
Miskolc Mathematical Notes HU e-ISSN 1787-2413
Vol. 19 (2018), No. 2, pp. 1047–1061 DOI: 10.18514/MMN.2018.2735

ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF SECOND ORDER
DIFFERENCE EQUATIONS WITH DEVIATING ARGUMENT

JANUSZ MIGDA AND MAGDALENA NOCKOWSKA-ROSIAK

Received 04 November, 2018

Abstract. We consider nonlinear second order difference equations with deviating argument of
the form

�.rn�xn/D anf .xnC��1;xnC��2; : : : ;xnC��m/Cbn:

We present sufficient conditions for the existence of solutions with prescribed asymptotic be-
havior. Moreover, we study the asymptotic behavior of solutions. We use o.ns/, for a given
nonpositive real s, as a measure of approximation.
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1. INTRODUCTION

In this paper we consider the nonlinear second order difference equation with de-
viating argument of the form

�.rn�xn/D anf .xnC��1;xnC��2; : : : ;xnC��m/Cbn (E)

rn;an;bn 2 R; rn > 0; � 2Z; m 2N; f W Rm! R:

Here N, Z, R denote the set of positive integers, the set of all integers, and the set
of real numbers, respectively. By a solution of (E) we mean a sequence x WN! R
satisfying (E) for large n.

An important issue in the asymptotic theory of ordinary and delay differential
equations is constructing sufficient conditions which ensure the existence of solutions
with prescribed asymptotic behavior. From this point of view many authors studied
second order differential equations with deviating argument of the form�

rx0
�0
.t/D a.t/f .x.�0.t/// (1.1)

or
x00.t/D f .t;x.�1.t//; : : : ;x.�m.t/// (1.2)

c 2018 Miskolc University Press
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where r W R! .0;C1/, �i .t/!1 as t !1 for i D 0; : : : ;m, see e.g. [1], [2], [3],
[11], and the references therein. Since difference equations can be treated as discret-
ization of differential equations, the existence of solutions with prescribed asymptotic
behavior of difference equations was studied in literature too, see for example, in [4],
[12], [13] and the references therein.

In papers [4–9], the first author presented a new theory of the study of asymptotic
properties of solutions of difference equations of the form

�2xn D anf .x�.n//Cbn

in which o.ns/, for s � 0, is used a measure of approximation. In the paper [10], we
extend some of results on difference equations of Sturm-Liouville type of the form

�.rn�xn/D anf .x�.n//Cbn:

This paper is a continuation of these investigations. Our main goal is to present
sufficient conditions for the existence of a solution x of equation (E) such that

xn D c.r
�1
1 C�� �C r

�1
n�1/Cd Co.ns/; (1.3)

where c;d 2 R and s 2 .�1;0�. We give also sufficient conditions for a given solu-
tion x of equation (E) to have an asymptotic property (1.3).

The paper is organized as follows. In Section 2, we introduce notation and present
some preliminary lemmas. Next, Section 3 is devoted to our first main result Theorem
1, some consequences of it and the example which proves that one of assumptions in
main theorem is essential. In Section 4 we prove our second main result and some
corollaries from it. Moreover, this section includes the example which proves that
one of assumptions of main theorem is not “too” strong.

2. PRELIMINARIES

The space of all sequences x WN! R we denote by RN. If x;y in RN, then xy
and jxj denotes the sequences defined by .xy/nD xnyn and jxjnD jxnj, respectively.
Moreover,

kxk D supfjxnj W n 2Ng:

For any sequence x 2 RN we define a sequence x� WN! Rm by

x�n D

(
.0;0; : : : ;0/ for n < m��C1
.xnC��1;xnC��2; : : : ;xnC��m/ for n�m��C1:

We use the symbol dm to denote the max-metric on Rm defined by

dm.u;v/Dmaxfju1�v1j; : : : ; jum�vmjg:

Moreover, B.u;˛/ denotes the closed ball of radius ˛ centered at a point u 2 Rm. We
say that a function g W Rm! R is bounded at infinity if there exists a real number �
such that g is bounded on the set

Œ�;1/� � � �� Œ�;1/D Œ�;1/m:
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In the same way, the boundedness at minus infinity can be defined.

Lemma 1. If y 2 RN and�.rn�yn/D 0, then there exist real constants c;d such
that

yn D c

n�1X
jD1

1

rj
Cd (2.1)

for any n. If c;d 2 R and y 2 RN is defined by (2.1), then �.rn�yn/D 0.

Proof. We leave an easy proof of this lemma to the reader. �

Lemma 2 ([10, Lemma 3]). Assume s 2 .�1;0�, t 2 Œs;1/, r�1n D O.nt /, a 2
RN, and

1X
nD1

n1Ct�sjanj<1; then
1X
nD1

1

nsrn

1X
jDn

jaj j<1:

Lemma 3. Assume s 2 .�1;0�, t 2 Œs;1/, r�1n D O.nt /, a 2 RN, and at least
one of the following conditions is satisfied

.a/ liminf
n!1

n

�
janj

janC1j
�1

�
> 2C t � s; .b/ liminf

n!1
n log

janj

janC1j
> 2C t � s:

Then
1X
nD1

1

nsrn

1X
jDn

jaj j<1:

Proof. Using [7, Lemma 6.3] in case (a), or [7, Lemma 6.4] in case (b) we obtain
1X
nD1

n1Ct�sjanj<1:

By Lemma 2 we get the result. �

Lemma 4. Assume � 2R, r�1n DO.n�/, a 2RN, and at least one of the following
conditions is satisfied

.a/ limsup
n!1

janC1j

janj
< 1; .b/ limsup

n!1

n
p
janj< 1:

Then
1X
nD1

1

nsrn

1X
jDn

jaj j<1

for any s 2 .�1;0�.
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Proof. Let s 2 .�1;0�. Choose a real number t such that t > max.s;�/. Then
r�1n D O.nt / and, using the ratio test in case (a), or the root test in case (b) we get

1X
nD1

n1Ct�sjanj<1:

Hence the assertion is a consequence of Lemma 2. �

Lemma 5 ([10, Lemma 5]). If
1X
kD1

1

rk

1X
iDk

jui j<1;

then
1X
kD1

jukj

kX
iD1

1

ri
<1 and

1X
kDn

1

rk

1X
iDk

jui j �

1X
kDn

jukj

kX
iD1

1

ri

for any n 2N.

Lemma 6 ([4, Lemma 4.7]). Assume y;� WN! R, and lim
n!1

�n D 0. In the set

X D fx 2 RN W jx�yj � j�jg we define a metric by the formula

d.x;´/D kx�´k: (2.2)

Then any continuous map H WX !X has a fixed point.

3. SOLUTIONS WITH PRESCRIBED ASYMPTOTIC BEHAVIOR

In this section we establish various conditions under which for a given solution y
of the equation �.rn�yn/D 0 and a given nonpositive real s there exists a solution
x of (E) such that xn D ynCo.ns/.

Theorem 1. Assume s 2 .�1;0�, y is a solution of the equation �.rn�yn/D 0,
1X
kD1

1

ksrk

1X
jDk

.jaj jC jbj j/ <1; q 2N; ˛ 2 .0;1/; U D

1[
nDq

B.y�n ;˛/;

and f is continuous and bounded on U . Then there exists a solution x of (E) such
that xn D ynCo.ns/.

Proof. For n 2N and x 2 RN let

F.x/.n/D anf .x
�
n/Cbn: (3.1)

There exists L> 0, such that
jf .u/j � L (3.2)
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for any u 2 U . Since s � 0 we have
1X
kD1

1

rk

1X
jDk

.Ljaj jC jbj j/ <1:

Let

Y D fx 2 RN
W jx�yj � ˛g; � 2 RN; �n D

1X
kDn

1

rk

1X
jDk

.Ljaj jC jbj j/:

If x 2 Y , then x�n 2 U for large n. Hence the sequence .f .x�n// is bounded for any
x 2 Y . Define sequences w;g by

wj D Ljaj jC jbj j; gn D

1X
kDn

1

ksrk

1X
jDk

wj :

Then

n�s�n D n
�s
1X
kDn

1

rk

1X
jDk

wj D

1X
kDn

1

nsrk

1X
jDk

wj �

1X
kDn

1

ksrk

1X
jDk

wj D gn: (3.3)

Using the assumption
1X
kD1

1

ksrk

1X
jDk

.jaj jC jbj j/ <1

we get gn D o.1/. Hence, by (3.3),

�n D n
sgn D n

so.1/D o.ns/:

Therefore there exists an index p such that

�n � ˛ and nC� �m� q for n� p:

Let
X D fx 2 RN

W jx�yj � � and xn D yn for n < pg;

H W Y ! RN; H.x/.n/D

(
yn for n < p
ynC

P1
kDn

1
rk

P1
jDkF.x/.j / for n� p:

Note that X � Y . If x 2X , then for n� p we have

jH.x/.n/�ynj D

ˇ̌̌̌
ˇ̌ 1X
kDn

1

rk

1X
jDk

F.x/.j /

ˇ̌̌̌
ˇ̌� 1X

kDn

1

rk

1X
jDk

jF.x/.j /j � �n:

Therefore HX �X . Let x 2X , and " > 0. By Lemma 5, we have
1X
kD1

jakj

kX
iD1

1

ri
<1:
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Choose an index q � p and a positive constant  such that

L

1X
kDq

jakj

kX
iD1

1

ri
< " and 

qX
kDp

jakj

kX
iD1

1

ri
< ":

Let

C D

q[
nD1

B.y�n ;˛/:

Since C is a compact subset of Rm, f is uniformly continuous on C . Choose a
positive ı such that if u1;u2 2 C and dm.u1;u2/ < ı, then

jf .u1/�f .u2/j< :

Choose ´ 2X such that kx�´k< ı. Then

kHx�H´k D sup
n�p

ˇ̌̌̌
ˇ̌ 1X
kDn

1

rk

1X
jDk

.F.x/.j /�F.´/.j //

ˇ̌̌̌
ˇ̌

�

1X
kDp

1

rk

1X
jDk

jF.x/.j /�F.´/.j /j �

1X
kDp

1

rk

1X
jDk

jaj jjf .x
�
j /�f .´

�
j /j:

By Lemma 5

1X
kDp

1

rk

1X
jDk

jaj jjf .x
�
j /�f .´

�
j /j �

1X
kDp

jakjjf .x
�
k /�f .´

�
k/j

kX
iD1

1

ri
:

Hence

kHx�H´k � 

qX
kDp

jakj

kX
iD1

1

ri
C2L

1X
kDq

jakj

kX
iD1

1

ri
< 3":

Therefore the map H W X ! X is continuous with respect to the metric defined by
(2.2). By Lemma 6 there exists a point x 2X such that x DHx. Then for n� p we
have

xn D ynC

1X
kDn

1

rk

1X
jDk

F.x/.j /:

Hence

�.rn�xn/D�.rn�yn/C�

0@rn�
0@ 1X
kDn

1

rk

1X
jDk

F.x/.j /

1A1A
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for n� p. Define a sequence G by

Gn D

1X
kDn

1

rk

1X
jDk

F.x/.j /:

Then

rn�Gn D rn

0@� 1
rn

1X
jDn

F.x/.j /

1A ;
�.rn�Gn/DF.x/.n/D anf .x

�
n/CbnD anf .xnC��1;xnC��2; : : : ;xnC��m/Cbn

for large n. Therefore x is a solution of (E). Since x 2 X and �n D o.ns/, we have
xn D ynCo.ns/. �

Corollary 1. Assume f is continuous, s 2 .�1;0�, and
1X
kD1

1

ksrk

1X
jDk

.jaj jC jbj j/ <1:

Then for any bounded solution y of the equation�.rn�yn/D 0 there exists a solution
x of (E) such that xn D ynCo.ns/.

Proof. Assume y is a bounded solution of the equation �.rn�yn/D 0. Then the
set

U D

1[
nD1

B.y�n ;1/

is bounded. Hence f is continuous and bounded on U . By Theorem 1 there exists a
solution x of (E) such that xn D ynCo.ns/. �

Corollary 2. Assume f is continuous, s 2 .�1;0�, and
1X
kD1

1

ksrk

1X
jDk

.jaj jC jbj j/ <1:

Then for any real constant d there exists a solution x of (E) such that xnD dCo.ns/.

Proof. Any constant sequence is a bounded solution of the equation �.rn�yn/D
0. Hence the assertion is a consequence of Corollary 1. �

Corollary 3. Assume f is continuous, s 2 .�1;0�,
1X
kD1

1

rk
<1; and

1X
kD1

1

ksrk

1X
jDk

.jaj jC jbj j/ <1:
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Then for any c;d 2 R there exists a solution x of (E) such that

xn D c

n�1X
jD1

1

rj
Cd Co.ns/:

Proof. Define a sequence y by

yn D c

n�1X
jD1

1

rj
Cd:

By Lemma 1, y is a solution of the equation �.rn�yn/ D 0. By assumption, the
sequence y is bounded. Using Corollary 1 we get the result. �

Corollary 4. Assume f is continuous and bounded, s 2 .�1;0�, and
1X
kD1

1

ksrk

1X
jDk

.jaj jC jbj j/ <1:

Then for any solution y of the equation �.rn�yn/ D 0 there exists a solution x of
(E) such that xn D ynCo.ns/.

Proof. This corollary is an immediate consequence of Theorem 1. �

Corollary 5. Assume f is continuous, s 2 .�1;0�, t 2 Œs;1/, r�1n D O.nt /, and
1X
nD1

n1Ct�s.janjC jbnj/ <1:

Then for any bounded solution y of the equation�.rn�yn/D 0 there exists a solution
x of (E) such that xn D ynCo.ns/.

Proof. This corollary is a consequence of Lemma 2 and Corollary 1. �

Corollary 6. Assume f is continuous, s 2 .�1;0�, t 2 Œs;1/, r�1n D O.nt /, and

liminf
n!1

n

�
janjC jbnj

janC1jC jbnC1j
�1

�
> 2C t � s:

Then for any bounded solution y of the equation�.rn�yn/D 0 there exists a solution
x of (E) such that xn D ynCo.ns/.

Proof. This corollary is a consequence of Lemma 3 and Corollary 5. �

Corollary 7. Assume f is continuous and bounded at infinity, � 2 R,

1

rn
D O.n�/ and limsup

n!1

janC1jC jbnC1j

janjC jbnj
< 1:



ASYMPTOTIC BEHAVIOR OF SOLUTIONS . . . 1055

Then for any positive c, any real d and any s 2 .�1;0� there exists a solution x of
(E) such that

xn D c

n�1X
jD1

1

rj
Cd Co.ns/:

Proof. Let c 2 .0;1/, d 2 R, s 2 .�1;0�. Define a sequence y by

yn D c

n�1X
jD1

1

rj
Cd:

By Lemma 1, y is a solution of the equation �.rn�yn/D 0. By Lemma 4,
1X
kD1

1

ksrk

1X
jDk

.jaj jC jbj j/ <1:

If the series
1X
nD1

1

rn
(3.4)

is convergent then the sequence y is bounded and, using Corollary 1 we get the result.
Assume the series (3.4) is divergent. Since c > 0, we have yn!1. There exists a
real number ˛ such that f is bounded on Œ˛;1/m. There exists an index q such that
ynC��m > ˛C1 for any n� q. Let

U D

1[
nDq

B.y�n ;1/:

Then U � Œ˛;1/m. Hence f is continuous and bounded on U . Now, using Theorem
1 we obtain the result. �

Now we present an example that proves the assumption that the function f is
bounded on some “neighborhood” of .y�n/ such that .yn/ solves �.rn�yn/ =0 in
Theorem 1, is essential.

Example 1. Assume mD 2,

rn D n
�1; an D 2

�n; bn D 0; � D 0; s D 0; f .x;y/D x3C exp.2y/:

Then equation (E) takes the form

�.n�1�xn/D 2
�n
�
x3n�1C exp.2xn�2/

�
: (3.5)

Let

yn D

n�1X
kD1

1

rk
D

n�1X
kD1

k D
n.n�1/

2
:
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Then f is continuous and not bounded on
1S
nDq

B.y�n ;˛/ for any q 2 N and ˛ > 0.

Moreover,

1X
kD1

1

ksrk

1X
jDk

.jaj jC jbj j/D

1X
kD1

k

1X
jDk

1

2j
D 2

1X
kD1

k

2k
<1:

Assume x is a solution of (3.5) such that

xn D ynC´n;

for large n and ´n D o.ns/D o.1/. Since �.1
n
�yn/D 0 for large n, we have

�.1
n
�´n/D�.

1
n
�xn/D 2

�n
�
x3n�1C exp.2xn�2/

�
> 0

for large n. Therefore, the sequence 1
n
�´n is eventually increasing, and there exists

the limit

�D lim
n!1

1
n
�´n > �1:

If � <1, then the sequence 1
n
�´n is convergent in R. Hence the series

1X
nD1

�.1
n
�xn/D

1X
nD1

�.1
n
�´n/

is convergent. On the other hand for large n

�.1
n
�xn/D 2

�n
�
x3n�1C exp.2xn�2/

�
� 2�n exp.2xn�2/:

Since

xn �
yn

2

for large n, we get that

�.1
n
�´n/ > 2

�n exp..n�2/.n�3//:

Hence �D1. Therefore 1
n
�´n > 1 for large n and we get

1X
nD1

�´n �

1X
nD1

nD1:

On the other hand, since ´n! 0, the series
P1
nD1�´n is convergent. �
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4. ASYMPTOTIC BEHAVIOR OF SOLUTIONS

In this section we present sufficient conditions for a given solution x of equation
(E) to have an asymptotic property xn D ynC o.ns/, where y is a solution of the
equation �.rn�yn/D 0 and s 2 .�1;0�.

Theorem 2. Assume x is a solution of (E) such that the sequence .f .x�n// is
bounded,

s 2 .�1;0�; and
1X
kD1

1

ksrk

1X
jDk

.jaj jC jbj j/ <1:

Then there exists a solution y of the equation �.rn�yn/D 0 such that

xn D ynCo.ns/:

Proof. Define a sequence u by

un D�.rn�xn/D anf .x
�
n/Cbn:

Since the sequence .f .x�n// is bounded, we have
1X
kD1

1

ksrk

1X
jDk

juj j<1:

Define sequences w;y;´ by

wn D

1X
kDn

1

rk

1X
jDk

uj ; yn D xn�wn; ´n D

1X
kDn

1

ksrk

1X
jDk

uj :

Then

n�sjwnj � n
�s
1X
kDn

1

rk

1X
jDk

juj j D

1X
kDn

1

nsrk

1X
jDk

juj j �

1X
kDn

1

ksrk

1X
jDk

juj j D o.1/:

Hence wn D o.ns/. Moreover

�.rn�wn/D�

0@rn�
0@ 1X
kDn

1

rk

1X
jDk

uj

1A1AD��
0@rn

0@ 1

rn

1X
jDn

uj

1A1AD un
and we obtain

�.rn�yn/D�.rn�xn/��.rn�wn/Dun�unD 0; xnD ynCwnD ynCo.ns/:

�

Corollary 8. Assume f is locally bounded, s 2 .�1;0�, and
1X
kD1

1

ksrk

1X
jDk

.jaj jC jbj j/ <1:



1058 JANUSZ MIGDA AND MAGDALENA NOCKOWSKA-ROSIAK

Then for any bounded solution x of (E) there exists a solution y of the equation

�.rn�yn/D 0

such that xn D ynCo.ns/.

Proof. Assume x is a bounded solution of (E). Then the sequence x� is also
bounded. Since f is locally bounded, the sequence .f .x�n// is bounded. Hence the
result follows from Theorem 2. �

Corollary 9. Assume f is bounded, s 2 .�1;0�, and
1X
kD1

1

ksrk

1X
jDk

.jaj jC jbj j/ <1:

Then for any solution x of (E) there exists a solution y of the equation

�.rn�yn/D 0

such that xn D ynCo.ns/.

Proof. The assertion is an immediate consequence of Theorem 2. �

Corollary 10. Assume f is bounded and
1X
kD1

�
1

rk
CjakjC jbkj

�
<1:

Then any solution x of (E) is convergent.

Proof. Let sD 0 and let x be a solution of (E). By assumption the series
P1
kD1 1=rk

is convergent and the sequence u defined by uk D
P1
jDk.jaj jC jbj j/ is convergent

to zero. Hence
1X
kD1

1

rk

1X
jDk

.jaj jC jbj j/ <1: (4.1)

Therefore, by Corollary 9 and Lemma 1, there exist real constants c;d such that

xn D c

n�1X
jD1

1

rj
Cd Co.ns/:

Since s D 0 and
P1
kD1 1=rk <1, we get limn!1xn D c

P1
kD1 1=rkCd . �

Corollary 11. Assume f is locally bounded and
1X
kD1

�
1

rk
CjakjC jbkj

�
<1:

Then any bounded solution x of (E) is convergent.
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Proof. Let s D 0 and let x be a bounded solution of (E). As in the proof of Corol-
lary 10 we obtain (4.1). Using Corollary 8 and Lemma 1 we get the result. �

Corollary 12. Assume f is locally bounded, s 2 .�1;0�, t 2 Œs;1/, r�1n DO.nt /,
and

1X
nD1

n1Ct�s.janjC jbnj/ <1:

Then for any bounded solution x of (E) there exists a solution y of the equation
�.rn�yn/D 0 such that xn D ynCo.ns/.

Proof. The assertion is a consequence of Lemma 2 and Corollary 8. �

Corollary 13. Assume f is locally bounded, s 2 .�1;0�, t 2 Œs;1/, r�1n DO.nt /,
1X
nD1

1

rn
D1; and

1X
nD1

n1Ct�s.janjC jbnj/ <1:

Then for any bounded solution x of (E) there exists a real constant d such that

xn D d Co.ns/:

Proof. Assume x be a bounded solution of (E). By Lemma 2 and Corollary 8,
there exist c;d 2 R such that

xn D c

n�1X
jD1

1

rj
Cd Co.ns/:

Since x is bounded and
P1
nD1 1=rn D1, we have c D 0. �

Corollary 14. Assume f is locally bounded,

1

rn
D O.1/; and

1X
nD1

n.janjC jbnj/ <1:

Then any bounded solution of (E) is convergent.

Proof. Let t D s D 0 and let x be a bounded solution of (E). By Corollary 12
there exists a solution y of the equation �.rn�yn/ D 0 such that xn D ynC o.1/.
Then y is a bounded sequence. By Lemma 1 any bounded solution y of the equation
�.rn�yn/D 0 is convergent. Hence x is convergent. �

Corollary 15. Assume f is bounded at infinity, s 2 .�1;0�, t 2 Œs;1/, r�1n D
O.nt /,

liminf
n!1

n log
janjC jbnj

janC1jC jbnC1j
> 2C t � s;

and x is a solution of (E) such that limn!1xn D1. Then there exists a solution y
of the equation �.rn�yn/D 0 such that xn D ynCo.ns/.
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Proof. Since f is bounded at infinity and limn!1xnD1, the sequence .f .x�n//
is bounded. Using Lemma 3 and Theorem 2 we get the result. �

Corollary 16. Assume f is locally bounded, � 2 R, r�1n D O.n�/,

limsup
n!1

janC1jC jbnC1j

janjC jbnj
< 1;

and x is a bounded solution of (E). Then for any s 2 .�1;0� there exists a solution
y of the equation �.rn�yn/D 0 such that xn D ynCo.ns/.

Proof. This assertion is a consequence of Lemma 4 and Corollary 8. �

Now we present an example that proves the assumption

1X
kD1

1

ksrk

1X
jDk

jaj j<1:

is not enough in Theorem 2.

Example 2. Assume mD 2, s D 0, � D 0,

rn D n
2; an D

1

n2
; bn D 2nC1�

2

n2
; f .x;y/D

x

jxjC1
C
yC3

jyjC2
:

Then equation (E) takes the form

�.n2�xn/D
1

n2

�
xn�1

jxn�1jC1
C
xn�2C3

jxn�2jC2

�
C2nC1�

2

n2
: (4.2)

Notice that f is bounded and

1X
kD1

1

ksrk

1X
jDk

jaj j D

1X
kD1

1

k2

1X
jDk

1

j 2
<1:

Moreover, the sequence xnD n, is a solution of (4.2). On the other hand, any solution
of the equation �.n2�yn/D 0 is of the form

yn D c

n�1X
kD1

1

rk
Cd D c

n�1X
kD1

1

k2
Cd

for some c;d 2 R. Hence any solution of�.n2�yn/D 0 is convergent, which means
that x cannot be approximated by any solution of the equation �.n2�yn/D 0.
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