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LOGARITHMIC MEANS OF WALSH-FOURIER SERIES
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Abstract. In this paper we discuss some convergence and divergence properties of subsequences
of logarithmic means of Walsh-Fourier series. We give necessary and sufficient conditions for
the convergence regarding logarithmic variation of numbers.
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1. WALSH FUNCTIONS

We shall denote the set of all non-negative integers by N, the set of all integers
by Z and the set of dyadic rational numbers in the unit interval I := [0,1) by Q. In
particular, each element of Q has the form 2% for some p,n € N, 0 < p <2",

Denote the dyadic expension of # € N and x € I by

[o.¢]
n= Zej (n)27,¢; (n) =0,1
J=0
and

oo X
— J R
*= sz-l—l X =0.1.
Jj=0
In the case of x € Q chose the expension which terminates in zeros. Define the dyadic
addition + as

o0
x+y=Y |xe—ye|27® D,
k=0
The sets I, (x) :={y €L:y9=x0,.... ¥n—1 = xXn—1} for x € I, I, := I, (0) for
0 <n e N and Ip(x) :=1I are the dyadic intervals of I. For 0 <n € N denote by
n] ;= max {j € N:n; # 0}, that s, 21"l <n <2/nl+1,

The author supported by Shota Rustaveli National Science Foundation grant 217282 (Operators of
Fourier analysis in some classical and new function spaces ).

© 2019 Miskolc University Press



256 USHANGI GOGINAVA
The Rademacher system is defined by
on(x):=(=D* (xel,neN).

The Walsh-Paley system is defined as the sequence of the Walsh-Paley functions:

In|

ad 2 MiXk
wn (0) 1= [ (o )™ = (== " (x eLn e N).
k=0

The Walsh-Dirichlet kernel is defined by

n—1
Dy (x) =Y wi(x)(n€N),Dg=0.
k=0
Recall that (see [20])
| 2mifx e 1, (0)
Dan (x) _{ 0, if x e I\I, (0) a.h

As usual, denote by L (I) the set of measurable functions defined on I, for which

/1 :=/|f(t)|dt <o
I

Let f € Ly (I). The partial sums of the Walsh-Fourier series are defined as follows:

M—IA
Sm(x, f)i= Y f)wi(x),

i=0

where the number

?(i>=/f<z>w,- () di
I

is said to be the ith Walsh-Fourier coefficient of the function f. Set E, (x, f) =
Son (x, f) . The maximal function is defined by

E*(x, f) = sup En (x| f]).

nelN

The notiation a < b in the proofs stands for a < ¢ - b, where ¢ is an absolute
constant.
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2. LOGARITHMIC MEANS

In the literature, there is the notion of Riesz’s logarithmic means of a Fourier series.
The n-th Riesz’s logarithmic means of the Fourier series of an integrable function f
is defined by

Sk (x. f)

Rn(x’f)::llz k

k=1

where I, ;==Y }_, (1/k).

Riesz’s logarithmic means with respect to the trigonometric system was studied
by a lot of authors. This means with respect to the Walsh and Vilenkin systems was
discussed by Simon [21], Blahota, Gat [1], Gat [4], G4t, Goginava [8].

Let {g% : kK > 0} be a sequence of nonnegative numbers. The n-th Norlund means
for the Fourier series of f is defined by

n—1

1
— > gnicSe(f).
" k=0

where
n
On:= Z qk -
k=1

If g; = k, then we get the Norlund logarithmic means

n—1

e f)= 3 R ET)

In this paper we call it logarithmic mean altough, it is a kind of “reverse” Reisz’s
logarithmic mean.
It is easy to see that

b (x,f)=/f(r)Fn (x+1)dt,
I

where by Fj, () we denote nth logarithmic kernel, i. e.

n—1

1 D
Fy(t) := EZ k(1)

n—k
k=0

and Fejér kernel is defined by

Kn (1) := % > D).
k=1
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3. L1- ESTIMATION FOR LOGARITHMIC KERNEL

w .
Forn = ) ¢j(n)2/,e;(n) =0,1 we define
j=0

k
n(k):=Y g (n2’.

Jj=0

It is easy to see that n (|n|) = n. In this paper for L-norm of logarithmic means we
prove the following two sides estimation.

Theorem 1. Letn € N. Then

1 7]

D .
|~ Z|ek<n)—sk+1<n)|ln<k 1)
n
1

j=1 7

Proof. We can write

Xn: Dn—j (t)

=1 7
n(ln|—1) n
D _'(l) D —'(t)
ot J j=n(n-n+1 7
"B Dy, a1 () S D@
S : DD
j=1 j=n(nl=1)+1

Since

Dy, my2inn(ni—1)—j &) = &ln) (1) Dopur () + (W (l))a'”'(n) Dy(n—1)—; (£),
from (3.1) we have
Xn: Dn—j (t)
=1 7

= 8|n| (n) Dz\n| ([) ln(|n|—1)

n(|n|—1)
Dy(in|-1)—j (t
(g ()Y P

j=1 /

2ln—1
Dz\n\ J([)
Hem ) 2 -1y

Jj=1
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Iterating this equality we obtain

i Dy—; (1)

j=1 7

|n| |n|
—(Zgj(n)Dz,- (z)ln(,-l)) [T Gox@)™™

ji=2 k=j+1

|n| 27 —1 D, k(t) |n|
Ze, (n) Z k;ﬂ e [T (os@)=®™

s=j+1

n(1) D, |n|
+ (Z (1)] J (t)) 1_[ (p (t))sk(n)

j=1
Since

J
&j (m) Dy () [ | (ke )™ =e; () Dy (1) pj (1)

k=0

we have

|n| |n]
(Zs,- (1) Dy (1) I jl)) [T (o)

J=2 k=j+1

n|
= wy (1) (Ze, (1) Dy (1) (- 1>) [T ox @)™

j=2 k=0

7]
= wp (1) (Zej (n) Dy (t) pj (f)ln(j—l)) :

j=2

259

(3.2)

(3.3)
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Combining (3.2) and (3.3) we conclude that

iDn—j (t)

j=1 7

|
= wp (1) (Z &j (n) Dy (t) pj (f)ln(jl))

J=2

|n| 2/ —1 |n|
D, 34)
(zsj W ¥l ) [T (e

s=j+1

n()~1 _ |n|
+ ( Z %J(t)) 1_[ (ox (t))Ek(n)

j=1 k=2
= HM )+ HP )+ HP ().
Since (see [9])
Dyj_i () =Dy (t) —wyi_y (t) Dy (1) k= 1,2,...,27 —1
for H,?) (t) we can write

H® (1)

|n| 2/ -1 |n|
(Zs, (n) Dy, (r)Z K ) [T (ps @)™

+1
=/ (3.5)

|n| 27 —1 Dk (l) |n|
Ze, (m)wyr_y (1) Z P slj_lﬂ(ps(f))“‘”)
=: H,§21> )+ HP? (1).
Since
|n|
HEY (1) = (Zsj (1) D (1) (In(j)-1 zn(,-l)))
j=2
|n|

< JT (os@p®™
s=j+1
from (1.1) we get

)
[HED| =38 00 (tgyy —ln-n) = clnl. (3.6)
j=2
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Usin Abel’s transformation we obtain
2/ -1
Z Dy (1)
k+n(j—1) G-1
2/ 2
1 1
= — kK (¢
z; (k—l—n(j—l) k+1—|—n(j—1)) e )
2/ —1
- K,i_1(t).
+2J_1+n(J_1) 2/—1()
Since (see [20]) sup || Ky |} < oo for H,S”’ (1) we can write
n
|7,
|n| 27 —1 1 1
<
]ZZSJ (n) Z (k+n(] -1 k+1+n(] —1))
|n| i
2/ —1
+ gi(n
Z i ( ) —1+n( -1
Inl 2/ -1 (3.7
<) gin)
Z / Z (k+n(J —1))
In| |n| ;
n(j 2/ —1
+ gi(n) ——I— (n)
Z’ Z(k+n(j Z’ —1+n(j—1)
Inl
<Y e () () = Ini—vy) + Il < |nl.
j=2
Combining (3.5)-(3.7) we conclude that
HH,?) “1 <clnl. (3.8)
It is easy to see that
<c. (3.9

First, we find upper estimation for ” H,Sl) H . We can write

|n]

HV (1) = wa (1) | Y& () In(j—1) (Daj+1 (1) = Dy; (1))

j=2
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In|—1

=w ()| D (& )iy —&j+1 (1) In(jy) Dot (1)
j=2

+wy (7) Zn(|n|—1)D2\11I+l —wp (1) &2 (n) ln(l)D22 (1).
Hence, from (1.1) we obtain

ln]—1

HH,EI)Hl < > e M la—1y —gj41 M ln(y| + ¢
j=2

|n]—1
< Z &7 (n) —&j 41 ()| Ln(j—1)
j=2
|n|—1

+ 3 &1 (1) (In(jy = In(j—1) + ¢ In]
j=2
|n|

<Y lej () —gjs1 ()| Ingj—1y +nl.
j=2

Now, we find lower estimation for H H,gl) “1 Let a; and b;,i = 1,...,s be strictly
increasing sequences, i. e.

0<a;<by<ar<by<---<ay; <by <dsgy+1 =00

for which
oy Lai<j<b
& (m) = { 0,b; < j <ai+1 (3-10)
Then it is evident that
bi+1<ajy1. 3.11)

Set

PP (RN B S (L,
k= \Qart1pax ) Pk T\ obp42 g1 )N T S

Let x € Aj. Then we can write

|n|

D 0] = D) ) (Dars1 (1) = Doy () sy
j=2

k—1 b;

=Y (Dyis1 (1) =Dy (D)) In(i-1)

i=1j=a;




LOGARITHMIC MEANS 263

by
+ D (Dajs1 (1) = Dy (1)) In(j—1)
J=ay
k—1 b; .
=22 2 2 lnGi-0 = 2% lna, ) -
i=1j=a;
From (3.11) we can write
k—1 b; k—1
> 2 Yl S -1 ) (2b"+1 —2"">
i=1j=a; i=1
k—1
= ln(bk—l—l) Z (2bi+1 _2bi_1+1)
i=1
= 2bk71+lln(bk_1—l)
=< 2bk71+lln(ak—l)'
Consequently,

)H,El) (l)‘ > 2akln(dk—1) _2bk71+1ln(ak—1) = 2ak_lln(ak—l)'

Integrating on Ay we get

Ln(an—
/‘H}gl) (z)‘d[ > /2ak_lln(ak—l)dt = %' (3.12)
Ak Ag

On the interval By we have

k b
‘ngl) (t)| — Z Z (D2j+1 (l‘)—Dzj (t))ln(j—l)
i=1j=a;
k b; .
= Y > 2V lyiony = -2
i=1j=a;

Hence,

Luh, —
/’H}gl) ([)‘dl > /l(bk—l)zbkdt = % (3.13)
By By
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Since A;, B;,i = 1,...,s are pairwise disjoint from (3.12) and (3.13) we have

) o\ (1) )
Hf‘H,, (t)‘dt_kX::l [‘Hn (z))dz+B[)H,, (t)‘dt

(3.14)
l N
=z 3 2 (@1 + b —1) -
k=1
Since (see (3.10))
n(ap—1)=n(ay—2)
and
1,j=ar—lorby,k=1.2,..s
{gj () =&j+1 (n)! - { 0 otherwise
we conclude that
1 |n
[ D Ofae= 3 Y lex 0= exss 1oy
T k=1
Combining (3.4)-(3.10) and (3.14) we complete the proof of Theorem 1. O

4. ALMOST EVERYWHERE CONVERGENCE OF LOGARITHMIC MEANS

For a non-negative integer n let us denote
oo
Vs (n):= ) lei () = i1 (n)| + 0 (n)
i=0

and
|n|

1
VL= > ek (1) = exg1 ()] Lnge—1)-
k=1

Itis known thatif n; <njyq,

sup Vs (nj) < 00, 4.1)
J
then a. e. Sy, (f) — f. On the other hand, Konyagin [14] proved that the condition
(4.1) is not necessary for a. e. convergence of subsequence of partial sums. Moreover,
he gave negative answer to the question of Balashov and proved the validity of the
following theorem.

Theorem K (Konyagin). Suppose {n4} is an increasing sequence of natural num-
bers, k4 :=[logyng)+ 1, and 254 is a divider of nq 11 for all A. Then Sy, () — f
a. e. for any function [ € L (I).
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A
For instance, a sequence {nq},nq := 24 > 4" such that sup V (n4) = oo, satis-
i=0 na
fies the hypotheses of the theorem.
Almost ewerywhere convergence of {#,4 (f) : A > 1} with respect to Walsh-Paley

system was studied by author [ 1 1]. In particular, the following is proved
Theorem G. Let f € L1 (I). Then tya (x, f) — f(x)as A —>ooa. e x € L.

Nagy in [18] established a similar result for the Walsh-Kaczmarz system. How-
ever, a divergence on the set with positive measure for the whole sequence
{tw (f):n > 1} was proved by Gat and Goginava [7]. Memié [16] improved The-
orem G and proved that the following is true.

Theorem M. Let f € Ly (1) and

lm 4l
sup e (M) Ly s (k—1) < 00. 4.2)
A ImAI,; male=)

Then tpy, (x, f) — f(x)as A—oofora. e x el

In this paper we are going to replace condition (4.2) with more weaker condition

|mal
sup lex (ma) — ex4+1 (M) Ly, (—1) < 00. (4.3)
A |mA|k2::1 * matk=1)

It is easy to see that condition (4.2) imply condition (4.3), on other hand, for the
sequence {2A —1:4¢€ [N} condition (4.2) does not holds and condition (4.3) holds.
So, we prove that the following is valid.

Theorem 2. Let f € L (I) and condition (4.3) is holds. Then ty, , (x, f) — f (x)
as A — oo fora. e. x €ll.

Proof. From (3.4) we have
F# Uy Fg) (0) = £ HD () + £+ HP (x0)+ £+ HS (x). (4.4)

It is easy to see that

sup‘f*H,Sj
A

Sy 4.5)
1

From (3.5) we can write
fHHS )= f+HID )+ f+HID )+ fxHTD (x).  (4.6)
Using (1.1) we have

[mal—1

fHRHZD @] = D (f 1% Dy (¥)) < |mal E* (x. f).
j=1
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Hence
|/ HZY ()
sup————— < E*(x, f). 4.7)
A Ima|
We can write
|m4|—1
fxHZD (x)\ < Y & ma) (lnay — Imaj—1) (L 1% Dy (x))
j=1

SImal E* (x, f),

|/ 12D ()|
sup———— S E* (x, f). (4.3)
A Ima|
It is proved in [7]
‘f * H,Sf”‘
A
supA |qsup————>A | <[ fly- 4.9)
A A Imal

Since supA {E* (f) > A} S || f |l from (4.7)- (4.9) we get
A

i
supA|qsup——— > A | S| fll;- (4.10)
) A |mal
Now, we estimate ‘ f* H,%lj (x) ‘ We have
lmal—1
S HD O S Y0 (6 ma) a1y = 541 M) () (f 1% Doy ()
j=1

Jj=1

lmal—1
SE*(x.f) (l(mA1)+ Z (8j(mA)lmA(j1)8j+1(MA)lmA(j)))

lmal—1

SE*(x.f) (l(mA1)+ Z |ej (ma) —&j11(ma)| L,y (j-1)
j=1

j=1

|mal—1
+ Y 41 0ma) (lna(j) = bmaG—1))
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lmal—1

SE* ) | lgma-n+ D Jej ma) =41 (ma)| by (-1
Jj=1

From the condition of the Theorem we can write

|/ 5 B ()|
sup—————— S E*(x, f) VL (ma)
A lmA
and
)f * H,Sz)
sup A |4 sup >A 1SSy (4.11)
A 4 |mal
Combining (3.5), (4.5), (4.10) and (4.11) we conclude that
F,
sup|{sup L=l [,
A A |mal
By the well-known density argument we complete the proof of Theorem 2. g

5. UNIFORM AND L-CONVERGENCE OF LOGARITHMIC MEANS

Denote by Cy, (I) the space of uniformly continuous functions on I, with the su-
premum norm

1fle, = Suglf(X)l (f € Cy (D).

Let X = X (I) be either the space L (I), or the space of uniformly continuous func-
tions, that is, Cy, (I). The corresponding norm is denoted by ||| -

For Walsh-Fourier series Fine [2] has obtained a sufficient condition for the uni-
form convergence which is in a complete analogy with the Dini-Lipshitz condition
(see also [20]). Similar results are true for the space of integrable functions L (I)
[19]. Gulicev [13] has estimated the rate of uniform convergence of a Walsh-Fourier
series using Lebesgue constant and modulus of continuity. Uniform convergence of
Walsh-Fourier series of the functions of classes of generalized bounded variation was
investigated by author [10]. This problem has been considered for Vilenkin group by
Fridli [3] and Gat [5]. Lukomskii [15] considered uniform and L{-convergence of
subsequence of partial sums of Walsh-Fourier series. In particular, he proved that
the condition sup Vg (my4) < oo is necessary and sufficient condition for uniform and

A

L1-convergence of subsequence of partial sums S, , (f) of Walsh-Fourier series.
In Méricz and Siddiqi [17] investigated approximation properties of Norlund means

n—1
QL > qn—i Sk f. The case when we have g := 1/k differs from the types dis-
" k=0

cussed by Méricz and Siddiqi in [17]. His method is not applicable for logarithmic
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means. In [6] it is proved that Theorem of Méricz does not hold for L, Cy and

dk ‘= 1 / k.
In [12] itis investigated X -norm convergence of subsequence of logarithmic means
of Walsh-Fourier series. In particular, the following are proved.

Theorem GT. a) Let f € X (I) and

10g(mA_2|mA|+1> 1 ma—2lmal—1 D
§ : n—j
sup - < Q. (51)
A logmy4 Ly —almal = J .

Then subsequence of Norlund logarithmic means ty, , (f) converges in the norm of
space X (I).

b) If the condition (5.1) does not holds then we can find a function from the space

X (I) for which the convergence of logarithmic means Ly, , () in the norm of space
X (I) does not holds.

Since
log (mA _2|mA| + 1) 1 mA—2|ZW’A|_1 Dn_l-
sup -
A logmy lmA_2|mA| = j 1
log (mA—ZlmA| + 1) 1 ‘mA—2|mA|’
i g n)—¢ n)| by (k-
sjp logm [mq —2lmal| ; ek (1) — k41 (W) Ink—1)
4l
~ sup | | Z |8k (I’l) —Ek+1 (n)|ln(k_1),
k=1

from Theorem GT and Theorem 1 we can prove necessary and sufficint condition for
norm convergence of subsequence of Norlund logarithmic means

Theorem 3. Let f € X (I). Then the condition sup Vy, (m4) < 00 is neccessary
A

and sufficient for convergence subsequence of Norlund logarithmic means of Walsh-
Fourier series in norm of space X (I).
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