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Abstract. We construct nonconstant lower and upper functions for the periodic boundary
value problem u′′ = f(t, u), u(0) = u(2π), u′(0) = u′(2π) and find their estimates. By
means of these results we prove existence criteria for the problems u′′ ± g(u) = e(t), u(0) =
u(2π), u′(0) = u′(2π), where lim supx→0+ g(x) = ∞ is allowed and e ∈ L[0, 2π] need not be
essentially bounded.
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1. Introduction

In this paper we construct lower and upper functions to the periodic boundary value
problem

u′′ = f(t, u), u(0) = u(2π), u′(0) = u′(2π). (1.1)

By means of these results, we prove existence criteria for the problems

u′′ ± g(u) = e(t), u(0) = u(2π), u′(0) = u′(2π),

where lim supx→0+ g(x) = ∞ is allowed and e ∈ L[0, 2π] need not be essentially
bounded. We assume that f : [0, 2π]×R 7→ R fulfills the Carathéodory conditions on
[0, 2π]×R, i.e. f has the following properties: (i) for each x ∈ R the function f(., x) is
measurable on [0, 2π]; (ii) for almost every t ∈ [0, 2π] the function f(t, .) is continuous
on R; (iii) for each compact set K⊂ R the function mK(t) = sup x∈K |f(t, x)| is
Lebesgue integrable on [0, 2π].
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For a given subinterval J of R (possibly unbounded), C(J) denotes the set of func-
tions continuous on J. Furthermore, L[0, 2π] stands for the set of functions Lebesgue
integrable on [0, 2π], L2[0, 2π] is the set of functions square Lebesgue integrable on
[0, 2π] and AC [0, 2π] denotes the set of functions absolutely continuous on [0, 2π]. For
x bounded on [0, 2π], y ∈ L[0, 2π] and z ∈ L2[0, 2π] we denote

‖x‖C = sup
t∈[0,2π]

|x(t)|, y =
1
2π

∫ 2π

0

y(s)ds,

‖y‖1 =
∫ 2π

0

|y(t)|dt and ‖z‖2 =
( ∫ 2π

0

z2(t)dt
) 1

2
.

By a solution of (1.1) we mean a function u : [0, 2π] 7→ R such that u′ ∈ AC[0, 2π],
u(0) = u(2π), u′(0) = u′(2π) and

u′′(t) = f(t, u(t)) for a.e. t ∈ [0, 2π].

Definition 1. A function σ1 is said to be a lower function of the problem (1.1) if
σ′1 ∈ AC [0, 2π],

σ′′1 (t) ≥ f(t, σ1(t)) for a.e. t ∈ [0, 2π],
σ1(0) = σ1(2π), σ′1(0) ≥ σ′1(2π).

Similarly, a function σ2 is said to be an upper function of the problem (1.1) if
σ′2 ∈ AC [0, 2π],

σ′′2 (t) ≤ f(t, σ2(t)) for a.e. t ∈ [0, 2π],
σ2(0) = σ2(2π), σ′2(0) ≤ σ′2(2π).

The lower and upper functions approach we will use here is based on the following
theorem which is contained in [8, Theorems 4.1 and 4.2].

Theorem 2. Let σ1 and σ2 be a lower and an upper function of the problem (1.1),
respectively.

(I) Suppose σ1(t) ≤ σ2(t) on [0, 2π]. Then there is a solution u of the problem (1.1)
such that σ1(t) ≤ u(t) ≤ σ2(t) on [0, 2π].

(II) Suppose σ1(t) ≥ σ2(t) on [0, 2π] and there is m ∈ L[0, 2π] such that

f(t, x) ≥ m(t) for a.e. t ∈ [0, 2π] and all x ∈ R
(or f(t, x) ≤ m(t) for a.e. t ∈ [0, 2π] and all x ∈ R.)

Then there is a solution u of the problem (1.1) such that ‖u′‖C ≤ ‖m‖1 and

σ2(tu) ≤ u(tu) ≤ σ1(tu) for some tu ∈ [0, 2π].
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2. Construction of lower and upper functions

Proposition 1. Assume that there are A ∈ R and b ∈ L[0, 2π] such that

b = 0, (2.1)
f(t, x) ≤ b(t) for a.e. t ∈ [0, 2π] and all x ∈ [A,B], (2.2)

where
B = A +

π

3
‖b‖1. (2.3)

Then there exists a lower function σ of the problem (1.1) such that

A ≤ σ(t) ≤ B on [0, 2π]. (2.4)

Proof. Define

σ0(t) = c0 +
∫ 2π

0

g(t, s)b(s)ds for t ∈ [0, 2π],

where

g(t, s) =





t(s− 2π)
2π

if 0 ≤ t ≤ s ≤ 2π,

(t− 2π)s
2π

if 0 ≤ s < t ≤ 2π

is the Green function of the problem v′′ = 0, v(0) = v(2π) = 0 and

c0 = − 1
2π

∫ 2π

0

( ∫ 2π

0

g(t, s)b(s)ds
)
dt.

Then

σ′′0 (t) = b(t) a.e. on [0, 2π] (2.5)

and
σ0(0) = σ0(2π). (2.6)

Furthermore, by virtue of (2.1) we have also

σ′0(0) = σ′0(2π). (2.7)

Multiplying the relation (2.5) by σ0, integrating it over [0, 2π] and using the Hölder
inequality we get

‖σ′0‖22 ≤ ‖b‖1‖σ0‖C .

Further, as σ0 = 0, the Sobolev inequality (see [5, Proposition 1.3]) yields

‖σ′0‖22 ≤
√

π

6
‖b‖1‖σ′0‖2,
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and so

‖σ′0‖2 ≤
√

π

6
‖b‖1,

wherefrom using again the Sobolev inequality we get

‖σ0‖C ≤ π

6
‖b‖1.

Thus, the function σ given by

σ(t) =
π

6
‖b‖1 + A + σ0(t) for t ∈ [0, 2π] (2.8)

satisfies (2.4). Furthermore, according to (2.1),(2.2) and (2.6)-(2.7) we have

σ′′(t) = σ′′0 (t) = b(t) ≥ f(t, σ(t)) for a.e. t ∈ [0, 2π] (2.9)

and
σ(0) = σ(2π), σ′(0) = σ′(2π), (2.10)

i.e. σ is a lower function of (1.1).

The following assertion is dual to Proposition 1 and its proof will be omitted.

Proposition 2. Assume that there are A ∈ R and b ∈ L[0, 2π] such that

b = 0

and
f(t, x) ≥ b(t) for a.e. t ∈ [0, 2π] and all x ∈ [A,B]

where B is given by (2.3). Then there exists an upper function σ of the problem (1.1)
with the property (2.4).

3. Applications to Lazer-Solimini singular problems

In this section we will consider possible singular problems of the attractive type

u′′ + g(u) = e(t), u(0) = u(2π), u′(0) = u′(2π) (3.1)

and of the repulsive type

u′′ − g(u) = e(t), u(0) = u(2π), u′(0) = u′(2π), (3.2)

where
g ∈ C(0,∞) and e ∈ L[0, 2π] (3.3)

and it is allowed that lim supx→0+ g(x) = ∞.
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The problem (3.1) has been studied by Lazer and Solimini in [6] for e ∈ C[0, 2π]
and g positive. In [9, Corollary 3.3], their existence result has been extended to e ∈
L[0, 2π] essentially bounded from above. Here, we bring conditions for the existence
of solutions to (3.1) without assuming boundedness of e.

Theorem 1. Assume(3.3) and let there exist A1, A2 ∈ (0,∞) such that

g(x) ≥ e for all x ∈ [A1, B1], (3.4)
g(x) ≤ e for all x ∈ [A2, B2], (3.5)

where
B1 −A1 = B2 −A2 =

π

3
‖e− e‖1 (3.6)

and A2 ≥ B1.

Then the problem (3.1) has a solution u such that A1 ≤ u(t) ≤ B2 on [0, 2π].

Proof. Define, for a.e. t ∈ [0, 2π],

f(t, x) = e(t)−
{

g(A1) if x < A1,
g(x) if x ≥ A1.

Then f satisfies the Carathéodory conditions on [0, 2π] × R. Furthermore, by (3.4)
and (3.6), f satisfies (2.1)-(2.3) with b(t) = e(t) − e a.e. on [0, 2π] and [A, B] =
[A1, B1]. Hence, by Proposition 1 there exists a lower function σ1 of (1.1) such that
σ1(t) ∈ [A1, B1] for all t ∈ [0, 2π]. Similarly, (3.5), (3.6) and Proposition 2 yield the
existence of an upper function σ2 of (1.1) such that σ2(t) ∈ [A2, B2] on [0, 2π]. Now,
since A2 ≥ B1, we have σ1(t) ≤ σ2(t) on [0, 2π] and the assertion (I) of Theorem 2
gives the existence of the desired solution u to (1.1) which is naturaly also a solution
to (3.1).

Classical Lazer and Solimini’s considerations [6] of the repulsive problem (3.2)
have been extended by several authors (see e.g. [1]-[4], [7] and [10]). Here we present
a related result, where e need not be essentially bounded.

Theorem 2. Assume(3.3),

lim
x→0+

∫ 1

x

g(ξ)dξ = ∞, (3.7)

and
g∗ := inf

x∈(0,∞)
g(x) > −∞. (3.8)

Furthermore, let there exist A1, A2 ∈ (0,∞) such that

g(x) ≤ −e for all x ∈ [A1, B1], (3.9)
g(x) ≥ −e for all x ∈ [A2, B2], (3.10)

where (3.6) is true and A1 ≥ B2.

Then the problem (3.2) has a positive solution.
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Proof. Denote

K = ‖e‖1 + |g∗|, B = B1 + 2πK and K∗ = K‖e‖1 +
∫ B

A2

|g(x)|dx.

It follows from (3.7) that lim supx→0+ g(x) = ∞ and there exists ε ∈ (0, A2) such that
∫ A2

ε

g(x)dx > K∗ and g(ε) > 0. (3.11)

Define

g̃(x) =
{

g(x) if x ≥ ε,
g(ε) if x < ε,

and
f(t, x) = e(t) + g̃(x) for a.e. t ∈ [0, 2π] and all x ∈ R.

Now, we can argue as in the proof of Theorem 1 obtaining a lower function σ1 and
an upper function σ2 of (1.1) such that σ1(t) ≥ σ2(t) on [0, 2π]. The assertion (II) of
Theorem 2 (with m(t) = g∗ + e(t) a.e. on [0, 2π]) implies that (1.1) has a solution u
such that u(tu) ∈ [A2, B1] for some tu ∈ [0, 2π] and ‖u′‖C ≤ K. It remains to show
that u(t) ≥ ε holds on [0, 2π].

Let t0 and t1 ∈ [0, 2π] be such that

u(t0) = min
t∈[0,2π]

u(t) and u(t1) = max
t∈[0,2π]

u(t).

Clearly, A2 ≤ u(t1) ≤ B. With respect to the periodic boundary conditions we have
u′(t0) = u′(t1) = 0. Now, multiplying the differential relation u′′(t) = e(t) + g̃(u(t))
by u′(t) and integrating over [t0, t1] we get

0 =
∫ t1

t0

u′′(t)u′(t)dt =
∫ t1

t0

e(t)u′(t)dt +
∫ t1

t0

g̃(u(t))u′(t)dt,

i.e. ∫ u(t1)

u(t0)

g̃(x)dx = −
∫ t1

t0

e(t)u′(t)dt ≤ K‖e‖1.

Further, ∫ A2

u(t0)

g̃(x)dx ≤ K‖e‖1 +
∫ B

A2

|g̃(x)|dx = K∗

which, with respect to (3.11), is possible only if u(t0) ≥ ε. Thus, u is a solution to
(3.2).

Example 3. Let g(x) = 1
xγ on (0,∞). If γ > 0, then Theorem 1 ensures the existence

of a positive solution to (3.1) for any e ∈ L[0, 2π] such that

e > 0 and
π

3
e

1
γ ‖e− e‖L < 1. (3.12)
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The function e(t) = c +
1√
2πt

− 1
π

with c ∈ R is not essentially bounded from above

on [0, 2π]. However, it satisfies (3.12) if

0 < c <

(
3
π

)γ

.

We should mention that provided e ∈ C[0, 2π] or e is essentially bounded from above,
the condition e > 0 is sufficient for the existence of a solution to (3.1) (cf. [6] or [9],
respectively).

Example 4. Let e ∈ L[0, 2π] be essentially unbounded from below and let

g(x) =
1 + sin

(
π
x

)

x
− arctan(x), x ∈ (0,∞).

Then g verifies the assumptions (3.3), (3.7) and (3.8) of Theorem 2. Let us suppose
that e = −5. Then the equation g(x) = 5 has exactly 5 roots in the interval [0.125,∞).
In particular, we have (see Figures 1 and 2)

x1 ≈ 0.126804, x2 ≈ 0.141071, x3 ≈ 0.167853, x4 ≈ 0.200541, x5 ≈ 0.244461,

g(x) > 5 on (x2, x3) ∪ (x4, x5) and g(x) < 5 on (x1, x2) ∪ (x3, x4) ∪ (x5,∞).

Therefore, by Theorem 2, if

‖e− e‖L ≤ 3
π

(x5 − x4) ≈ 0.0419392,

the problem

u′′ =
1 + sin

(
π
u

)

u
− arctan(u) + e(t), u(0) = u(2π), u′(0) = u′(2π) (3.13)

has a solution u1 such that u1(t∗) ∈ [x4, x5 + d1] for some t∗ ∈ [0, 2π], where d1 =
x5 − x4 (see Figure 3).

Similarly, by Theorems 1 and 2, if

‖e− e‖L <
3
2π

(x5 − x4) ≈ 0.0209699,

the problem (3.13) has at least 2 different solutions u1 and u2, where u1(t∗) ∈ (x5 −
d2, x5 +d2) for some t∗ ∈ [0, 2π] and u2(t) ∈ (x4−d2, x4 +d2) for all t ∈ [0, 2π], where
d2 = 1

2 (x5 − x4) (see Figure 4).

Finally, if

‖e− e‖L ≤ 3
π

(x2 − x1) ≈ 0.0136238,

the problem (3.13) has at least 3 different solutions u1, u2 and u3, where u1(t∗) ∈
[x5 − d3, x5 + d3] for some t∗ ∈ [0, 2π], u2(t) ∈ [x4 − d3, x4 + d3] for all t ∈ [0, 2π] and
u3(t) ∈ [x1, x2] for all t ∈ [0, 2π], where d3 = x2 − x1 (see Figure 5).
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Figure 1. Figure 2.
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