2.9). The eigenvalues of the matrix C are the
characteristic multipliers of the system (2.9), and the eigenvalues of the matrix B are
the characteristic exponents of the system (2.9). Following from the identity

eBT D I � eBT D P.T / � eBT D�.T;0/D C;
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if � is a characteristic exponent, then �D e�T is a characteristic multiplier and vice
versa. Hence, by T > 0

j�j< 1 ” <.�/ < 0: (2.10)

Let us assume that 1 is a simple characteristic multiplier of system (2.9) and there
is no other characteristic multiplier on the unit circle. Then, the fundamental matrix
of the system has the following form

˚.t/D P.t/

�
1 0

0 exp.B1t /

�
.t 2 R/;

where P is regular, continuously differentiable, periodic matrix valued function with
period T , and B1 2 R.n�1/�.n�1/ is a hyperbolic matrix.

Let ˝ � Rn be an open, connected set, f 2 C1.˝/ and let us consider the system

Px D f .x/: (2.11)

Let us assume that ' W R! Rn is a nontrivial, T -periodic solution of the system. We
know that the variational system

Px D .@f ı'/x (2.12)

has a T -periodic solution if and only if 1 is a characteristic multiplier of the system.
The theorem of Andronov and Witt gives a sufficient condition for the asymptotical
stability of the periodic solution '.

Theorem 4 (Andronov-Witt, see [3]). If 1 is a simple characteristic multiplier of
the system (2.12) and the remaining n� 1 characteristic multipliers are in modulus
less then 1, then the periodic solution ' is orbitally asymptotically stable.

The Andronov-Witt Theorem has a version which states the instability of the peri-
odic solutions.

Theorem 5 (cf. [3]). If at least one of the characteristic multipliers of the vari-
ational system is in modulus greater than 1, then the periodic solution ' is orbitally
unstable.

Let us assume that ' is orbitally asymptotically stable, 1 is a simple characteristic
multiplier and there is no other characteristic multiplier on the complex unit circle,
i.e. if M �C denotes the set of the characteristic multipliers, then

M D f1g[f� 2C W � is a characteristic multiplier, j�j ¤ 1g:

If there would be a characteristic multiplier � 2M such that j�j> 1, by Theorem 4 it
would contradict the fact that ' is asymptotically stable. Hence, because we assumed
that there are no characteristic multiplier on the unit circle except 1, we proved that
the remaining n�1 characteristic multipliers are in modulus less than 1. This means
that in this case the conversion of the Andronov-Witt Theorem 4 is also true.
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Let us see how the variational system looks like, in the case when the periodic
solution ' is orbitally asymptotically stable, and hence 1 is a characteristic multiplier,
and there are no other characteristic multipliers on the complex unit circle. Then, by
Floquet Theorem 3, with a suitable invertible matrix S 2 Rn�n we have

S�1CS D

�
1 0

0 C1

�
;

where C1 2 R.n�1/�.n�1/ is such that exp.B1T /D C1 is fulfilled with some matrix
B1. Let us introduce one more notation, namely

B WD

�
0 0

0 B1

�
: (2.13)

With the above matrix B the equality

exp.Bt/D

�
1 0

0 exp.B1t /

�
is satisfied, and hence

S�1CS D eBT

is also true.
Let us study a little bit more the second assumption of the Andronov-Witt Theorem

(the remaining characteristic multipliers are in modulus less then 1). By (2.10) this
assumption means that the eigenvalues of the matrix B1 have negative real part, or in
other words, the n�1 dimensional autonomous linear system

Py D B1y (2.14)

is asymptotically stable, i.e. this system possesses an exponential dichotomy with
projection P D I 2 R.n�1/�.n�1/.

In conclusion, if ' is a periodic solution of system (2.11), 1 is a simple character-
istic multiplier and the other characteristic multipliers are in modulus less or greater
than 1, then ' is asymptotically stable if and only if system (2.14) possesses an ex-
ponential dichotomy with projection P D I .

3. MAIN RESULTS

3.1. Nonautonomous linear systems

In the first application we are going to consider the stability of the system

Px D A.�I�/x; (3.1)

where A 2 C1.R�Rp;Rn�n/, � 2 Rp represents the parameter of the system, p 2
N. We are going to investigate the following problem: if for a certain value of the
parameter �0 system (3.1) is asymptotically stable, then how much we can change
the value of the parameter such that the stability of the system does not change. For
this we are going to use Theorem 1 on exponential dichotomy.
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Theorem 6. Let us assume that the coefficient matrix A of (3.1) is Lipschitz con-
tinuous w.r.t. the second variable on the positive half line, i.e. there exists a constant
L> 0 such that for each �1 and �2

kA.t;�1/�A.t;�2/k � Lk�1��2k

is satisfied with arbitrary t � 0. We assume that for �0 2 Rp system (3.1) is asymp-
totically stable or equivalently, it has an exponential dichotomy on J D Œ0;C1/ with
constantsK;˛ > 0 and projectionP D I . Then for every parameter �2Rp for which

k�0��k �
1

L
�
˛

2K
(3.2)

holds, system (3.1) is asymptotically stable with �.

Proof. Let us assume that with the parameter value �0 the system

Px D A0x

is asymptotically stable, where A0 WD A.�;�0/. Then we know from Theorem 2 that
this system possesses an exponential dichotomy with projection P D I and with
constants K, ˛ > 0. Let � be a parameter value such that the condition (3.2) of
Theorem 6 is fulfilled, i. e.

k�0��k �
1

L
�
˛

2K
holds. Then let us write the matrix A.t;�/ in the following form:

A.t;�/D A.t;�0/C .A.t;�/�A.t;�0// ;

and define the function B as

B.t/ WD A.t;�/�A.t;�0/ .t � 0/:

Hence, by using the perturbation Theorem 1, the system

Px.t/D .A.t;�0/CB.t//x.t/ .t � 0/

has an exponential dichotomy, too, with projection Q, because for each t � 0 we
know from the assumptions that

kB.t/k D kA.t;�/�A.t;�0/k � Lk���0k �
˛

2K
:

So we proved that the system

Px.t/D .A.t;�0/CA.t;�/�A.t;�0//x.t/D A.t;�/x.t/ .t � 0/ (3.3)

admits an exponential dichotomy with projection Q. By the perturbation Theorem
1 we know that the two projections P D I and Q are similar, which means that
QD c �I , where c 2 R is a constant. Then we get that the perturbed system (3.3) has
an exponential dichotomy, too, with projection QQD I , and as a consequence we get
that system (3.3) is asymptotically stable. �
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Assume now that system (3.1) is autonomous, i.e. for the coefficient function
A2C1.Rp;Rn�n/ holds and with a certain value�0 of the parameter the autonomous
system

Px D A.�0/x

is asymptotically stable. Then we know that all eigenvalues of the coefficient matrix
A.�0/ 2 Rn�n have negative real part or equivalently (cf. Proposition 1 or Theorem
2) the system possesses an exponential dichotomy with projection P D I (and with
constants K, ˛ > 0). Applying Theorem 6, we obtain that system

Px D A.�/x

is asymptotically stable, too, if condition (3.2) is fulfilled for �. It follows that with
these � values of the parameters all eigenvalues of matrix A.�/ have negative real
parts. It means that this way we get a condition under which the eigenvalues of
a matrix (which depends on a parameter) remain in the left half plane. (It is easy to
show that the real part of the eigenvalues of A.�/ remain negative with small changes
of the parameter �).

3.2. The stability of an equilibrium point of a system of nonlinear autonomous
equations

Let us consider the autonomous system

Px D f .xI�/ (3.4)

where f 2 C1.Rn�Rp;Rn/ and � 2 Rp is a parameter. Let us denote by x0.�/ the
equilibrium point of the system. Similarly to the previous subsection, we are going
to study the following problem: if the equilibrium point is asymptotically stable then
how much we can change the value of the parameter such that the equilibrium point
remains asymptotically stable.

Theorem 7. Let us assume that x0.�/ is an equilibrium of system (3.4) for each
� 2 Rp, and there exists a �0 2 Rp such that x0.�0/ is an asymptotically stable
equilibrium point. If the function F

F.�/ WD @1f .x0.�/I�/ .� 2 Rp/

is Lipschitz continuous, i.e. there exists a constant L> 0 such that for all parameters
�1, �2 2 Rp

kF.�1/�F.�2/k � Lk�1��2k

is satisfied, then there is a constant R > 0 such that for every

� 2 BR.�0/ WD f� 2 Rp W k���0k<Rg;

x0.�/ 2 Rn is an asymptotically stable equilibrium point of (3.4).



PARAMETER DEPENDENT SYSTEMS 361

Proof. Let us assume that with the parameter value�0 the equilibrium point x0.�0/
is asymptotically stable. This is equivalent to the fact that the linear autonomous sys-
tem

Py D @1f .x0.�0/I�0/y

is asymptotically stable, where @1f .�;�/ denotes the Jacobian matrix of the function
f w.r.t. the first variable. By Theorem 2 this is equivalent to the fact that the linear
system possesses an exponential dichotomy with projection P D I . Hence we can
apply the previous theorem, which says that there exists a constant R 2 R such that if
k���0k<R, then the system

Py D @1f .x0.�/I�/y

is asymptotically stable, which means that the equilibrium point x0.�/ is also asymp-
totically stable. �

Now we show an example: how the previous theorem works at a concrete system
of differential equations.

Example 1. Let us consider the following system of differential equations of Lotka-
Volterra type: �

Px D x.a�x�y/;

Py D y.b�2x�y/;
(3.5)

where .a;b/ 2 R2 is a parameter. (Assume that we have two populations, x.t/ and
y.t/ denote the number of the individuals of the populations, further a and b are un-
known rates, which depend on a lot of things, for example on environmental factors.)
Let us study the stability of the positive equilibrium point

.x0;y0/ WD .b�a;2a�b/:

Let us denote by f the function of the right hand side of the system:

f .x;y/ WD

�
x.a�x�y/

y.b�2x�y/

�
.x;y 2 R/: (3.6)

The Jacobian of f at .x0;y0/ is

@f .x0;y0/D

�
a�b a�b

2b�4a b�2a

�
;

hence the function F in Theorem 7 has the following form:

F.a;b/ WD

�
a�b a�b

2b�4a b�2a

�
.a;b 2 R/:

We can easily prove that this function is Lipschitz continuous: for each
.a;b/; .a1;b1/ 2 R2 we have

kF.a;b/�F.a1;b1/k1 D





� a�a1� .b�b1/ a�a1� .b�b1/

2.b�b1/�4.a�a1/ b�b1�2.a�a1/

�




1
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D 2jb�b1�2.a�a1/jC jb�b1� .a�a1/j

� 2.jb�b1jC2ja�a1j/ jC jb�b1jC ja�a1j

D 3jb�b1jC5ja�a1j

� 5k.a;b/� .a1;b1/k1:

Let us assume that a D 1=2 and b D 1=3 (for example let us imagine that we have
two concrete populations and we get these estimations for the parameters from an
experiment.) In this case

@f .x0;y0/D

�
1
6

1
6

�
4
3
�
2
3

�
;

and the eigenvalues are

�1;2 D�
1

4
˙

p
7

12
{;

which means that the equilibrium point is asymptotically stable. By Theorem 2 the
linear system

Py D @f .x0;y0/y

possesses an exponential dichotomy with P D I . It is easy to calculate that the
constants of the definition of the exponential dichotomy are K D 2 and ˛ D 1=4
at this system. Hence the previous Theorem 7 says that the equilibrium point is
asymptotically stable with some other parameters . Qa; Qb/ 2 R2, if for the parameters
. Qa; Qb/

k.1=2;1=3/� . Qa; Qb/k1 �
1

L
�

�
K1

˛1
C
K2

˛2

��1
D 0:0125:

3.3. The stability of periodic solutions

In the last part of this section let us consider the system (3.4) again:

Px D f .x;�/ (3.7)

where � 2 Rp and assume that '� is a periodic solution of (3.7). Then we know
that 1 is a characteristic multiplier of the variational system (2.12), furthermore we
assume that there are no other characteristic multipliers on the unit circle. We have
seen in Section 2.2 that in this case '� is asymptotically stable if and only if the linear
system

Py D B1�y

possesses an exponential dichotomy with projection P D I , where the matrix B1� 2
R.n�1/�.n�1/ comes from (2.13) and is related to the monodromy matrix of the vari-
ational system of '�. With this observation we can apply the perturbation Theorem
1 referring to the stability of the exponential dichotomy, to study the stability of peri-
odic orbits, similarly to the previous two subsections.
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Theorem 8. Let us denote by '� a periodic solution of system (3.4) (with para-
meter value � in a neighbourhood of some �0). Let us assume that with a certain
value of the parameter �0, '�0 is orbitally asymptotically stable, and � D 1 is a
simple characteristic multiplier, and except for this, there is no other characteristic
multiplier on the unit circle, consequently, the system

Py D B1�0y

possesses an exponential dichotomy with some constantsK1, K2, ˛1, ˛2 and projec-
tion P D I . Then, for each parameter value � 2 Rp, for which

kB1�0 �B1�k<

�
K1

˛1
C
K2

˛2

��1
(3.8)

holds, the periodic solution '� is orbitally asymptotically stable.

Proof. Since '� is a periodic solution (if � is in a neighbourhood of �0), we
know that 1 is a characteristic multiplier, furthermore we assumed that the other
characteristic multipliers are in modulus strictly less or greater than 1. Hence, if
condition (3.8) holds, then the following system

Py D B1�y

has an exponential dichotomy with projection P D I , which means that the matrix
B1� has eigenvalues with negative real parts. Thus we know that with the parameter
value � the other characteristic multipliers are in modulus less then 1. Hence, by
Theorem 4 the periodic solution '� is orbitally asymptotically stable. �
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