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Abstract. In this note, we give a generalization for the class of *-IFP rings. Moreover, we in-
troduce *-reversible and *-reflexive *-rings, which represent the involutive versions of reversible
and reflexive rings and expose their properties. Nevertheless, the relation between these rings
and those without involution are indicated. Moreover, a nontrivial generalization for *-reflexive
*-rings is given. Finally, in *-reversible *-rings it is shown that each nilpotent element is *-
nilpotent and Köthe’s conjecture has a strong affirmative solution.
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1. INTRODUCTION

All rings considered are associative with unity. A *-ring R will denote a ring
with involution and a self-adjoint ideal I of R; that is I� D I , is called *-ideal.
A projection e of R is an idempotent satisfies e2 D e D e�. Recall from [7], an
idempotent e 2R is left (resp. right) semicentral inR if eReDRe (resp. eReD eR).
Equivalently, an idempotent e 2 R is left (resp. right) semicentral in R if eR (resp.
Re) is an ideal of R. Moreover, if R is semiprime then every left (resp. right)
semicentral idempotent is central. A semicentral projection is clearly central. A ring
(resp. *-ring) R is said to be Abelian (resp. *-Abelian) if all its idempotents (resp.
projections) are central. R is reduced if it has no nonzero nilpotent elements. An
involution * is called proper (resp. semiproper) if for every nonzero element a of
R, aa� D 0 (resp. aRa� D 0) implies a D 0. Obviously, a proper involution is
semiproper.

From [5], R is semicommutative or has IFP if the right annihilator r.a/ D fx 2
AjaxD 0g of every element a 2 R is a two-sided ideal. In [1], the involutive version
of IFP, that is *-IFP, is given as the ring in which the right annihilator of each element
of R is *-ideal. Clearly, each *-ring having �-IFP has also IFP.

Cohn [9] called a ring R reversible (or completely reflexive) if ab D 0 implies
baD 0 for every a;b 2 R. Clearly, the class or reversible rings contains the reduced
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rings. Moreover, each reversible ring has IFP. Moreover, in [9, Theorem 2.2], Cohn
proved that for reversible rings, Köthe’s conjecture has an affirmative solution. Here,
we give a strong affirmative solution for Köthe’s conjecture for *-reversible *-rings
and show that each nilpotent element is *-nilpotent.

In [13], Mason introduced a generalization of reversible rings; namely reflexive
rings. A right ideal I of a ring R is said to be reflexive if aRb � I implies bRa � I ,
for every a;b 2 R. A ring R is called reflexive if 0 is a reflexive ideal. In [10], Kim
and Baik defined an idempotent reflexive ideal as a right ideal I satisfying aRe � I
if and only if eRa � I for e2 D e;a 2 R. R is an idempotent reflexive ring if 0
is an idempotent reflexive ideal. Obviously, the class of idempotent reflexive rings
contains reflexive rings and Abelian rings.

domain +3 reduced +3 reversible +3

"*

reflexive +3 idempotent reflexive

IFP +3 Abelian

KS

A subring B of a *-ring R is said to be a *-biideal,or self adjoint biideal, of R if
BRB � B and B� D B .

Recall from [2], a nonzero element a of a *-ring R is a *-zero divisor if ab D 0
and a�bD 0 for some nonzero element b 2R. Obviously, a *-zero divisor element is
a zero divisor, but the converse is not true (example 3 in [2]). A *-ring without *-zero
divisors is said to be a *-domain.

Recall from [3], an element a of a *-ring R is said to be *-nilpotent if there exist
two positive integers m and n such that am D 0 and .aa�/n D 0. R is a *-reduced
*-ring if it has no nonzero *-nilpotent elements; equivalently a2 D aa� D 0 implies
a D 0 for every a 2 R. A reduced (or *-domain) *-ring with proper involution is
*-reduced. Moreover, every *-reduced *-ring is semiprime.

From [4], the *-right annihilator of a nonempty subset S of a *-ring R is the self
adjoint biideal r�.S/ D fx 2 AjSx D 0 D Sx�g. Finally, Mn.R/ will denote the full
matrix ring of all n�n matrices over R.

2. *-RINGS WITH QUASI-*-IFP

In this section, we introduce the property of having quasi-�-IFP which generalizes
that of having *-IFP introduced in [1].

Definition 1. A *-ringR is said to have quasi-*-IFP if for every a 2R, the *-right
annihilator r�.a/ is a *-ideal of R.

In view of l�.a/D r�.a�/, we see that the *-left annihilator is also *-ideal. Thus
the definition of quasi-*-IFP *-ring is left-right symmetric.

Clearly, every *-ring R having *-IFP has also quasi-*-IFP, since r.a/ is *-ideal
implies r�.a/D r.a/ for all a 2A. However, the converse is not true as shown by the
following example.
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Example 1. Consider the �-ring R D
�
F F

0 F

�
, where F is a field and the ad-

joint of matrices is the involution. Since r
��

1 0

0 0

��
D

�
0 0

0 F

�
is not an ideal

of R, then R does not have IFP and consequently does not have *-IFP. Moreover, R
has quasi-*-IFP since the *-right annihilator of every nonzero noninvertible element

of R takes the form
�
0 F

0 0

�
which is a *-ideal of R.

The following are some equivalents for a *-ring to have quasi-*-IFP.

Proposition 1. For a *-ring R, the following conditions are equivalent:

(1) R has quasi-*-IFP.
(2) r�.S/ is a *-ideal of R for every subset S of R.
(3) l�.S/ is a *-ideal of R for every subset S of R.
(4) For every a;b 2R, abD ab�D 0 implies aRbD 0 (consequently aRb�D 0)

Proof. (1))(2): For every S � R, r�.S/ D
T

s2S r�.s/ being the intersection of
*-ideals is also a *-ideal.

(2))(3): From (2), l�.S/D r�.S�/ is a *-ideal of R.
(3))(4): abD ab�D 0 implies b�a�D ba�D 0 and consequently b;b� 2 l�.a�/

which is a *-ideal of R. Hence bR;b�R � l�.a�/ from which bRa� D b�Ra� D 0
and therefore aRb D aRb� D 0.

(4))(1): Let x 2 r�.a/, which is a self-adjoint biideal of R, then ax D ax� D 0
implies aRxD aRx�D 0, form the assumption. HenceRx� r�.a/which means that
r�.a/ is a left ideal of R. Therefore r�.a/ is a *-ideal due to its self-adjointness. �

The following results show that quasi-*-IFP implies *-Abelian while the converse
is not true.

Proposition 2. Every *-ring with quasi-*-IFP is *-Abelian.

Proof. Let e be a projection in R, then .1� e/e D .1� e/e� D 0 implies .1�
e/Re D 0, from Proposition 1. Hence e is a left semicentral projection and con-
sequently is central. �

Moreover, The next example shows that the converse of Proposition 2 is not true.

Example 2. Let F be a field of characteristic 2 and consider the *-ring R D8̂̂<̂
:̂
0BB@
a a12 a13 a14

0 a a23 a24

0 0 a a34

0 0 0 a

1CCA j a;aij 2 F

9>>=>>;, with involution defined as
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a a12 a13 a14

0 a a23 a24

0 0 a a34

0 0 0 a

1CCA
�

D

0BB@
a a34 a24 a14

0 a a23 a13

0 0 a a12

0 0 0 a

1CCA.

Since for the matrices x D

0BB@
0 1 �1 0

0 0 0 0

0 0 0 0

0 0 0 0

1CCA and y D

0BB@
0 0 0 0

0 0 0 1

0 0 0 1

0 0 0 0

1CCA,

we have xy D 0D xy�, while

x´y D

0BB@
0 1 �1 0

0 0 0 0

0 0 0 0

0 0 0 0

1CCA
0BB@
a a12 a13 a14

0 a a23 a24

0 0 a a34

0 0 0 a

1CCA
0BB@
0 0 0 0

0 0 0 1

0 0 0 1

0 0 0 0

1CCAD
0BB@
0 0 0 a23

0 0 0 0

0 0 0 0

0 0 0 0

1CCA ¤ 0, for every ´ 2 R with a23 ¤ 0, it follows that R does not

have quasi-�-IFP, by Proposition 1. Moreover R is �-Abelian since for any projec-

tion e D

0BB@
a a12 a13 a14

0 a a23 a24

0 0 a a34

0 0 0 a

1CCA, e2 D e� D e implies a11 D a12 D a13 D a21 D

a22 D a33 D 0 and a2 D a, so that R has no nontrivial projections.

Next, we answer the question of when a *-ring with quasi-*-IFP is *-reduced.

Proposition 3. Let R be a semiprime *-ring having quasi-*-IFP, then R is *-
reduced.

Proof. Let R be a semiprime *-ring having quasi-*-IFP. Set a2 D aa� D 0 for
some a 2R, then aRaD aRa� D 0, from Proposition 1. Since R is semiprime, then
aD 0 and R is *-reduced. �

Finally, one can easily show that the class of *-rings having quasi-*-IFP is closed
under direct sums (with changeless involution) and under taking *-subrings.

Proposition 4. The class of *-rings having quasi-*-IFP is closed under direct
sums and under taking *-subrings.

3. *-REVERSIBLE *-RINGS

Definition 2. An ideal I of a *-ring R is called *-reversible if ab;ab� 2 I implies
ba 2 I , for every a;b 2R.
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It is obvious that if I is *-reversible then ab;ab� 2 I implies also b�a 2 I , for
every a;b 2R.

We note the following:
� A one-sided *-reversible ideal must be two-sided ideal.
� The *-reversible ideal may not be self adjoint according to the following

example.

Example 3. Let R be the *-ring in Example 1. The ideal I D
�
F F

0 0

�
is *-

reversible but not self-adjoint

Definition 3. A *-ring R is said to be *-reversible if 0 is a *-reversible ideal of R;
that is ab D ab� D 0 implies baD 0 (consequently b�aD 0), for every a;b 2R.

Example 4. Every *-domain is a *-reversible *-ring.

It is clear that every reversible ring with involution is *-reversible. But the converse
is not always true as shown by the next example.

Example 5. LetR be the *-ring in Example 1. R is not reversible since the matrices

˛ D

�
0 1

0 0

�
and ˇ D

�
1 1

0 0

�
satisfy ˛ˇ D 0 while ˇ˛ ¤ 0. Moreover, it easy

to check that R is *-reversible.

The following are some equivalents for a *-ring to be *-reversible.

Proposition 5. For a *-ring R, the following statements are equivalent.
(i) R is *-reversible.

(ii) r�.S/D l�.S/ for every subset S of R.
(iii) r�.a/D l�.a/ for every element a 2R.
(iv) For any two nonempty subsets A and B ofR , AB DAB�D 0 implies BAD

0 (consequently B�AD 0) .

Proof. .i/) .i i/: Let x 2 r�.S/, then sx D sx� D 0 for every s 2 S . Since R is
*-reversible, we have xs D x�s D 0 for every s 2 S . Hence, xS D x�S implies x 2
l�.S/ and we get r�.S/� l�.S/. Similarly, l�.S/� r�.S/ and r�.S/D l�.S/ follows.
.i i/) .i i i/ is direct by considering S as the singleton set fag.
.i i i/) .iv/: Set AB D AB� D 0 for some nonempty subsets A and B of R.

Then ab D ab� D 0 for every a 2 A and b 2 B , and hence b 2 r�.a/D l�.a/ from
the condition. Therefore baD b�aD 0D 0 for every a 2A and b 2B which implies
BAD B�AD 0.
.iv/) .i/ is direct by considering A and B as the singleton sets containing a and

b, respectively. �

The question when does a *-reversible *-ring become reversible has been answered
in the following proposition.
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Proposition 6. Let R be a *-reversible *-ring and either
(1) R has *-IFP, or
(2) * is proper.

Then, R is reversible.

Proof. (1) Let R have *-IFP and ab D 0 for some a;b 2R. Then, by [1, Pro-
position 7], aRb� D 0 and hence ab� D 0. The *-reversibility of R implies
baD 0 and R is reversible.

(2) Let the involution * be proper and abD 0 for some a;b 2R. Then a.bb�/D
a.bb�/� D 0 and hence bb�a D 0 from the *-reversibility of R. Now
.a�b/.a�b/� D a�bb�a D 0 implies a�b D b�a D 0, since * is proper. Fi-
nally, by the *-reversibility of R, b�aa� D 0 implies aa�b� D 0 and
.ba/.ba/� D baa�b� D 0 implies baD 0. Hence R is reversible.

�

Now, we see that each *-reversible *-ring has quasi-*-IFP.

Proposition 7. Every *-reversible *-ring has quasi-*-IFP.

Proof. Let abD ab�D 0 for some elements a;b of a *-reversible *-ring R. Using
the *-reversibility of R, we have ba D b�a D 0 which implies bar D b�ar D 0.
Again, by the *-reversibility of R, arb D arb� D 0 for every r 2 R. Therefore
aRb D aRb� D 0 which means that R has quasi-*-IFP, by Proposition 1. �

From Propositions 7 and 2, we get the following.

Corollary 1. Every *-reversible *-ring is *-Abelian.

However, the next example shows that the converse of the previous proposition
and its corollary is not always true.

Example 6. Let D be a commutative domain. Then the ring

RD

8<:
0@ a b d

0 a c

0 0 a

1A ja;b;c;d 2D
9=;

has IFP, by [11, Proposition 1.2]. Define an involution * on R as0@ a b d

0 a c

0 0 a

1A� D
0@ a c �d

0 a b

0 0 a

1A. One can easily check that R has quasi-*-IFP

and hence is *-Abelian. ButR is not *-reversible since the elements ˛D

0@ 0 0 0

0 0 1

0 0 0

1A
and ˇ D

0@ 0 1 0

0 0 0

0 0 0

1A of R satisfy ˛ˇ D ˛ˇ� D 0 but ˇ˛ D

0@ 0 0 1

0 0 0

0 0 0

1A¤ 0
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Moreover, if the involution * is proper then the properties IFP, *-IFP, quasi-*-IFP,
*-reversibility and reducedness are identical as shown in the following result.

Proposition 8. LetR be a *-ring and the involution * is proper. Then the following
conditions are equivalent:

(1) R is *-reversible
(2) R has quasi-*-IFP.
(3) R has IFP.
(4) R has *-IFP.
(5) R is reduced.

Proof. (3),(4) and (5) are equivalent from [1, Proposition 9].
(1))(2) is direct from Proposition 7.
(2))(3): Let ab D 0 for some a;b 2 R. Then a.bb�/ D a.bb�/� D 0 implies

aRbb�D 0 from the quasi-*-IFP ofR. Now .arb/.arb/�D arbb�r�a�D 0 implies
arb D 0 fore every r 2R since * is proper. Therefore aRb D 0 and so R has IFP.

(5))(1): Let ab D ab� D 0 for some a;b 2 R, then .ba/2 D baba D 0 and
.b�a/2 D b�ab�a D 0. Hence, ba D b�a D 0 from the reducedness of R and so R
is *-reversible. �

Next, we discuss the converse of Example 4; that is when a *-reversible *-ring is
*-domain.

Proposition 9. A *-ring is a *-domain if and only ifR is *-prime and *-reversible.

Proof. First, Suppose that R is a *-domain, hence R is obviously *-reversible.
Let IJ D 0 for some *-ideals I and J of R, then ab D ab� D 0 for every a 2 I
and b 2 J . Hence, either a D 0 or b D 0 which implies I D 0 or J D 0 and so R
is *-prime. Conversely, let R be both *-prime and *-reversible and ab D a�b D 0
for some 0 ¤ a;b 2 R. We have r�b�a� D r�b�a D 0 for every r 2 R and so
a�r�b� D ar�b� D 0 for every r 2 R from the *-reversibility of R, which gives
bRaD bRa� D 0. Since R is *-prime and a¤ 0, we get b D 0, by [ [6], Proposition
5.4], and so R has no *-zero divisors; that is a *-domain. �

As a consequence, we get Proposition 4 in [3] as a corollary.

Corollary 2 ( [3], Proposition 4). If R is a reduced *-prime *-ring, then R is
*-domain.

For a *-ring R, the trivial extension of R, denoted by T .R;R/, is the ring��
a b

0 a

�
ja;b 2R

�
. One can define the componentwise involution

�
a b

0 a

��
D�

a� b�

0 a�

�
to make T .R;R/ a *-ring.

Proposition 10. Let R be a *-reduced *-ring. If R is *-reversible, then T .R;R/
is a *-reversible *-ring.
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Proof. Let
�
a b

0 a

��
˛ ˇ

0 ˛

�
D

�
a b

0 a

��
˛� ˇ�

0 ˛�

�
D

�
0 0

0 0

�
. Then

a˛ D a˛� D 0 and aˇC b˛ D aˇ�C b˛� D 0. Since R is *-reversible then ˛a D
˛�a D 0. By the *-reversibility of R, it is easy to see that aR˛ D 0 . Now 0 D

aˇCb˛D ˛.aˇCb˛/D ˛b˛ and 0D aˇ�Cb˛�D aˇ�˛Cb˛�˛D b˛�˛. Hence
.b˛/2 D b˛b˛ D 0 and .b˛/.b˛/� D b˛˛�b� D 0. Then b˛ D 0 because R is *-
reduced and therefore aˇ D 0. Similarly, one can show that b˛� D 0 and aˇ� D 0.
Using the *-reversibility ofR again we get ˛bD ˛�bDˇaDˇ�aD 0which implies�
˛ ˇ

0 ˛

��
a b

0 a

�
D

�
˛� ˇ�

0 ˛�

��
a b

0 a

�
D

�
0 0

0 0

�
. Thus T .R;R/ is a

*-reversible *-ring. �

Furthermore, one can easily show that the class of *-reversible *-rings is closed
under direct sums (using changeless involution) and taking *-subrings.

Proposition 11. The class of *-reversible *-rings is closed under direct sums and
under taking *-subrings.

4. *-REFLEXIVE *-RINGS

In this section, we introduce the involute version of reflexive ideals and rings
defined by Mason [13] and study the relation between these rings and the *-reversible
rings introduced in the previous section.

Definition 4. A ideal I of a *-ring R is called *-reflexive if for every a;b 2 R,
aRb;aRb� � I implies bRa � I (consequently b�Ra � I ). A *-ring R is said to
be *-reflexive if 0 is a *-reflexive ideal of R.

By the way, the ideal in the previous definition can not be one sided since for every
a 2 I satisfying aR � I implies Ra � I by taking b D 1. Also, this ideal need not
be self-adjoint by Example 3.

Example 7. Every *-reduced *-ring is *-reflexive.

It is evident that every reflexive *-ring is *-reflexive. However, the next example
shows that the converse is not true.

Example 8. LetD be a commutative domain andRD f

0@ ˛ ˇ ı

0 ˛ 

0 0 ˛

1A j˛;ˇ;;ı 2
Dg. R is not reflexive according to [12, Example 2.3]. Define the involution � W0@ ˛ ˇ ı

0 ˛ 

0 0 ˛

1A!
0@ ˛  ı

0 ˛ ˇ

0 0 ˛

1A. It is easy to check that R is �-reversible and in

particular is �-reflexive.
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Lemma 1. Let R be a ring with semiproper involution *. Then aRb D 0 implies
aRb� D bRaD b�RaD 0.

Proof.

.arb�/R.arb�/� D arb�Rbr�a� � aRbr�a� D 0;

for every r 2R implies aRb� D 0;

.bra/R.bra/� D braRa�r�b� � braRb� D 0; for every r 2R implies bRaD 0
and

.b�ra/R.b�ra/� D braRa�r�b � braRb D 0; for every r 2R implies b�RaD 0:

�

Corollary 3. Every *-ring with semiproper involution is reflexive (and hence *-
reflexive).

The converse of the previous corollary is not necessary true as shown in the next
example.

Example 9. If F is a field, then the ring RD F ˚F op, with the exchange involu-
tion * defined by .a;b/� D .b;a/ for all a;b 2 R, is obviously a reflexive and hence
*-reflexive but * is not semiproper. Indeed, the element 0 ¤ ˛ D .0;a/ for some
nonzero element a of F satisfies ˛R˛� D 0.

In the following proposition, we state some equivalent definitions for a *-ring to
be *-reflexive .

Proposition 12. For a *-ring R, the following statements are equivalent :
(i) R is *-reflexive.

(ii) r�.aR/D l�.Ra/ for every a 2R.
(iii) For any two nonempty subsets A and B of R , ARB D ARB� D 0 implies

BRAD B�RAD 0.

Proof. .i/) .i i/: Let x 2 r�.aR/, then aRxD aRx�D 0. Hence xRaD x�RaD
0, by the *-reflexivity of R, implies x 2 l�.Ra/ and so r�.aR/ � l�.Ra/. Similarly,
l�.aR/� r�.Ra/ and we get r�.aR/D l�.Ra/.
.i i/) .i i i/: Set ARB D ARB� D 0 for some subsets A and B of R. Then

aRb D aRb� D 0 for every a 2 A and b 2 B , and hence b 2 r�.aR/ � l�.Ra/ from
the condition. Therefore bRaD b�RaD 0 for every a 2A and b 2B which implies
BRAD b�RAD 0.
.i i i/) .i/ is direct by considering A and B as the singleton sets containing a

and b, respectively.. �

The following proposition and example show that the class of *-reflexive *-rings
generalizes strictly that of *-reversible *-rings.
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Proposition 13. Every *-reversible *-ring is *-reflexive

Proof. Let aRb D aRb� D 0, then ab D ab� D 0 implies rab D rab� D 0, for
every r 2R. So that braD b�ra for every r 2R, from the *-reversibility ofR. Thus
bRaD b�RaD 0 and hence R is *-reflexive. �

Example 10. Let n > 2 be an integer and p � n be a prime number. The *-ring
R DMn.Zp/, where * is the transpose involution, is prime and hence reflexive (in
particular *-reflexive). Moreover, R is not *-reversible. Indeed , the nonzero ele-
ments

˛ D e12C e13C�� �C e1n;

ˇ D e11C e12C�� �C e1.n�1/C2e1n

of R, where eij is the square matrix of order n with 1 in the .i;j /-position and 0
elsewhere, satisfy ˛ˇ D ˛ˇ� D 0, while ˇ˛ ¤ 0 and ˇ�˛ ¤ 0.

The question when a *-reflexive *-ring is *-reversible is answered in the following
proposition.

Proposition 14. A *-ring R is *-reversible if and only if R has quasi-*-IFP and
*-reflexive.

Proof. The necessity is obvious. For sufficiency, let abD ab�D 0 for some a;b 2
R. Since R has quasi-*-IFP, then aRb D aRb� D 0. The *-reflexivity of R implies
bRaD b�RaD 0. Hence baD b�aD 0 and R is *-reversible. �

In the next result we discuss when a principal right ideal generated by a projection
in a *-reflexive *-ring is *-reflexive.

Proposition 15. Let e be a projection of a *-reflexive *-ring R. Then e is central
if and only if eR is a *-reflexive *-ideal.

Proof. Let e be central and aRb;aRb� � eR, then arb D earb and arb� D
earb� for every r 2 R. Hence .1� e/aRb D .1� e/aRb� D 0 and consequently
.1� e/bRa D .1� e/b�Ra D 0, since R is *-reflexive and e is central. Hence
bRa;b�Ra � eR and eR is *-reflexive ideal. The converse implication is clear
since eR is a *-ideal and so e is central. �

Now, we show that *-reflexive property is extended to the *-corner.

Proposition 16. Let R be a *-reflexive *-ring, then the *-corner eRe for every
projection e of R is also *-reflexive.

Proof. Let R be *-reflexive and a D exe;b D eye 2 eRe such that a.eRe/b D
a.eRe/b� D 0. Then exeReye D exeRey�e D 0 implies eyeRexe D ey�eRexe D
0, since R is *-reflexive. Therefore b.eRe/a D b�.eRe/a D 0 and so eRe is *-
reflexive. �
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Next, we illustrate by example that *-reflexivity is not closed under taking *-
subrings.

Example 11. The ringRDM2.Z2/ is prime and hence reflexive. The upper trian-

gular matrix ring S D
�

Z2 Z2

0 Z2

�
over Z2 is a *-subring ofR under the involution

* defined as
�
a b

d c

��
D

�
c �b

�d a

�
. R is clearly *-reflexive but S is not, since

the elements ˛ D
�
0 0

0 1

�
and ˇ D

�
0 1

0 0

�
of R satisfy ˛Rˇ D ˛Rˇ� D 0 but

ˇR˛ D ˇ�R˛ D

�
0 Z2

0 0

�
¤ 0

We end this section by showing that the *-reflexivity is restricted from the full
matrix ring to its underlying ring.

Proposition 17. If Mn.R/ is a *-reflexive *-ring for some n � 1 and with the
transpose involution *, then R is also a *-reflexive *-ring .

Proof. let Mn.R/ be a *-reflexive *-ring for some n� 1. SinceRŠ e11Mn.R/e11,
as *-rings, then R is *-reflexive, by Proposition 16. �

5. PROJECTION *-REFLEXIVE RINGS

In this last section, we give another generalization for the class of *-reflexive rings;
that is projection *-reflexive *-rings.

In [10], Kim defines an idempotent reflexive ringR as the ring satisfying aReD 0
if and only if eRaD 0 for every idempotent e;a 2R.

Definition 5. An ideal I of a *-ring R satisfies aRe � I if and only if eRa � I
for every projection e;a 2 R, is called projection *-reflexive. A *-ring R is called
projection *-reflexive if 0 is a projection *-reflexive ideal.

The ideal I of the previous definition can not be one-sided ideal, because if I is
a right ideal then aR1� I for every a 2 I implies 1Ra � I , since 1 is a projection.
Moreover, the ideal I in the definition need not be self-adjoint; indeed, for a field
F the *-ring F

L
F with the exchange involution, possesses the non self-adjoint

projection *-reflexive ideal .0;F /.
It is evident from the definition that *-reflexive and idempotent reflexive *-rings

are projection *-reflexive. Accordingly, we raise the following two questions.

� Is there a projection *-reflexive *-ring which is not idempotent reflexive?
� Is there a projection *-reflexive *-ring which is not *-reflexive?

The answers of these questions are in the following example.
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Example 12. The *-ring R D
�
F F

0 F

�
over a field F with the involution *

defined by
�
a b

0 c

��
D

�
c �b

0 a

�
, is projection *-reflexive because

�
1 0

0 1

�
and

�
0 0

0 0

�
are the only projections of R. Clearly, R is not idempotent reflexive,

since the idempotent
�
1 0

0 0

�
of R satisfies�

0 2

0 0

��
F F

0 F

��
1 0

0 0

�
D

�
0 0

0 0

�
while �

1 0

0 0

��
F F

0 F

��
0 2

0 0

�
D

�
0 F

0 0

�
¤ 0:

Moreover, R is not *-reflexive, since�
0 1

0 1

��
F F

0 F

��
0 1

0 0

�
D�

0 1

0 1

��
F F

0 F

��
0 �1

0 0

�
D

�
0 0

0 0

�
while �

0 1

0 0

��
F F

0 F

��
0 1

0 1

�
D

�
0 F

0 0

�
The proof of the following proposition, which gives an equivalent definition for

projection *-reflexive *-rings, is straightforward.

Proposition 18. A *-ringR is projection *-reflexive if and only if for any nonempty
subset A and any projection e of R , ARe D 0 implies eRAD 0.

Obviously, every *-Abelian *-ring is projection *-reflexive and consequently every
*-ring having quasi-*-IFP is also projection *-reflexive, by Proposition 2. However,
the converse of this statement needs additional condition, as in the next proposition.

Proposition 19. A *-ring R is *-Abelian if and only if R is projection *-reflexive
and satisfies eR.1� e/Re D 0 for every projection e of R.

Proof. The necessity is obvious, For sufficiency, let e be an arbitrary projection of
the projection *-reflexive *-ringR and eR.1�e/ReD 0. By Proposition 18, we have
eReR.1�e/D 0 and taking involution gives .1�e/ReReD 0. Hence, .1�e/ReD 0
which implies that e is semicentral, from [Lemma 1.1, [8]], and hence it is central.
Thus R is *-Abelian �

In the next result we show when a projection in a projection *-reflexive *-ring is
central.
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Proposition 20. Let R be a projection *-reflexive *-ring and e is a projection of
R. Then the following are equivalent:

(i) e is central.
(ii) eR is a projection-*-reflexive *-ideal.

Proof. .i/) .i i/: Assume that aRf � eR for some projection f of R. So that
arf D earf for every r 2 R and hence .1� e/aRf D 0. Therefore fR.1� e/a D
0D .1�e/fRa, sinceR is projection *-reflexive, and consequently fRaD efRa�
eR. Hence eR is a projection-*-reflexive ideal.
.i i/) .i/: is clear since eR is a *-ideal and so e is central. �

Corollary 4. If every principal *-ideal of R is projection *-reflexive, then R is
*-Abelian.

Finally, Since the only projections of the *-corner eRe is the projection e, then
eRe is projection *-reflexive if R is projection *-reflexive.

Proposition 21. Let R be a projection *-reflexive *-ring, then the *-corner eRe,
for every projection e of R, is also projection *-reflexive.

6. *-NILPOTENCY IN *-REVERSIBLE *-RINGS

According to [3], in a *-ring R every *-nilpotent element is nilpotent but the con-
verse is not always true as shown in [3, Example 2.2]. In the next, we give a sufficient
condition that makes a nilpotent element *-nilpotent.

Proposition 22. In a *-reversible *-ring R, every nilpotent element is *-nilpotent.

Proof. Let a be a nilpotent element of a *-reversible *-ring R. Hence an D 0, for
some positive integer n, and multiplying by a� form right, we get an�1.aa�/ D 0.
From the *-reversibility of R, we have .aa�/an�1 D 0. Multiply again by a� form
right and apply the *-reversible property, we get .aa�/an�2 D 0. Continuing this
process, we get .aa�/n D 0 and a is *-nilpotent. �

However, the *-reversibility condition in the previous proposition is sufficient
but not necessary as clear from Example 6. Indeed, the elements of the *-ideal0@ 0 D D

0 0 D

0 0 0

1A are precisely all the nilpotent (which also *-nilpotent) elements of

the ring R.

Corollary 5. Every *-reduced *-reversible *-ring is reduced.

By the definition of nilpotency, an element is nilpotent if and only if a power of it is
also nilpotent. This is not the case for *-nilpotent elements as shown in the following
examples.
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Example 13. In the *-ring R DM2.C/ of 2� 2 matrices with complex entries

and transpose involution �, the element a D

 p
3C{
2

1

1
p

3�{
2

!
satisfies .aa�/6 D�

�1 1

1 �1

�
which can not tend to zero ever with any power. Thus a is not �-

nilpotent, while .a3.a3/�/1 D .a3/2 D 0 which means that a3 is *-nilpotent.

In the next, a sufficient condition is given to make *-nilpotency transfers between
the element and its powers.

Lemma 2. In a *- reversible *-ring R, the element a is *-nilpotent if and only if
a2 is *-nilpotent.

Proof. Let a be a *-nilpotent element ofR, then anD .aa�/mD 0, for some posit-
ive integersm and n. Now, 0D .aa�/m D a�.aa�/m D a�.aa�/m�1.aa�/ and from
the *-reversibility ofR, we get 0D .aa�/a�.aa�/m�1D a.a�/2.aa�/m�1. Multiply
the last equation by a from right to get a.a�/2a.a�a/m�2.a�a/D 0 and applying the
*-reversible property again, we get a�a2.a�/2a.a�a/m�2 D 0 D

a�a2.a�/2.aa�/m�2a. Multiply again by a� from right and apply the *-reversibility,
we get a.a�/2a2.a�/2.aa�/m�2 D 0. Continuing, we get .a2.a�/2/m D 0 and a2 is
*-nilpotent.

For sufficiency, if a2 is *-nilpotent; that is .a2/n D 0 D .a2.a�/2/m for some
positive integers m and n, we get by the same procedure as above .a�a/4mD 0 and
a is *-nilpotent. �

Proposition 23. In a *- reversible *-ring R, the element a is *-nilpotent if and
only if ak is also *-nilpotnet for every positive integer k.

Proof. The sufficient condition is clear. For the necessity, let a be a *-nilpotent ele-
ment ofR, then al D .aa�/nD 0 for some positive integers l and n. We use induction
on k to show that ak.a�/k is nilpotent. The case k D 2 is clear from Lemma 2. Now,
we have to show that akC1.a�/kC1 is also nilpotent if ak.a�/k is nilpotent. Now, if
0D .ak.a�/k/m D ak.a�/k.ak.a�/k/m�1, multiply by .a�/kC1a from left and ap-
ply the *-reversibility, we get .a�/k.ak.a�/k/m�1.a�/kC1akC1D 0. Multiply by a�

from left and take involution of both sides, we obtain
.a�/kC1akC1.ak.a�/k/m�1akC1 D 0. The *-reversibility of R gives
ak.a�/k.ak.a�/k/m�2akC1.a�/kC1akC1 D 0. Multiplying by .a�/kC1a from left
gives .a�/kC1akC1.a�/k.ak.a�/k/m�2akC1.a�/kC1akC1 D 0 and the *-reversibi-
lity of R gives .a�/k.ak.a�/k/m�2akC1..a�/kC1akC1/2 D 0. Multiply again by
.a�/kC1, we get .a�/k.ak.a�/k/m�2.akC1.a�/kC1/3 D 0. Continuing, we get
.a�/k.akC1.a�/kC1/2m�1 D 0 and multiplication by akC1a� gives
.akC1.a�/kC1/2m D 0. �
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Conjecture 1 (Köthe’s conjecture). If a ring has a non-zero nil right ideal, then it
has a nonzero nil ideal, is still unsolved.

In [9, Theorem 2.2], Cohn proved that for reversible rings, Köthe’s conjecture
has an affirmative solution. In the next, we have a strong affirmative solution for
*-reversible *-rings.

Proposition 24. Every *-reversible *-ring which is not *-reduced, contains a
nonzero nilpotent ideal.

Proof. If R is not *-reduced and *-reversible *-ring, then R contains a nonzero *-
nilpotent element, say a. So that am D .aa�/n D 0, for some positive integersm and
n. If nD 1, we have am D aa� D 0 which implies r1am D r1a

m�1a� D 0 for every
r1 2 R. From the *-reversibility of R, we get ar1am�1 D 0. Again r2ar1am�1 D

r2ar1a
m�2a�D 0 implies ar2ar1am�2D 0 for every r1; r2 2R. Continuing, we get

.RaR/m D 0; that is the ideal generated by a is a nonzero nilpotent ideal. If n > 1,
we have aa�¤ 0. Since .aa�/nD 0, then r1.aa�/nD 0 gives .aa�/r1.aa�/n�1D 0

due to the self-adjointness of aa� and using the *-reversible property. As before,
we get .Raa�R/n D 0; that is the *-ideal generated by aa� is a nonzero nilpotent
ideal. �

Corollary 6. In a *-reversible *-ring R, if R has a non-zero nil right ideal, then
it has a nonzero nil ideal.

Corollary 7. Each semiprime *-reversible *-ring is *-reduced.

CONCLUSION

We can now sate the following implications in the class of rings with involution.
*-reduced properks +3 semiproper

��

Abelian

��
domain +3 reduced +3

KS

reversible +3

��

reflexive +3

��

+3 idempotent reflexive

��
*-domain +3 *-reversible +3

��

*-reflexive +3 projection *-reflexive

*-IFP +3 IFP +3 quasi-*-IFP +3 *-Abelian

KS
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