REVERSIBLE AND REFLEXIVE PROPERTIES FOR RINGS WITH INVOLUTION

USAMA A. ABURAWASH AND MUHAMMAD SAAD
Received 22 September, 2018

Abstract

In this note, we give a generalization for the class of *-IFP rings. Moreover, we introduce $*$-reversible and *-reflexive $*$-rings, which represent the involutive versions of reversible and reflexive rings and expose their properties. Nevertheless, the relation between these rings and those without involution are indicated. Moreover, a nontrivial generalization for *-reflexive *-rings is given. Finally, in *-reversible *-rings it is shown that each nilpotent element is *nilpotent and Köthe's conjecture has a strong affirmative solution.

2010 Mathematics Subject Classification: 16W10; 16N60; 16D25
Keywords: involution, quasi-*-IFP, *-reduced, *-nilpotent, *-reversible, *-reflexive and projection *-reflexive

1. Introduction

All rings considered are associative with unity. A *-ring R will denote a ring with involution and a self-adjoint ideal I of R; that is $I^{*}=I$, is called ${ }^{*}$-ideal. A projection e of R is an idempotent satisfies $e^{2}=e=e^{*}$. Recall from [7], an idempotent $e \in R$ is left (resp. right) semicentral in R if $e R e=R e$ (resp. $e R e=e R$). Equivalently, an idempotent $e \in R$ is left (resp. right) semicentral in R if $e R$ (resp. $R e$) is an ideal of R. Moreover, if R is semiprime then every left (resp. right) semicentral idempotent is central. A semicentral projection is clearly central. A ring (resp. *-ring) R is said to be Abelian (resp. *-Abelian) if all its idempotents (resp. projections) are central. R is reduced if it has no nonzero nilpotent elements. An involution * is called proper (resp. semiproper) if for every nonzero element a of $R, a a^{*}=0$ (resp. $a R a^{*}=0$) implies $a=0$. Obviously, a proper involution is semiproper.

From [5], R is semicommutative or has IFP if the right annihilator $r(a)=\{x \in$ $A \mid a x=0\}$ of every element $a \in R$ is a two-sided ideal. In [1], the involutive version of IFP, that is $*_{-I F P}$, is given as the ring in which the right annihilator of each element of R is *-ideal. Clearly, each *-ring having $*$-IFP has also IFP.

Cohn [9] called a ring R reversible (or completely reflexive) if $a b=0$ implies $b a=0$ for every $a, b \in R$. Clearly, the class or reversible rings contains the reduced
rings. Moreover, each reversible ring has IFP. Moreover, in [9, Theorem 2.2], Cohn proved that for reversible rings, Köthe's conjecture has an affirmative solution. Here, we give a strong affirmative solution for Köthe's conjecture for *-reversible *-rings and show that each nilpotent element is *-nilpotent.

In [13], Mason introduced a generalization of reversible rings; namely reflexive rings. A right ideal I of a ring R is said to be reflexive if $a R b \subseteq I$ implies $b R a \subseteq I$, for every $a, b \in R$. A ring R is called reflexive if 0 is a reflexive ideal. In [10], Kim and Baik defined an idempotent reflexive ideal as a right ideal I satisfying $a \operatorname{Re} \subseteq I$ if and only if $e R a \subseteq I$ for $e^{2}=e, a \in R . R$ is an idempotent reflexive ring if 0 is an idempotent reflexive ideal. Obviously, the class of idempotent reflexive rings contains reflexive rings and Abelian rings.

A subring B of a *-ring R is said to be a *-biideal,or self adjoint biideal, of R if $B R B \subseteq B$ and $B^{*}=B$.

Recall from [2], a nonzero element a of a $*$-ring R is a $*$-zero divisor if $a b=0$ and $a^{*} b=0$ for some nonzero element $b \in R$. Obviously, a $*$-zero divisor element is a zero divisor, but the converse is not true (example 3 in [2]). $\mathrm{A} *$-ring without *-zero divisors is said to be a *-domain.

Recall from [3], an element a of a $*$-ring R is said to be $*$-nilpotent if there exist two positive integers m and n such that $a^{m}=0$ and $\left(a a^{*}\right)^{n}=0 . R$ is a *-reduced *-ring if it has no nonzero *-nilpotent elements; equivalently $a^{2}=a a^{*}=0$ implies $a=0$ for every $a \in R$. A reduced (or $*$-domain) $*$-ring with proper involution is *-reduced. Moreover, every $*$-reduced ${ }^{*}$-ring is semiprime.

From [4], the *-right annihilator of a nonempty subset S of a *-ring R is the self adjoint biideal $r_{*}(S)=\left\{x \in A \mid S x=0=S x^{*}\right\}$. Finally, $M_{n}(R)$ will denote the full matrix ring of all $n \times n$ matrices over R.

2. *-RINGS WITH QUASI-*-IFP

In this section, we introduce the property of having quasi-*-IFP which generalizes that of having *-IFP introduced in [1].

Definition 1. A*-ring R is said to have quasi-*-IFP if for every $a \in R$, the *-right annihilator $r_{*}(a)$ is a $*$-ideal of R.

In view of $l_{*}(a)=r_{*}\left(a^{*}\right)$, we see that the *-left annihilator is also *-ideal. Thus the definition of quasi-*-IFP *-ring is left-right symmetric.

Clearly, every *-ring R having *-IFP has also quasi-*-IFP, since $r(a)$ is *-ideal implies $r_{*}(a)=r(a)$ for all $a \in A$. However, the converse is not true as shown by the following example.

Example 1. Consider the $*$-ring $R=\left(\begin{array}{cc}F & F \\ 0 & F\end{array}\right)$, where F is a field and the adjoint of matrices is the involution. Since $r\left(\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)\right)=\left(\begin{array}{cc}0 & 0 \\ 0 & F\end{array}\right)$ is not an ideal of R, then R does not have IFP and consequently does not have *-IFP. Moreover, R has quasi-*-IFP since the $*$-right annihilator of every nonzero noninvertible element of R takes the form $\left(\begin{array}{ll}0 & F \\ 0 & 0\end{array}\right)$ which is a *-ideal of R.

The following are some equivalents for a *-ring to have quasi-*-IFP.
Proposition 1. For $a *$-ring R, the following conditions are equivalent:
(1) R has quasi-*-IFP.
(2) $r_{*}(S)$ is $a *$-ideal of R for every subset S of R.
(3) $l_{*}(S)$ is $a *$-ideal of R for every subset S of R.
(4) For every $a, b \in R, a b=a b^{*}=0$ implies $a R b=0$ (consequently $a R b^{*}=0$)

Proof. (1) $\Rightarrow(2)$: For every $S \subseteq R, r_{*}(S)=\bigcap_{s \in S} r_{*}(s)$ being the intersection of *-ideals is also a *-ideal.
$(2) \Rightarrow(3)$: $\operatorname{From}(2), l_{*}(S)=r_{*}\left(S^{*}\right)$ is a $*$-ideal of R.
(3) \Rightarrow (4): $a b=a b^{*}=0$ implies $b^{*} a^{*}=b a^{*}=0$ and consequently $b, b^{*} \in l_{*}\left(a^{*}\right)$ which is a *-ideal of R. Hence $b R, b^{*} R \subseteq l_{*}\left(a^{*}\right)$ from which $b R a^{*}=b^{*} R a^{*}=0$ and therefore $a R b=a R b^{*}=0$.
$(4) \Rightarrow(1)$: Let $x \in r_{*}(a)$, which is a self-adjoint biideal of R, then $a x=a x^{*}=0$ implies $a R x=a R x^{*}=0$, form the assumption. Hence $R x \subseteq r_{*}(a)$ which means that $r_{*}(a)$ is a left ideal of R. Therefore $r_{*}(a)$ is a *-ideal due to its self-adjointness.

The following results show that quasi-*-IFP implies *-Abelian while the converse is not true.

Proposition 2. Every *-ring with quasi-*-IFP is *-Abelian.
Proof. Let e be a projection in R, then $(1-e) e=(1-e) e^{*}=0$ implies $(1-$ e) $R e=0$, from Proposition 1. Hence e is a left semicentral projection and consequently is central.

Moreover, The next example shows that the converse of Proposition 2 is not true.
Example 2. Let F be a field of characteristic 2 and consider the $*$-ring $R=$ $\left\{\left.\left(\begin{array}{cccc}a & a_{12} & a_{13} & a_{14} \\ 0 & a & a_{23} & a_{24} \\ 0 & 0 & a & a_{34} \\ 0 & 0 & 0 & a\end{array}\right) \right\rvert\, a, a_{i j} \in F\right\}, \quad$ with involution defined as
$\left(\begin{array}{cccc}a & a_{12} & a_{13} & a_{14} \\ 0 & a & a_{23} & a_{24} \\ 0 & 0 & a & a_{34} \\ 0 & 0 & 0 & a\end{array}\right)=\left(\begin{array}{cccc}a & a_{34} & a_{24} & a_{14} \\ 0 & a & a_{23} & a_{13} \\ 0 & 0 & a & a_{12} \\ 0 & 0 & 0 & a\end{array}\right)$.
Since for the matrices $x=\left(\begin{array}{cccc}0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$ and $y=\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right)$,
we have $x y=0=x y^{*}$, while
$x z y=\left(\begin{array}{cccc}0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)\left(\begin{array}{cccc}a & a_{12} & a_{13} & a_{14} \\ 0 & a & a_{23} & a_{24} \\ 0 & 0 & a & a_{34} \\ 0 & 0 & 0 & a\end{array}\right)\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right)=$
$\left(\begin{array}{cccc}0 & 0 & 0 & a_{23} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right) \neq 0$, for every $z \in R$ with $a_{23} \neq 0$, it follows that R does not
have quasi-*-IFP, by Proposition 1. Moreover R is $*$-Abelian since for any projec-
tion $e=\left(\begin{array}{cccc}a & a_{12} & a_{13} & a_{14} \\ 0 & a & a_{23} & a_{24} \\ 0 & 0 & a & a_{34} \\ 0 & 0 & 0 & a\end{array}\right), e^{2}=e^{*}=e$ implies $a_{11}=a_{12}=a_{13}=a_{21}=$ $a_{22}=a_{33}=0$ and $a^{2}=a$, so that R has no nontrivial projections.

Next, we answer the question of when a $*$-ring with quasi-*-IFP is $*$-reduced.
 reduced.

Proof. Let R be a semiprime *-ring having quasi-*-IFP. Set $a^{2}=a a^{*}=0$ for some $a \in R$, then $a R a=a R a^{*}=0$, from Proposition 1 . Since R is semiprime, then $a=0$ and R is *-reduced.

Finally, one can easily show that the class of *-rings having quasi-*-IFP is closed under direct sums (with changeless involution) and under taking *-subrings.

Proposition 4. The class of *-rings having quasi-*-IFP is closed under direct 2 sums and under taking *-subrings.

3. *-REVERSIBLE *-RINGS

Definition 2. An ideal I of a *-ring R is called $*_{\text {-reversible }}$ if $a b, a b^{*} \in I$ implies $b a \in I$, for every $a, b \in R$.

It is obvious that if I is *-reversible then $a b, a b^{*} \in I$ implies also $b^{*} a \in I$, for every $a, b \in R$.

We note the following:

- A one-sided *-reversible ideal must be two-sided ideal.
- The *-reversible ideal may not be self adjoint according to the following example.
Example 3. Let R be the $*_{\text {-ring in }}$ Example 1. The ideal $I=\left(\begin{array}{cc}F & F \\ 0 & 0\end{array}\right)$ is $*_{-}$ reversible but not self-adjoint

Definition 3. A *-ring R is said to be *-reversible if 0 is a *-reversible ideal of R; that is $a b=a b^{*}=0$ implies $b a=0$ (consequently $b^{*} a=0$), for every $a, b \in R$.

Example 4. Every *-domain is a *-reversible *-ring.
It is clear that every reversible ring with involution is *-reversible. But the converse is not always true as shown by the next example.

Example 5. Let R be the *-ring in Example 1. R is not reversible since the matrices $\alpha=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ and $\beta=\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)$ satisfy $\alpha \beta=0$ while $\beta \alpha \neq 0$. Moreover, it easy to check that R is *-reversible.

The following are some equivalents for a *-ring to be *-reversible.
Proposition 5. For $a *$-ring R, the following statements are equivalent.
(i) R is *-reversible.
(ii) $r_{*}(S)=l_{*}(S)$ for every subset S of R.
(iii) $r_{*}(a)=l_{*}(a)$ for every element $a \in R$.
(iv) For any two nonempty subsets A and B of $R, A B=A B^{*}=0$ implies $B A=$ 0 (consequently $B^{*} A=0$).

Proof. $(i) \Rightarrow(i i)$: Let $x \in r_{*}(S)$, then $s x=s x^{*}=0$ for every $s \in S$. Since R is *-reversible, we have $x s=x^{*} s=0$ for every $s \in S$. Hence, $x S=x^{*} S$ implies $x \in$ $l_{*}(S)$ and we get $r_{*}(S) \subseteq l_{*}(S)$. Similarly, $l_{*}(S) \subseteq r_{*}(S)$ and $r_{*}(S)=l_{*}(S)$ follows.
$(i i) \Rightarrow(i i i)$ is direct by considering S as the singleton set $\{a\}$.
(iii) $\Rightarrow(i v)$: Set $A B=A B^{*}=0$ for some nonempty subsets A and B of R. Then $a b=a b^{*}=0$ for every $a \in A$ and $b \in B$, and hence $b \in r_{*}(a)=l_{*}(a)$ from the condition. Therefore $b a=b^{*} a=0=0$ for every $a \in A$ and $b \in B$ which implies $B A=B^{*} A=0$.
$(i v) \Rightarrow(i)$ is direct by considering A and B as the singleton sets containing a and b, respectively.

The question when does a *-reversible *-ring become reversible has been answered in the following proposition.

Proposition 6. Let R be $a *$-reversible ${ }^{*}$-ring and either

(1) R has *-IFP, or
(2) $*$ is proper.

Then, R is reversible.
Proof. (1) Let R have *-IFP and $a b=0$ for some $a, b \in R$. Then, by [1, Proposition 7], $a R b^{*}=0$ and hence $a b^{*}=0$. The *-reversibility of R implies $b a=0$ and R is reversible.
(2) Let the involution * be proper and $a b=0$ for some $a, b \in R$. Then $a\left(b b^{*}\right)=$ $a\left(b b^{*}\right)^{*}=0$ and hence $b b^{*} a=0$ from the *-reversibility of R. Now $\left(a^{*} b\right)\left(a^{*} b\right)^{*}=a^{*} b b^{*} a=0$ implies $a^{*} b=b^{*} a=0$, since ${ }^{*}$ is proper. Finally, by the *-reversibility of $R, b^{*} a a^{*}=0$ implies $a a^{*} b^{*}=0$ and $(b a)(b a)^{*}=b a a^{*} b^{*}=0$ implies $b a=0$. Hence R is reversible.

Now, we see that each *-reversible *-ring has quasi-*-IFP.
Proposition 7. Every *-reversible *-ring has quasi-*-IFP.
Proof. Let $a b=a b^{*}=0$ for some elements a, b of a *-reversible *-ring R. Using the *-reversibility of R, we have $b a=b^{*} a=0$ which implies $b a r=b^{*} a r=0$. Again, by the *-reversibility of R, $a r b=a r b^{*}=0$ for every $r \in R$. Therefore $a R b=a R b^{*}=0$ which means that R has quasi-*-IFP, by Proposition 1.

From Propositions 7 and 2, we get the following.
Corollary 1. Every ${ }^{*}$-reversible ${ }^{*}$-ring is $*$-Abelian.
However, the next example shows that the converse of the previous proposition and its corollary is not always true.

Example 6. Let D be a commutative domain. Then the ring

$$
R=\left\{\left.\left(\begin{array}{ccc}
a & b & d \\
0 & a & c \\
0 & 0 & a
\end{array}\right) \right\rvert\, a, b, c, d \in D\right\}
$$

has IFP, by [11, Proposition 1.2]. Define an involution $*$ on R as $\left(\begin{array}{lll}a & b & d \\ 0 & a & c \\ 0 & 0 & a\end{array}\right)^{*}=\left(\begin{array}{ccc}a & c & -d \\ 0 & a & b \\ 0 & 0 & a\end{array}\right)$. One can easily check that R has quasi-*-IFP and hence is *-Abelian. But R is not $*$-reversible since the elements $\alpha=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ and $\beta=\left(\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ of R satisfy $\alpha \beta=\alpha \beta^{*}=0$ but $\beta \alpha=\left(\begin{array}{ccc}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right) \neq 0$

Moreover, if the involution * is proper then the properties IFP, *-IFP, quasi-*-IFP, *-reversibility and reducedness are identical as shown in the following result.

Proposition 8. Let R be $a *$-ring and the involution $*$ is proper. Then the following conditions are equivalent:
(1) R is *-reversible
(2) R has quasi-*-IFP.
(3) R has IFP.
(4) R has *-IFP.
(5) R is reduced.

Proof. (3),(4) and (5) are equivalent from [1, Proposition 9].
$(1) \Rightarrow(2)$ is direct from Proposition 7.
$(2) \Rightarrow(3)$: Let $a b=0$ for some $a, b \in R$. Then $a\left(b b^{*}\right)=a\left(b b^{*}\right)^{*}=0$ implies $a R b b^{*}=0$ from the quasi-*-IFP of R. Now $(\operatorname{arb})(a r b)^{*}=a r b b^{*} r^{*} a^{*}=0$ implies $a r b=0$ fore every $r \in R$ since * is proper. Therefore $a R b=0$ and so R has IFP.
(5) $\Rightarrow(1)$: Let $a b=a b^{*}=0$ for some $a, b \in R$, then $(b a)^{2}=b a b a=0$ and $\left(b^{*} a\right)^{2}=b^{*} a b^{*} a=0$. Hence, $b a=b^{*} a=0$ from the reducedness of R and so R is $*$-reversible.

Next, we discuss the converse of Example 4; that is when a *-reversible *-ring is *-domain.

Proposition 9. $A *$-ring is $a *$-domain if and only if R is ${ }^{*}$-prime and ${ }^{*}$-reversible.
Proof. First, Suppose that R is a *-domain, hence R is obviously *-reversible. Let $I J=0$ for some ${ }^{*}$-ideals I and J of R, then $a b=a b^{*}=0$ for every $a \in I$ and $b \in J$. Hence, either $a=0$ or $b=0$ which implies $I=0$ or $J=0$ and so R is *-prime. Conversely, let R be both *-prime and *-reversible and $a b=a^{*} b=0$ for some $0 \neq a, b \in R$. We have $r^{*} b^{*} a^{*}=r^{*} b^{*} a=0$ for every $r \in R$ and so $a^{*} r^{*} b^{*}=a r^{*} b^{*}=0$ for every $r \in R$ from the *-reversibility of R, which gives $b R a=b R a^{*}=0$. Since R is *-prime and $a \neq 0$, we get $b=0$, by [[6], Proposition 5.4], and so R has no $*$-zero divisors; that is a $*$-domain.

As a consequence, we get Proposition 4 in [3] as a corollary.
Corollary 2 ([3], Proposition 4). If R is a reduced *-prime *-ring, then R is *-domain.

For a *-ring R, the trivial extension of R, denoted by $T(R, R)$, is the ring $\left\{\left.\left(\begin{array}{cc}a & b \\ 0 & a\end{array}\right) \right\rvert\, a, b \in R\right\}$. One can define the componentwise involution $\left(\begin{array}{cc}a & b \\ 0 & a\end{array}\right)^{*}=$ $\left(\begin{array}{cc}a^{*} & b^{*} \\ 0 & a^{*}\end{array}\right)$ to make $T(R, R)$ a ${ }^{*}$-ring.

Proposition 10. Let R be $a{ }^{*}$-reduced ${ }^{*}$-ring. If R is ${ }^{*}$-reversible, then $T(R, R)$ is $a *$-reversible $*$-ring.

Proof. Let $\left(\begin{array}{cc}a & b \\ 0 & a\end{array}\right)\left(\begin{array}{cc}\alpha & \beta \\ 0 & \alpha\end{array}\right)=\left(\begin{array}{cc}a & b \\ 0 & a\end{array}\right)\left(\begin{array}{cc}\alpha^{*} & \beta^{*} \\ 0 & \alpha^{*}\end{array}\right)=\left(\begin{array}{cc}0 & 0 \\ 0 & 0\end{array}\right)$. Then $a \alpha=a \alpha^{*}=0$ and $a \beta+b \alpha=a \beta^{*}+b \alpha^{*}=0$. Since R is *-reversible then $\alpha a=$ $\alpha^{*} a=0$. By the ${ }^{*}$-reversibility of R, it is easy to see that $a R \alpha=0$. Now $0=$ $a \beta+b \alpha=\alpha(a \beta+b \alpha)=\alpha b \alpha$ and $0=a \beta^{*}+b \alpha^{*}=a \beta^{*} \alpha+b \alpha^{*} \alpha=b \alpha^{*} \alpha$. Hence $(b \alpha)^{2}=b \alpha b \alpha=0$ and $(b \alpha)(b \alpha)^{*}=b \alpha \alpha^{*} b^{*}=0$. Then $b \alpha=0$ because R is $*_{-}$ reduced and therefore $a \beta=0$. Similarly, one can show that $b \alpha^{*}=0$ and $a \beta^{*}=0$. Using the *-reversibility of R again we get $\alpha b=\alpha^{*} b=\beta a=\beta^{*} a=0$ which implies $\begin{aligned} & \left(\begin{array}{cc}\alpha & \beta \\ 0 & \alpha\end{array}\right) \\ & \text { *-reversible *-ring. }\end{aligned}\left(\begin{array}{cc}a & b \\ 0 & a\end{array}\right)=\left(\begin{array}{cc}\alpha^{*} & \beta^{*} \\ 0 & \alpha^{*}\end{array}\right)\left(\begin{array}{ll}a & b \\ 0 & a\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$. Thus $T(R, R)$ is a

Furthermore, one can easily show that the class of *-reversible *-rings is closed under direct sums (using changeless involution) and taking *-subrings.

Proposition 11. The class of *-reversible *-rings is closed under direct sums and under taking *-subrings.

4. *-REFLEXIVE *-RINGS

In this section, we introduce the involute version of reflexive ideals and rings defined by Mason [13] and study the relation between these rings and the *-reversible rings introduced in the previous section.

Definition 4. A ideal I of a ${ }^{*}$-ring R is called *-reflexive if for every $a, b \in R$, $a R b, a R b^{*} \subseteq I$ implies $b R a \subseteq I$ (consequently $b^{*} R a \subseteq I$). A *-ring R is said to be $*$-reflexive if 0 is a $*$-reflexive ideal of R.

By the way, the ideal in the previous definition can not be one sided since for every $a \in I$ satisfying $a R \subseteq I$ implies $R a \subseteq I$ by taking $b=1$. Also, this ideal need not be self-adjoint by Example 3.

Example 7. Every *-reduced *-ring is *-reflexive.
It is evident that every reflexive *-ring is *-reflexive. However, the next example shows that the converse is not true.

Example 8. Let D be a commutative domain and $R=\left\{\left.\left(\begin{array}{ccc}\alpha & \beta & \delta \\ 0 & \alpha & \gamma \\ 0 & 0 & \alpha\end{array}\right) \right\rvert\, \alpha, \beta, \gamma, \delta \in\right.$ $D\} . R$ is not reflexive according to [12, Example 2.3]. Define the involution $*$: $\left(\begin{array}{lll}\alpha & \beta & \delta \\ 0 & \alpha & \gamma \\ 0 & 0 & \alpha\end{array}\right) \rightarrow\left(\begin{array}{ccc}\alpha & \gamma & \delta \\ 0 & \alpha & \beta \\ 0 & 0 & \alpha\end{array}\right)$. It is easy to check that R is $*$-reversible and in particular is $*$-reflexive.

Lemma 1. Let R be a ring with semiproper involution *. Then $a R b=0$ implies $a R b^{*}=b R a=b^{*} R a=0$.

Proof.

$$
\begin{gathered}
\left(a r b^{*}\right) R\left(a r b^{*}\right)^{*}=a r b^{*} R b r^{*} a^{*} \subseteq a R b r^{*} a^{*}=0, \\
\text { for every } r \in R \text { implies } a R b^{*}=0,
\end{gathered}
$$

$(b r a) R(b r a)^{*}=b r a R a^{*} r^{*} b^{*} \subseteq b r a R b^{*}=0$, for every $r \in R$ implies $b R a=0$ and
$\left(b^{*} r a\right) R\left(b^{*} r a\right)^{*}=b r a R a^{*} r^{*} b \subseteq b r a R b=0$, for every $r \in R$ implies $b^{*} R a=0$.

Corollary 3. Every *-ring with semiproper involution is reflexive (and hence *reflexive).

The converse of the previous corollary is not necessary true as shown in the next example.

Example 9. If F is a field, then the ring $R=F \oplus F^{o p}$, with the exchange involution * defined by $(a, b)^{*}=(b, a)$ for all $a, b \in R$, is obviously a reflexive and hence *-reflexive but * is not semiproper. Indeed, the element $0 \neq \alpha=(0, a)$ for some nonzero element a of F satisfies $\alpha R \alpha^{*}=0$.

In the following proposition, we state some equivalent definitions for a $*$-ring to be *-reflexive .

Proposition 12. For $a *$-ring R, the following statements are equivalent :
(i) R is *-reflexive.
(ii) $r_{*}(a R)=l_{*}(R a)$ for every $a \in R$.
(iii) For any two nonempty subsets A and B of $R, A R B=A R B^{*}=0$ implies $B R A=B^{*} R A=0$.

Proof. (i$) \Rightarrow(\mathrm{ii})$: Let $x \in r_{*}(a R)$, then $a R x=a R x^{*}=0$. Hence $x R a=x^{*} R a=$ 0 , by the $*$-reflexivity of R, implies $x \in l_{*}(R a)$ and so $r_{*}(a R) \subseteq l_{*}(R a)$. Similarly, $l_{*}(a R) \subseteq r_{*}(R a)$ and we get $r_{*}(a R)=l_{*}(R a)$.
$(i i) \Rightarrow(i i i):$ Set $A R B=A R B^{*}=0$ for some subsets A and B of R. Then $a R b=a R b^{*}=0$ for every $a \in A$ and $b \in B$, and hence $b \in r_{*}(a R) \subseteq l_{*}(R a)$ from the condition. Therefore $b R a=b^{*} R a=0$ for every $a \in A$ and $b \in B$ which implies $B R A=b^{*} R A=0$.
(iii) $\Rightarrow(i)$ is direct by considering A and B as the singleton sets containing a and b, respectively..

The following proposition and example show that the class of *-reflexive *-rings generalizes strictly that of *-reversible *-rings.

Proposition 13. Every $*_{\text {-reversible }} *_{\text {-ring }}$ is ${ }^{\text {-reflexive }}$
Proof. Let $a R b=a R b^{*}=0$, then $a b=a b^{*}=0$ implies $r a b=r a b^{*}=0$, for every $r \in R$. So that $b r a=b^{*} r a$ for every $r \in R$, from the *-reversibility of R. Thus $b R a=b^{*} R a=0$ and hence R is *-reflexive.

Example 10. Let $n>2$ be an integer and $p \leq n$ be a prime number. The $*$-ring $R=\mathbb{M}_{n}\left(\mathbb{Z}_{p}\right)$, where $*$ is the transpose involution, is prime and hence reflexive (in particular *-reflexive). Moreover, R is not *-reversible. Indeed, the nonzero elements

$$
\begin{aligned}
& \alpha=e_{12}+e_{13}+\cdots+e_{1 n} \\
& \beta=e_{11}+e_{12}+\cdots+e_{1(n-1)}+2 e_{1 n}
\end{aligned}
$$

of R, where $e_{i j}$ is the square matrix of order n with 1 in the (i, j)-position and 0 elsewhere, satisfy $\alpha \beta=\alpha \beta^{*}=0$, while $\beta \alpha \neq 0$ and $\beta^{*} \alpha \neq 0$.

The question when a *-reflexive *-ring is *-reversible is answered in the following proposition.

Proposition 14. $A *$-ring R is *-reversible if and only if R has quasi-*-IFP and *-reflexive.

Proof. The necessity is obvious. For sufficiency, let $a b=a b^{*}=0$ for some $a, b \in$ R. Since R has quasi-*-IFP, then $a R b=a R b^{*}=0$. The *-reflexivity of R implies $b R a=b^{*} R a=0$. Hence $b a=b^{*} a=0$ and R is *-reversible.

In the next result we discuss when a principal right ideal generated by a projection in a *-reflexive $*$-ring is *-reflexive.

Proposition 15. Let e be a projection of a *-reflexive *-ring R. Then e is central if and only if e R is a *-reflexive *-ideal.

Proof. Let e be central and $a R b, a R b^{*} \subset e R$, then $a r b=e a r b$ and $a r b^{*}=$ $e a r b^{*}$ for every $r \in R$. Hence $(1-e) a R b=(1-e) a R b^{*}=0$ and consequently $(1-e) b R a=(1-e) b^{*} R a=0$, since R is *-reflexive and e is central. Hence $b R a, b^{*} R a \subseteq e R$ and $e R$ is *-reflexive ideal. The converse implication is clear since $e R$ is a *-ideal and so e is central.

Now, we show that *-reflexive property is extended to the *-corner.
Proposition 16. Let R be a *-reflexive *-ring, then the ${ }^{*}$-corner eRe for every projection e of R is also ${ }^{*}$-reflexive.

Proof. Let R be *-reflexive and $a=e x e, b=e y e \in e R e$ such that $a(e R e) b=$ $a(e R e) b^{*}=0$. Then exeReye $=$ exeRey $^{*} e=0$ implies eyeRexe $=e y^{*} e$ Rexe $=$ 0 , since R is *-reflexive. Therefore $b(e R e) a=b^{*}(e R e) a=0$ and so $e R e$ is *reflexive.

Next, we illustrate by example that *-reflexivity is not closed under taking *subrings.

Example 11. The ring $R=\mathbb{M}_{2}\left(\mathbb{Z}_{2}\right)$ is prime and hence reflexive. The upper triangular matrix ring $S=\left(\begin{array}{cc}\mathbb{Z}_{2} & \mathbb{Z}_{2} \\ 0 & \mathbb{Z}_{2}\end{array}\right)$ over \mathbb{Z}_{2} is a ${ }^{*}$-subring of R under the involution * defined as $\left(\begin{array}{ll}a & b \\ d & c\end{array}\right)^{*}=\left(\begin{array}{cc}c & -b \\ -d & a\end{array}\right) . R$ is clearly *-reflexive but S is not, since the elements $\alpha=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$ and $\beta=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ of R satisfy $\alpha R \beta=\alpha R \beta^{*}=0$ but $\beta R \alpha=\beta^{*} R \alpha=\left(\begin{array}{cc}0 & \mathbb{Z}_{2} \\ 0 & 0\end{array}\right) \neq 0$

We end this section by showing that the *-reflexivity is restricted from the full matrix ring to its underlying ring.

Proposition 17. If $\mathbb{M}_{n}(R)$ is a *-reflexive *-ring for some $n \geq 1$ and with the transpose involution ${ }^{*}$, then R is also $a *$-reflexive ${ }^{*}$-ring .

Proof. let $\mathrm{M}_{n}(R)$ be a $*$-reflexive *-ring for some $n \geq 1$. Since $R \cong e_{11} \mathrm{M}_{n}(R) e_{11}$, as *-rings, then R is *-reflexive, by Proposition 16.

5. Projection *-REFLEXIVE RINGS

In this last section, we give another generalization for the class of *-reflexive rings; that is projection $*$-reflexive $*$-rings.

In [10], Kim defines an idempotent reflexive ring R as the ring satisfying $a R e=0$ if and only if $e R a=0$ for every idempotent $e, a \in R$.

Definition 5. An ideal I of a *-ring R satisfies $a R e \subseteq I$ if and only if $e R a \subseteq I$ for every projection $e, a \in R$, is called projection ${ }^{*}$-reflexive. A *-ring R is called projection $*$-reflexive if 0 is a projection $*$-reflexive ideal.

The ideal I of the previous definition can not be one-sided ideal, because if I is a right ideal then $a R 1 \subseteq I$ for every $a \in I$ implies $1 R a \subseteq I$, since 1 is a projection. Moreover, the ideal I in the definition need not be self-adjoint; indeed, for a field F the *-ring $F \bigoplus F$ with the exchange involution, possesses the non self-adjoint projection *-reflexive ideal $(0, F)$.

It is evident from the definition that $*$-reflexive and idempotent reflexive $*$-rings are projection *-reflexive. Accordingly, we raise the following two questions.

- Is there a projection *-reflexive *-ring which is not idempotent reflexive?
- Is there a projection *-reflexive *-ring which is not *-reflexive?

The answers of these questions are in the following example.

Example 12. The *-ring $R=\left(\begin{array}{cc}F & F \\ 0 & F\end{array}\right)$ over a field F with the involution * defined by $\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)^{*}=\left(\begin{array}{cc}c & -b \\ 0 & a\end{array}\right)$, is projection *-reflexive because $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ and $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$ are the only projections of R. Clearly, R is not idempotent reflexive, since the idempotent $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ of R satisfies

$$
\left(\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
F & F \\
0 & F
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

while

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
F & F \\
0 & F
\end{array}\right)\left(\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & F \\
0 & 0
\end{array}\right) \neq 0
$$

Moreover, R is not *-reflexive, since

$$
\begin{gathered}
\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
F & F \\
0 & F
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)= \\
\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
F & F \\
0 & F
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
\end{gathered}
$$

while

$$
\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
F & F \\
0 & F
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & F \\
0 & 0
\end{array}\right)
$$

The proof of the following proposition, which gives an equivalent definition for projection $*$-reflexive $*$-rings, is straightforward.

Proposition 18. $A *$-ring R is projection *-reflexive if and only iffor any nonempty subset A and any projection e of $R, A R e=0$ implies e $R A=0$.

Obviously, every *-Abelian *-ring is projection *-reflexive and consequently every *-ring having quasi-*-IFP is also projection *-reflexive, by Proposition 2. However, the converse of this statement needs additional condition, as in the next proposition.

Proposition 19. $A *^{*}$-ring R is ${ }^{*}$-Abelian if and only if R is projection *-reflexive and satisfies $e R(1-e) R e=0$ for every projection e of R.

Proof. The necessity is obvious, For sufficiency, let e be an arbitrary projection of the projection *-reflexive *-ring R and $e R(1-e) R e=0$. By Proposition 18, we have $e \operatorname{Re} R(1-e)=0$ and taking involution gives $(1-e) R e R e=0$. Hence, $(1-e) R e=0$ which implies that e is semicentral, from [Lemma 1.1, [8]], and hence it is central. Thus R is *-Abelian

In the next result we show when a projection in a projection $*$-reflexive $*$-ring is central.

Proposition 20. Let R be a projection *-reflexive *-ring and e is a projection of R. Then the following are equivalent:
(i) e is central.
(ii) eR is a projection-*-reflexive *-ideal.

Proof. (i) $\Rightarrow(i i)$: Assume that $a R f \subset e R$ for some projection f of R. So that $\operatorname{arf}=\operatorname{earf}$ for every $r \in R$ and hence $(1-e) a R f=0$. Therefore $f R(1-e) a=$ $0=(1-e) f R a$, since R is projection *-reflexive, and consequently $f R a=e f R a \subseteq$ $e R$. Hence $e R$ is a projection-*-reflexive ideal.
(ii) $\Rightarrow(i)$: is clear since $e R$ is a -ideal and so e is central.

Corollary 4. If every principal *-ideal of R is projection *-reflexive, then R is *-Abelian.

Finally, Since the only projections of the $*$-corner $e R e$ is the projection e, then $e R e$ is projection *-reflexive if R is projection *-reflexive.

Proposition 21. Let R be a projection *-reflexive *-ring, then the *-corner eRe, for every projection e of R, is also projection *-reflexive.
6. *-NILPOTENCY IN *-REVERSIbLE *-RINGS

According to [3], in a *-ring R every *-nilpotent element is nilpotent but the converse is not always true as shown in [3, Example 2.2]. In the next, we give a sufficient condition that makes a nilpotent element *-nilpotent.

Proposition 22. In a *-reversible *-ring R, every nilpotent element is *-nilpotent.
Proof. Let a be a nilpotent element of a ${ }^{*}$-reversible *-ring R. Hence $a^{n}=0$, for some positive integer n, and multiplying by a^{*} form right, we get $a^{n-1}\left(a a^{*}\right)=0$. From the *-reversibility of R, we have $\left(a a^{*}\right) a^{n-1}=0$. Multiply again by a^{*} form right and apply the $*$-reversible property, we get $\left(a a^{*}\right) a^{n-2}=0$. Continuing this process, we get $\left(a a^{*}\right)^{n}=0$ and a is *-nilpotent.

However, the *-reversibility condition in the previous proposition is sufficient but not necessary as clear from Example 6. Indeed, the elements of the *-ideal $\left(\begin{array}{ccc}0 & D & D \\ 0 & 0 & D \\ 0 & 0 & 0\end{array}\right)$ are precisely all the nilpotent (which also *-nilpotent) elements of the ring R.

Corollary 5. Every *-reduced *-reversible *-ring is reduced.
By the definition of nilpotency, an element is nilpotent if and only if a power of it is also nilpotent. This is not the case for *-nilpotent elements as shown in the following examples.

Example 13. In the $*$-ring $R=\mathbb{M}_{2}(\mathbb{C})$ of 2×2 matrices with complex entries and transpose involution $*$, the element $a=\left(\begin{array}{cc}\frac{\sqrt{3}+l}{2} & 1 \\ 1 & \frac{\sqrt{3}-l}{2}\end{array}\right)$ satisfies $\left(a a^{*}\right)^{6}=$ $\left(\begin{array}{cc}-1 & 1 \\ 1 & -1\end{array}\right)$ which can not tend to zero ever with any power. Thus a is not $*-$ nilpotent, while $\left(a^{3}\left(a^{3}\right)^{*}\right)^{1}=\left(a^{3}\right)^{2}=0$ which means that a^{3} is *-nilpotent.

In the next, a sufficient condition is given to make *-nilpotency transfers between the element and its powers.

Lemma 2. In $a *$ - reversible $*_{\text {-ring }} R$, the element a is $*_{\text {-nilpotent }}$ if and only if a^{2} is ${ }^{*}$-nilpotent.

Proof. Let a be a *-nilpotent element of R, then $a^{n}=\left(a a^{*}\right)^{m}=0$, for some positive integers m and n. Now, $0=\left(a a^{*}\right)^{m}=a^{*}\left(a a^{*}\right)^{m}=a^{*}\left(a a^{*}\right)^{m-1}\left(a a^{*}\right)$ and from the *-reversibility of R, we get $0=\left(a a^{*}\right) a^{*}\left(a a^{*}\right)^{m-1}=a\left(a^{*}\right)^{2}\left(a a^{*}\right)^{m-1}$. Multiply the last equation by a from right to get $a\left(a^{*}\right)^{2} a\left(a^{*} a\right)^{m-2}\left(a^{*} a\right)=0$ and applying the *-reversible property again, we get $a^{*} a^{2}\left(a^{*}\right)^{2} a\left(a^{*} a\right)^{m-2}=0=$ $a^{*} a^{2}\left(a^{*}\right)^{2}\left(a a^{*}\right)^{m-2} a$. Multiply again by a^{*} from right and apply the *-reversibility, we get $a\left(a^{*}\right)^{2} a^{2}\left(a^{*}\right)^{2}\left(a a^{*}\right)^{m-2}=0$. Continuing, we get $\left(a^{2}\left(a^{*}\right)^{2}\right)^{m}=0$ and a^{2} is *-nilpotent.

For sufficiency, if a^{2} is *-nilpotent; that is $\left(a^{2}\right)^{n}=0=\left(a^{2}\left(a^{*}\right)^{2}\right)^{m}$ for some positive integers m and n, we get by the same procedure as above $\left(a^{*} a\right)^{4} m=0$ and a is *-nilpotent.

Proposition 23. In $a *_{-}$reversible $*_{\text {-ring }} R$, the element a is $*_{\text {-nilpotent }}$ if and only if a^{k} is also ${ }^{*}$-nilpotnet for every positive integer k.

Proof. The sufficient condition is clear. For the necessity, let a be a *-nilpotent element of R, then $a^{l}=\left(a a^{*}\right)^{n}=0$ for some positive integers l and n. We use induction on k to show that $a^{k}\left(a^{*}\right)^{k}$ is nilpotent. The case $k=2$ is clear from Lemma 2. Now, we have to show that $a^{k+1}\left(a^{*}\right)^{k+1}$ is also nilpotent if $a^{k}\left(a^{*}\right)^{k}$ is nilpotent. Now, if $0=\left(a^{k}\left(a^{*}\right)^{k}\right)^{m}=a^{k}\left(a^{*}\right)^{k}\left(a^{k}\left(a^{*}\right)^{k}\right)^{m-1}$, multiply by $\left(a^{*}\right)^{k+1} a$ from left and apply the *-reversibility, we get $\left(a^{*}\right)^{k}\left(a^{k}\left(a^{*}\right)^{k}\right)^{m-1}\left(a^{*}\right)^{k+1} a^{k+1}=0$. Multiply by a^{*} from left and take involution of both sides, we obtain $\left(a^{*}\right)^{k+1} a^{k+1}\left(a^{k}\left(a^{*}\right)^{k}\right)^{m-1} a^{k+1}=0$. The *-reversibility of R gives $a^{k}\left(a^{*}\right)^{k}\left(a^{k}\left(a^{*}\right)^{k}\right)^{m-2} a^{k+1}\left(a^{*}\right)^{k+1} a^{k+1}=0$. Multiplying by $\left(a^{*}\right)^{k+1} a$ from left gives $\left(a^{*}\right)^{k+1} a^{k+1}\left(a^{*}\right)^{k}\left(a^{k}\left(a^{*}\right)^{k}\right)^{m-2} a^{k+1}\left(a^{*}\right)^{k+1} a^{k+1}=0$ and the *-reversibility of R gives $\left(a^{*}\right)^{k}\left(a^{k}\left(a^{*}\right)^{k}\right)^{m-2} a^{k+1}\left(\left(a^{*}\right)^{k+1} a^{k+1}\right)^{2}=0$. Multiply again by $\left(a^{*}\right)^{k+1}$, we get $\left(a^{*}\right)^{k}\left(a^{k}\left(a^{*}\right)^{k}\right)^{m-2}\left(a^{k+1}\left(a^{*}\right)^{k+1}\right)^{3}=0$. Continuing, we get $\left(a^{*}\right)^{k}\left(a^{k+1}\left(a^{*}\right)^{k+1}\right)^{2 m-1}=0 \quad$ and multiplication by $a^{k+1} a^{*}$ gives $\left(a^{k+1}\left(a^{*}\right)^{k+1}\right)^{2 m}=0$.

Conjecture 1 (Köthe's conjecture). If a ring has a non-zero nil right ideal, then it has a nonzero nil ideal, is still unsolved.

In [9, Theorem 2.2], Cohn proved that for reversible rings, Köthe's conjecture has an affirmative solution. In the next, we have a strong affirmative solution for *-reversible *-rings.

Proposition 24. Every ${ }^{*}$-reversible ${ }^{*}$-ring which is not ${ }^{*}$-reduced, contains a nonzero nilpotent ideal.

Proof. If R is not *-reduced and *-reversible *-ring, then R contains a nonzero *nilpotent element, say a. So that $a^{m}=\left(a a^{*}\right)^{n}=0$, for some positive integers m and n. If $n=1$, we have $a^{m}=a a^{*}=0$ which implies $r_{1} a^{m}=r_{1} a^{m-1} a^{*}=0$ for every $r_{1} \in R$. From the *-reversibility of R, we get $a r_{1} a^{m-1}=0$. Again $r_{2} a r_{1} a^{m-1}=$ $r_{2} a r_{1} a^{m-2} a^{*}=0$ implies $a r_{2} a r_{1} a^{m-2}=0$ for every $r_{1}, r_{2} \in R$. Continuing, we get $(R a R)^{m}=0$; that is the ideal generated by a is a nonzero nilpotent ideal. If $n>1$, we have $a a^{*} \neq 0$. Since $\left(a a^{*}\right)^{n}=0$, then $r_{1}\left(a a^{*}\right)^{n}=0$ gives $\left(a a^{*}\right) r_{1}\left(a a^{*}\right)^{n-1}=0$ due to the self-adjointness of $a a^{*}$ and using the *-reversible property. As before, we get $\left(R a a^{*} R\right)^{n}=0$; that is the ${ }^{*}$-ideal generated by $a a^{*}$ is a nonzero nilpotent ideal.

Corollary 6. In a *-reversible $*_{\text {-ring }} R$, if R has a non-zero nil right ideal, then it has a nonzero nil ideal.

Corollary 7. Each semiprime $*$-reversible $*$-ring is $*$-reduced.

CONCLUSION

We can now sate the following implications in the class of rings with involution.

REFERENCES

[1] U. A. Aburawash and M. Saad, "On biregular, IFP and quasi-Baer *-rings," East-West J. Math., vol. 16, no. 2, pp. 182-192, 2014.
[2] U. A. Aburawash and K. B. Sola, "*-zero divisors and *-prime ideals," East-West J. Math., vol. 12, no. 1, pp. 27-31, 2010.
[3] U. A. Aburawash and M. Saad, "*-Baer property for rings with involution," Studia Sci. Math. Hungar, vol. 53, no. 2, pp. 243-255, 2016, doi: 10.1556/012.2016.53.2.1338.
[4] K. I. Beidar, L. Márki, R. Mlitz, and R. Wiegandt, "Primitive involution rings," Acta Mathematica Hungarica, vol. 109, no. 4, pp. 357-368, 2005, doi: 10.1007/S10474-005-0253-4.
[5] H. E. Bell, "Near-rings in which each element is a power of itself," Bull. Austral. Math. Soc., vol. 2, pp. 363-368, 1970, doi: 10.1017/S0004972700042052.
[6] G. F. Birkenmeier and N. J. Groenewald, "Prime ideals in rings with involution," Quaest. Math., vol. 20, no. 4, pp. 591-603, 1997, doi: 10.1080/16073606.1997.9632228.
[7] G. F. Birkenmeier, "Idempotents and completely semiprime ideals," Comm. Algebra, vol. 11, pp. 567-58, 1983, doi: 10.1080/00927878308822865.
[8] G. F. Birkenmeier, J. Y. Kim, and J. K. Park, "Quasi-Baer ring extensions and biregular rings," Bull. Austral. Math. Soc., vol. 61, no. 1, pp. 39-52, 2000, doi: 10.1017/S0004972700022000.
[9] P. M. Cohn, "Reversible rings," London Math. Soc., vol. 31, pp. 641-648, 1999, doi: 10.1112/S0024609399006116.
[10] J. Y. Kim and J. U. Baik, "On idempotent reflexive rings," Kyungpook Math. J., vol. 46, pp. 597601, 2006.
[11] N. K. Kima and Y. Lee, "Extensions of reversible rings," J. Pure App. Algebra, vol. 185, pp. 207-223, 2003, doi: 10.1016/S0022-4049(03)00109-9.
[12] T. K. Kwak and Y. Lee, "Reflexive property of rings," Comm. Algebra, vol. 40, no. 4, pp. 15761594, 2012, doi: 10.1080/00927872.2011.554474.
[13] G. Mason, "Reflexive ideals," Comm. Algebra, vol. 9, pp. 1709-1724, 1981, doi: 10.1080/00927878108822678.

Authors' addresses

Usama A. Aburawash

Alexandria University, Department of Mathematics and Computer Science, Alexandria, Egypt
E-mail address: aburawsh@alexu.edu.eg
Muhammad Saad
Alexandria University, Department of Mathematics and Computer Science, Alexandria, Egypt
E-mail address: muhammad.saad@alex-sci.edu.eg

