

REVERSIBLE AND REFLEXIVE PROPERTIES FOR RINGS WITH INVOLUTION

USAMA A. ABURAWASH AND MUHAMMAD SAAD

Received 22 September, 2018

Abstract. In this note, we give a generalization for the class of *-IFP rings. Moreover, we introduce *-reversible and *-reflexive *-rings, which represent the involutive versions of reversible and reflexive rings and expose their properties. Nevertheless, the relation between these rings and those without involution are indicated. Moreover, a nontrivial generalization for *-reflexive *-rings is given. Finally, in *-reversible *-rings it is shown that each nilpotent element is *nilpotent and Köthe's conjecture has a strong affirmative solution.

2010 Mathematics Subject Classification: 16W10; 16N60; 16D25

Keywords: involution, quasi-*-IFP, *-reduced, *-nilpotent, *-reversible, *-reflexive and projection *-reflexive

1. Introduction

All rings considered are associative with unity. A *-ring R will denote a ring with involution and a self-adjoint ideal I of R; that is $I^* = I$, is called *-ideal. A projection e of R is an idempotent satisfies $e^2 = e = e^*$. Recall from [7], an idempotent $e \in R$ is left (resp. right) semicentral in R if eRe = Re (resp. eRe = eR). Equivalently, an idempotent $e \in R$ is left (resp. right) semicentral in R if eR (resp. Re) is an ideal of R. Moreover, if R is semiprime then every left (resp. right) semicentral idempotent is central. A semicentral projection is clearly central. A ring (resp. *-ring) R is said to be Abelian (resp. *-Abelian) if all its idempotents (resp. projections) are central. R is reduced if it has no nonzero nilpotent elements. An involution * is called proper (resp. semiproper) if for every nonzero element a of R, $aa^* = 0$ (resp. $aRa^* = 0$) implies a = 0. Obviously, a proper involution is semiproper.

From [5], R is semicommutative or has IFP if the right annihilator $r(a) = \{x \in A\}$ A|ax=0 of every element $a \in R$ is a two-sided ideal. In [1], the involutive version of IFP, that is *-IFP, is given as the ring in which the right annihilator of each element of R is *-ideal. Clearly, each *-ring having *-IFP has also IFP.

Cohn [9] called a ring R reversible (or completely reflexive) if ab = 0 implies ba = 0 for every $a, b \in R$. Clearly, the class or reversible rings contains the reduced

© 2019 Miskolc University Press

rings. Moreover, each reversible ring has IFP. Moreover, in [9, Theorem 2.2], Cohn proved that for reversible rings, Köthe's conjecture has an affirmative solution. Here, we give a strong affirmative solution for Köthe's conjecture for *-reversible *-rings and show that each nilpotent element is *-nilpotent.

In [13], Mason introduced a generalization of reversible rings; namely reflexive rings. A right ideal I of a ring R is said to be *reflexive* if $aRb \subseteq I$ implies $bRa \subseteq I$, for every $a,b \in R$. A ring R is called *reflexive* if 0 is a reflexive ideal. In [10], Kim and Baik defined an *idempotent reflexive* ideal as a right ideal I satisfying $aRe \subseteq I$ if and only if $eRa \subseteq I$ for $e^2 = e, a \in R$. R is an *idempotent reflexive ring* if 0 is an idempotent reflexive ideal. Obviously, the class of idempotent reflexive rings contains reflexive rings and Abelian rings.

A subring B of a *-ring R is said to be a *-biideal, or self adjoint biideal, of R if $BRB \subseteq B$ and $B^* = B$.

Recall from [2], a nonzero element a of a *-ring R is a *-zero divisor if ab = 0 and a*b = 0 for some nonzero element $b \in R$. Obviously, a *-zero divisor element is a zero divisor, but the converse is not true (example 3 in [2]). A *-ring without *-zero divisors is said to be a *-domain.

Recall from [3], an element a of a *-ring R is said to be *-nilpotent if there exist two positive integers m and n such that $a^m = 0$ and $(aa^*)^n = 0$. R is a *-reduced *-ring if it has no nonzero *-nilpotent elements; equivalently $a^2 = aa^* = 0$ implies a = 0 for every $a \in R$. A reduced (or *-domain) *-ring with proper involution is *-reduced. Moreover, every *-reduced *-ring is semiprime.

From [4], the *-right annihilator of a nonempty subset S of a *-ring R is the self adjoint biideal $r_*(S) = \{x \in A | Sx = 0 = Sx^*\}$. Finally, $M_n(R)$ will denote the full matrix ring of all $n \times n$ matrices over R.

2. *-RINGS WITH QUASI-*-IFP

In this section, we introduce the property of having quasi-*-IFP which generalizes that of having *-IFP introduced in [1].

Definition 1. A *-ring R is said to have *quasi-*-IFP* if for every $a \in R$, the *-right annihilator $r_*(a)$ is a *-ideal of R.

In view of $l_*(a) = r_*(a^*)$, we see that the *-left annihilator is also *-ideal. Thus the definition of quasi-*-IFP *-ring is left-right symmetric.

Clearly, every *-ring R having *-IFP has also quasi-*-IFP, since r(a) is *-ideal implies $r_*(a) = r(a)$ for all $a \in A$. However, the converse is not true as shown by the following example.

Example 1. Consider the *-ring $R = \begin{pmatrix} F & F \\ 0 & F \end{pmatrix}$, where F is a field and the adjoint of matrices is the involution. Since $r \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & F \end{pmatrix}$ is not an ideal of R, then R does not have IFP and consequently does not have *-IFP. Moreover, R has quasi-*-IFP since the *-right annihilator of every nonzero noninvertible element of R takes the form $\begin{pmatrix} 0 & F \\ 0 & 0 \end{pmatrix}$ which is a *-ideal of R.

The following are some equivalents for a *-ring to have quasi-*-IFP.

Proposition 1. For a *-ring R, the following conditions are equivalent:

- (1) R has quasi-*-IFP.
- (2) $r_*(S)$ is a *-ideal of R for every subset S of R.
- (3) $l_*(S)$ is a *-ideal of R for every subset S of R.
- (4) For every $a, b \in R$, $ab = ab^* = 0$ implies aRb = 0 (consequently $aRb^* = 0$)

Proof. (1) \Rightarrow (2): For every $S \subseteq R$, $r_*(S) = \bigcap_{s \in S} r_*(s)$ being the intersection of *-ideals is also a *-ideal.

- (2) \Rightarrow (3): From (2), $l_*(S) = r_*(S^*)$ is a *-ideal of R.
- (3) \Rightarrow (4): $ab = ab^* = 0$ implies $b^*a^* = ba^* = 0$ and consequently $b, b^* \in l_*(a^*)$ which is a *-ideal of R. Hence $bR, b^*R \subseteq l_*(a^*)$ from which $bRa^* = b^*Ra^* = 0$ and therefore $aRb = aRb^* = 0$.
- $(4)\Rightarrow(1)$: Let $x \in r_*(a)$, which is a self-adjoint biideal of R, then $ax = ax^* = 0$ implies $aRx = aRx^* = 0$, form the assumption. Hence $Rx \subseteq r_*(a)$ which means that $r_*(a)$ is a left ideal of R. Therefore $r_*(a)$ is a *-ideal due to its self-adjointness. \square

The following results show that quasi-*-IFP implies *-Abelian while the converse is not true.

Proposition 2. Every *-ring with quasi-*-IFP is *-Abelian.

Proof. Let e be a projection in R, then $(1-e)e = (1-e)e^* = 0$ implies (1-e)Re = 0, from Proposition 1. Hence e is a left semicentral projection and consequently is central.

Moreover, The next example shows that the converse of Proposition 2 is not true.

Example 2. Let F be a field of characteristic 2 and consider the *-ring $R = \begin{cases} a & a_{12} & a_{13} & a_{14} \\ 0 & a & a_{23} & a_{24} \\ 0 & 0 & a & a_{34} \\ 0 & 0 & 0 & a \end{cases} | a, a_{ij} \in F$, with involution defined as

$$\begin{pmatrix} a & a_{12} & a_{13} & a_{14} \\ 0 & a & a_{23} & a_{24} \\ 0 & 0 & a & a_{34} \\ 0 & 0 & 0 & a \end{pmatrix}^* = \begin{pmatrix} a & a_{34} & a_{24} & a_{14} \\ 0 & a & a_{23} & a_{13} \\ 0 & 0 & a & a_{12} \\ 0 & 0 & 0 & a \end{pmatrix}.$$

have quasi-*-IFP, by Proposition 1. Moreover R is *-Abelian since for any projec-

tion
$$e = \begin{pmatrix} a & a_{12} & a_{13} & a_{14} \\ 0 & a & a_{23} & a_{24} \\ 0 & 0 & a & a_{34} \\ 0 & 0 & 0 & a \end{pmatrix}$$
, $e^2 = e^* = e$ implies $a_{11} = a_{12} = a_{13} = a_{21} = a_{22} = a_{33} = 0$ and $a^2 = a$, so that R has no nontrivial projections.

Next, we answer the question of when a *-ring with quasi-*-IFP is *-reduced.

Proposition 3. Let R be a semiprime *-ring having quasi-*-IFP, then R is *reduced.

Proof. Let R be a semiprime *-ring having quasi-*-IFP. Set $a^2 = aa^* = 0$ for some $a \in R$, then $aRa = aRa^* = 0$, from Proposition 1. Since R is semiprime, then a = 0 and R is *-reduced.

Finally, one can easily show that the class of *-rings having quasi-*-IFP is closed under direct sums (with changeless involution) and under taking *-subrings.

Proposition 4. The class of *-rings having quasi-*-IFP is closed under direct sums and under taking *-subrings.

3. *-REVERSIBLE *-RINGS

Definition 2. An ideal I of a *-ring R is called *-reversible if $ab, ab^* \in I$ implies $ba \in I$, for every $a, b \in R$.

It is obvious that if I is *-reversible then $ab, ab^* \in I$ implies also $b^*a \in I$, for every $a, b \in R$.

We note the following:

- A one-sided *-reversible ideal must be two-sided ideal.
- The *-reversible ideal may not be self adjoint according to the following example.

Example 3. Let R be the *-ring in Example 1. The ideal $I = \begin{pmatrix} F & F \\ 0 & 0 \end{pmatrix}$ is *-reversible but not self-adjoint

Definition 3. A *-ring R is said to be *-reversible if 0 is a *-reversible ideal of R; that is $ab = ab^* = 0$ implies ba = 0 (consequently $b^*a = 0$), for every $a, b \in R$.

Example 4. Every *-domain is a *-reversible *-ring.

It is clear that every reversible ring with involution is *-reversible. But the converse is not always true as shown by the next example.

Example 5. Let R be the *-ring in Example 1. R is not reversible since the matrices $\alpha = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ and $\beta = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$ satisfy $\alpha\beta = 0$ while $\beta\alpha \neq 0$. Moreover, it easy to check that R is *-reversible.

The following are some equivalents for a *-ring to be *-reversible.

Proposition 5. For a *-ring R, the following statements are equivalent.

- (i) R is *-reversible.
- (ii) $r_*(S) = l_*(S)$ for every subset S of R.
- (iii) $r_*(a) = l_*(a)$ for every element $a \in R$.
- (iv) For any two nonempty subsets A and B of R, $AB = AB^* = 0$ implies BA = 0 (consequently $B^*A = 0$).

Proof. (i) \Rightarrow (ii): Let $x \in r_*(S)$, then $sx = sx^* = 0$ for every $s \in S$. Since R is *-reversible, we have $xs = x^*s = 0$ for every $s \in S$. Hence, $xS = x^*S$ implies $x \in l_*(S)$ and we get $r_*(S) \subseteq l_*(S)$. Similarly, $l_*(S) \subseteq r_*(S)$ and $r_*(S) = l_*(S)$ follows.

- $(ii) \Rightarrow (iii)$ is direct by considering S as the singleton set $\{a\}$.
- $(iii) \Rightarrow (iv)$: Set $AB = AB^* = 0$ for some nonempty subsets A and B of R. Then $ab = ab^* = 0$ for every $a \in A$ and $b \in B$, and hence $b \in r_*(a) = l_*(a)$ from the condition. Therefore $ba = b^*a = 0 = 0$ for every $a \in A$ and $b \in B$ which implies $BA = B^*A = 0$.
- $(iv) \Rightarrow (i)$ is direct by considering A and B as the singleton sets containing a and b, respectively.

The question when does a *-reversible *-ring become reversible has been answered in the following proposition.

Proposition 6. Let R be a *-reversible *-ring and either

- (1) R has *-IFP, or
- (2) * is proper.

Then, R is reversible.

Proof. (1) Let R have *-IFP and ab = 0 for some $a, b \in R$. Then, by [1, Proposition 7], $aRb^* = 0$ and hence $ab^* = 0$. The *-reversibility of R implies ba = 0 and R is reversible.

(2) Let the involution * be proper and ab = 0 for some $a, b \in R$. Then $a(bb^*) = a(bb^*)^* = 0$ and hence $bb^*a = 0$ from the *-reversibility of R. Now $(a^*b)(a^*b)^* = a^*bb^*a = 0$ implies $a^*b = b^*a = 0$, since * is proper. Finally, by the *-reversibility of R, $b^*aa^* = 0$ implies $aa^*b^* = 0$ and $(ba)(ba)^* = baa^*b^* = 0$ implies ba = 0. Hence R is reversible.

Now, we see that each *-reversible *-ring has quasi-*-IFP.

Proposition 7. Every *-reversible *-ring has quasi-*-IFP.

Proof. Let $ab = ab^* = 0$ for some elements a, b of a *-reversible *-ring R. Using the *-reversibility of R, we have $ba = b^*a = 0$ which implies $bar = b^*ar = 0$. Again, by the *-reversibility of R, $arb = arb^* = 0$ for every $r \in R$. Therefore $aRb = aRb^* = 0$ which means that R has quasi-*-IFP, by Proposition 1.

From Propositions 7 and 2, we get the following.

Corollary 1. Every *-reversible *-ring is *-Abelian.

However, the next example shows that the converse of the previous proposition and its corollary is not always true.

Example 6. Let D be a commutative domain. Then the ring

$$R = \left\{ \begin{pmatrix} a & b & d \\ 0 & a & c \\ 0 & 0 & a \end{pmatrix} | a, b, c, d \in D \right\}$$

has IFP, by [11, Proposition 1.2]. Define an involution * on R as $\begin{pmatrix} a & b & d \\ 0 & a & c \\ 0 & 0 & a \end{pmatrix}^* = \begin{pmatrix} a & c & -d \\ 0 & a & b \\ 0 & 0 & a \end{pmatrix}$. One can easily check that R has quasi-*-IFP

and hence is *-Abelian. But *R* is not *-reversible since the elements $\alpha = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$

and
$$\beta = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 of R satisfy $\alpha\beta = \alpha\beta^* = 0$ but $\beta\alpha = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \neq 0$

Moreover, if the involution * is proper then the properties IFP, *-IFP, quasi-*-IFP, *-reversibility and reducedness are identical as shown in the following result.

Proposition 8. Let R be a *-ring and the involution * is proper. Then the following conditions are equivalent:

- (1) R is *-reversible
- (2) R has quasi-*-IFP.
- (3) R has IFP.
- (4) R has *-IFP.
- (5) R is reduced.

Proof. (3),(4) and (5) are equivalent from [1, Proposition 9].

- $(1)\Rightarrow(2)$ is direct from Proposition 7.
- $(2)\Rightarrow(3)$: Let ab=0 for some $a,b\in R$. Then $a(bb^*)=a(bb^*)^*=0$ implies $aRbb^*=0$ from the quasi-*-IFP of R. Now $(arb)(arb)^*=arbb^*r^*a^*=0$ implies arb=0 fore every $r\in R$ since * is proper. Therefore aRb=0 and so R has IFP.

(5) \Rightarrow (1): Let $ab = ab^* = 0$ for some $a, b \in R$, then $(ba)^2 = baba = 0$ and $(b^*a)^2 = b^*ab^*a = 0$. Hence, $ba = b^*a = 0$ from the reducedness of R and so R is *-reversible.

Next, we discuss the converse of Example 4; that is when a *-reversible *-ring is *-domain.

Proposition 9. A *-ring is a *-domain if and only if <math>R is *-prime and *-reversible.

Proof. First, Suppose that R is a *-domain, hence R is obviously *-reversible. Let IJ=0 for some *-ideals I and J of R, then $ab=ab^*=0$ for every $a \in I$ and $b \in J$. Hence, either a=0 or b=0 which implies I=0 or J=0 and so R is *-prime. Conversely, let R be both *-prime and *-reversible and $ab=a^*b=0$ for some $0 \neq a, b \in R$. We have $r^*b^*a^*=r^*b^*a=0$ for every $r \in R$ and so $a^*r^*b^*=ar^*b^*=0$ for every $r \in R$ from the *-reversibility of R, which gives $bRa=bRa^*=0$. Since R is *-prime and $a \neq 0$, we get b=0, by [[6], Proposition 5.4], and so R has no *-zero divisors; that is a *-domain. □

As a consequence, we get Proposition 4 in [3] as a corollary.

Corollary 2 ([3], Proposition 4). *If* R *is a reduced *-prime *-ring, then* R *is *-domain.*

For a *-ring R, the trivial extension of R, denoted by T(R,R), is the ring $\left\{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} | a,b \in R \right\}$. One can define the componentwise involution $\begin{pmatrix} a & b \\ 0 & a \end{pmatrix}^* = \begin{pmatrix} a^* & b^* \\ 0 & a^* \end{pmatrix}$ to make T(R,R) a *-ring.

Proposition 10. Let R be a *-reduced *-ring. If R is *-reversible, then T(R,R) is a *-reversible *-ring.

Proof. Let $\begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \begin{pmatrix} \alpha & \beta \\ 0 & \alpha \end{pmatrix} = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \begin{pmatrix} \alpha^* & \beta^* \\ 0 & \alpha^* \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. Then $a\alpha = a\alpha^* = 0$ and $a\beta + b\alpha = a\beta^* + b\alpha^* = 0$. Since R is *-reversible then $\alpha a = \alpha^* a = 0$. By the *-reversibility of R, it is easy to see that $aR\alpha = 0$. Now $0 = a\beta + b\alpha = \alpha(a\beta + b\alpha) = \alpha b\alpha$ and $0 = a\beta^* + b\alpha^* = a\beta^*\alpha + b\alpha^*\alpha = b\alpha^*\alpha$. Hence $(b\alpha)^2 = b\alpha b\alpha = 0$ and $(b\alpha)(b\alpha)^* = b\alpha\alpha^*b^* = 0$. Then $b\alpha = 0$ because R is *-reduced and therefore $a\beta = 0$. Similarly, one can show that $b\alpha^* = 0$ and $a\beta^* = 0$. Using the *-reversibility of R again we get $\alpha b = \alpha^*b = \beta a = \beta^*a = 0$ which implies $\begin{pmatrix} \alpha & \beta \\ 0 & \alpha \end{pmatrix} \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} = \begin{pmatrix} \alpha^* & \beta^* \\ 0 & \alpha^* \end{pmatrix} \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. Thus T(R, R) is a *-reversible *-ring.

Furthermore, one can easily show that the class of *-reversible *-rings is closed under direct sums (using changeless involution) and taking *-subrings.

Proposition 11. The class of *-reversible *-rings is closed under direct sums and under taking *-subrings.

In this section, we introduce the involute version of reflexive ideals and rings defined by Mason [13] and study the relation between these rings and the *-reversible rings introduced in the previous section.

Definition 4. A ideal I of a *-ring R is called *-reflexive if for every $a,b \in R$, $aRb, aRb^* \subseteq I$ implies $bRa \subseteq I$ (consequently $b^*Ra \subseteq I$). A *-ring R is said to be *-reflexive if 0 is a *-reflexive ideal of R.

By the way, the ideal in the previous definition can not be one sided since for every $a \in I$ satisfying $aR \subseteq I$ implies $Ra \subseteq I$ by taking b = 1. Also, this ideal need not be self-adjoint by Example 3.

Example 7. Every *-reduced *-ring is *-reflexive.

It is evident that every reflexive *-ring is *-reflexive. However, the next example shows that the converse is not true.

Example 8. Let D be a commutative domain and $R = \{\begin{pmatrix} \alpha & \beta & \delta \\ 0 & \alpha & \gamma \\ 0 & 0 & \alpha \end{pmatrix} | \alpha, \beta, \gamma, \delta \in D\}$. R is not reflexive according to [12, Example 2.3]. Define the involution $*: \begin{pmatrix} \alpha & \beta & \delta \\ 0 & \alpha & \gamma \\ 0 & 0 & \alpha \end{pmatrix} \rightarrow \begin{pmatrix} \alpha & \gamma & \delta \\ 0 & \alpha & \beta \\ 0 & 0 & \alpha \end{pmatrix}$. It is easy to check that R is *-reversible and in particular is *-reflexive.

Lemma 1. Let R be a ring with semiproper involution *. Then aRb = 0 implies $aRb^* = bRa = b^*Ra = 0$.

Proof.

$$(arb^*)R(arb^*)^* = arb^*Rbr^*a^* \subseteq aRbr^*a^* = 0,$$

for every $r \in R$ implies $aRb^* = 0,$

 $(bra)R(bra)^* = braRa^*r^*b^* \subseteq braRb^* = 0$, for every $r \in R$ implies bRa = 0

$$(b^*ra)R(b^*ra)^* = braRa^*r^*b \subseteq braRb = 0$$
, for every $r \in R$ implies $b^*Ra = 0$.

Corollary 3. Every *-ring with semiproper involution is reflexive (and hence *-reflexive).

The converse of the previous corollary is not necessary true as shown in the next example.

Example 9. If F is a field, then the ring $R = F \oplus F^{op}$, with the exchange involution * defined by $(a,b)^* = (b,a)$ for all $a,b \in R$, is obviously a reflexive and hence *-reflexive but * is not semiproper. Indeed, the element $0 \neq \alpha = (0,a)$ for some nonzero element a of F satisfies $\alpha R \alpha^* = 0$.

In the following proposition, we state some equivalent definitions for a *-ring to be *-reflexive.

Proposition 12. For a *-ring R, the following statements are equivalent:

- (i) R is *-reflexive.
- (ii) $r_*(aR) = l_*(Ra)$ for every $a \in R$.
- (iii) For any two nonempty subsets A and B of R, $ARB = ARB^* = 0$ implies $BRA = B^*RA = 0$.

Proof. (i) \Rightarrow (ii): Let $x \in r_*(aR)$, then $aRx = aRx^* = 0$. Hence $xRa = x^*Ra = 0$, by the *-reflexivity of R, implies $x \in l_*(Ra)$ and so $r_*(aR) \subseteq l_*(Ra)$. Similarly, $l_*(aR) \subseteq r_*(Ra)$ and we get $r_*(aR) = l_*(Ra)$.

- $(ii) \Rightarrow (iii)$: Set $ARB = ARB^* = 0$ for some subsets A and B of R. Then $aRb = aRb^* = 0$ for every $a \in A$ and $b \in B$, and hence $b \in r_*(aR) \subseteq l_*(Ra)$ from the condition. Therefore $bRa = b^*Ra = 0$ for every $a \in A$ and $b \in B$ which implies $BRA = b^*RA = 0$.
- $(iii) \Rightarrow (i)$ is direct by considering A and B as the singleton sets containing a and b, respectively..

The following proposition and example show that the class of *-reflexive *-rings generalizes strictly that of *-reversible *-rings.

Proposition 13. Every *-reversible *-ring is *-reflexive

Proof. Let $aRb = aRb^* = 0$, then $ab = ab^* = 0$ implies $rab = rab^* = 0$, for every $r \in R$. So that $bra = b^*ra$ for every $r \in R$, from the *-reversibility of R. Thus $bRa = b^*Ra = 0$ and hence R is *-reflexive.

Example 10. Let n > 2 be an integer and $p \le n$ be a prime number. The *-ring $R = \mathsf{M}_n(\mathbb{Z}_p)$, where * is the transpose involution, is prime and hence reflexive (in particular *-reflexive). Moreover, R is not *-reversible. Indeed, the nonzero elements

$$\alpha = e_{12} + e_{13} + \dots + e_{1n},$$

 $\beta = e_{11} + e_{12} + \dots + e_{1(n-1)} + 2e_{1n}$

of R, where e_{ij} is the square matrix of order n with 1 in the (i, j)-position and 0 elsewhere, satisfy $\alpha\beta = \alpha\beta^* = 0$, while $\beta\alpha \neq 0$ and $\beta^*\alpha \neq 0$.

The question when a *-reflexive *-ring is *-reversible is answered in the following proposition.

Proposition 14. A *-ring R is *-reversible if and only if R has quasi-*-IFP and *-reflexive.

Proof. The necessity is obvious. For sufficiency, let $ab = ab^* = 0$ for some $a, b \in R$. Since R has quasi-*-IFP, then $aRb = aRb^* = 0$. The *-reflexivity of R implies $bRa = b^*Ra = 0$. Hence $ba = b^*a = 0$ and R is *-reversible.

In the next result we discuss when a principal right ideal generated by a projection in a *-reflexive *-ring is *-reflexive.

Proposition 15. Let e be a projection of a *-reflexive *-ring R. Then e is central if and only if eR is a *-reflexive *-ideal.

Proof. Let e be central and $aRb, aRb^* \subset eR$, then arb = earb and $arb^* = earb^*$ for every $r \in R$. Hence $(1-e)aRb = (1-e)aRb^* = 0$ and consequently $(1-e)bRa = (1-e)b^*Ra = 0$, since R is *-reflexive and e is central. Hence $bRa, b^*Ra \subseteq eR$ and eR is *-reflexive ideal. The converse implication is clear since eR is a *-ideal and so e is central. □

Now, we show that *-reflexive property is extended to the *-corner.

Proposition 16. Let R be a *-reflexive *-ring, then the *-corner eRe for every projection e of R is also *-reflexive.

Proof. Let R be *-reflexive and a = exe, $b = eye \in eRe$ such that $a(eRe)b = a(eRe)b^* = 0$. Then $exeReye = exeRey^*e = 0$ implies $eyeRexe = ey^*eRexe = 0$, since R is *-reflexive. Therefore $b(eRe)a = b^*(eRe)a = 0$ and so eRe is *-reflexive.

Next, we illustrate by example that *-reflexivity is not closed under taking *-subrings.

Example 11. The ring $R = M_2(\mathbb{Z}_2)$ is prime and hence reflexive. The upper triangular matrix ring $S = \begin{pmatrix} \mathbb{Z}_2 & \mathbb{Z}_2 \\ 0 & \mathbb{Z}_2 \end{pmatrix}$ over \mathbb{Z}_2 is a *-subring of R under the involution * defined as $\begin{pmatrix} a & b \\ d & c \end{pmatrix}^* = \begin{pmatrix} c & -b \\ -d & a \end{pmatrix}$. R is clearly *-reflexive but S is not, since the elements $\alpha = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ and $\beta = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ of R satisfy $\alpha R \beta = \alpha R \beta^* = 0$ but $\beta R \alpha = \beta^* R \alpha = \begin{pmatrix} 0 & \mathbb{Z}_2 \\ 0 & 0 \end{pmatrix} \neq 0$

We end this section by showing that the *-reflexivity is restricted from the full matrix ring to its underlying ring.

Proposition 17. If $M_n(R)$ is a *-reflexive *-ring for some $n \ge 1$ and with the transpose involution *, then R is also a *-reflexive *-ring.

Proof. let $M_n(R)$ be a *-reflexive *-ring for some $n \ge 1$. Since $R \cong e_{11} M_n(R)e_{11}$, as *-rings, then R is *-reflexive, by Proposition 16.

5. Projection *-reflexive rings

In this last section, we give another generalization for the class of *-reflexive rings; that is projection *-reflexive *-rings.

In [10], Kim defines an idempotent reflexive ring R as the ring satisfying aRe = 0 if and only if eRa = 0 for every idempotent $e, a \in R$.

Definition 5. An ideal I of a *-ring R satisfies $aRe \subseteq I$ if and only if $eRa \subseteq I$ for every projection $e, a \in R$, is called *projection *-reflexive*. A *-ring R is called *projection *-reflexive* if 0 is a projection *-reflexive ideal.

The ideal I of the previous definition can not be one-sided ideal, because if I is a right ideal then $aR1 \subseteq I$ for every $a \in I$ implies $1Ra \subseteq I$, since 1 is a projection. Moreover, the ideal I in the definition need not be self-adjoint; indeed, for a field F the *-ring $F \bigoplus F$ with the exchange involution, possesses the non self-adjoint projection *-reflexive ideal (0, F).

It is evident from the definition that *-reflexive and idempotent reflexive *-rings are projection *-reflexive. Accordingly, we raise the following two questions.

- Is there a projection *-reflexive *-ring which is not idempotent reflexive?
- Is there a projection *-reflexive *-ring which is not *-reflexive?

The answers of these questions are in the following example.

Example 12. The *-ring $R = \begin{pmatrix} F & F \\ 0 & F \end{pmatrix}$ over a field F with the involution * defined by $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}^* = \begin{pmatrix} c & -b \\ 0 & a \end{pmatrix}$, is projection *-reflexive because $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ are the only projections of R. Clearly, R is not idempotent reflexive, since the idempotent $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ of R satisfies

since the idempotent
$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
 of R satisfies

$$\left(\begin{array}{cc} 0 & 2 \\ 0 & 0 \end{array}\right) \left(\begin{array}{cc} F & F \\ 0 & F \end{array}\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right) = \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right)$$

while

$$\left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right) \left(\begin{array}{cc} F & F \\ 0 & F \end{array}\right) \left(\begin{array}{cc} 0 & 2 \\ 0 & 0 \end{array}\right) = \left(\begin{array}{cc} 0 & F \\ 0 & 0 \end{array}\right) \neq 0.$$

Moreover, R is not *-reflexive, since

$$\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} F & F \\ 0 & F \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} F & F \\ 0 & F \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

while

$$\left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right) \left(\begin{array}{cc} F & F \\ 0 & F \end{array}\right) \left(\begin{array}{cc} 0 & 1 \\ 0 & 1 \end{array}\right) = \left(\begin{array}{cc} 0 & F \\ 0 & 0 \end{array}\right)$$

The proof of the following proposition, which gives an equivalent definition for projection *-reflexive *-rings, is straightforward.

Proposition 18. A *-ring R is projection *-reflexive if and only if for any nonempty subset A and any projection e of R, ARe = 0 implies eRA = 0.

Obviously, every *-Abelian *-ring is projection *-reflexive and consequently every *-ring having quasi-*-IFP is also projection *-reflexive, by Proposition 2. However, the converse of this statement needs additional condition, as in the next proposition.

Proposition 19. A *-ring R is *-Abelian if and only if R is projection *-reflexive and satisfies eR(1-e)Re = 0 for every projection e of R.

Proof. The necessity is obvious, For sufficiency, let e be an arbitrary projection of the projection *-reflexive *-ring R and eR(1-e)Re = 0. By Proposition 18, we have eReR(1-e) = 0 and taking involution gives (1-e)ReRe = 0. Hence, (1-e)Re = 0 which implies that e is semicentral, from [Lemma 1.1, [8]], and hence it is central. Thus R is *-Abelian

In the next result we show when a projection in a projection *-reflexive *-ring is central.

Proposition 20. Let R be a projection *-reflexive *-ring and e is a projection of R. Then the following are equivalent:

- (i) e is central.
- (ii) *eR* is a projection-*-reflexive *-ideal.

Proof. $(i) \Rightarrow (ii)$: Assume that $aRf \subset eR$ for some projection f of R. So that arf = earf for every $r \in R$ and hence (1-e)aRf = 0. Therefore fR(1-e)a = 0 = (1-e)fRa, since R is projection *-reflexive, and consequently $fRa = efRa \subseteq eR$. Hence eR is a projection-*-reflexive ideal.

 $(ii) \Rightarrow (i)$: is clear since eR is a *-ideal and so e is central.

Corollary 4. If every principal *-ideal of R is projection *-reflexive, then R is *-Abelian.

Finally, Since the only projections of the *-corner eRe is the projection e, then eRe is projection *-reflexive if R is projection *-reflexive.

Proposition 21. Let R be a projection *-reflexive *-ring, then the *-corner eRe, for every projection e of R, is also projection *-reflexive.

6. *-NILPOTENCY IN *-REVERSIBLE *-RINGS

According to [3], in a *-ring R every *-nilpotent element is nilpotent but the converse is not always true as shown in [3, Example 2.2]. In the next, we give a sufficient condition that makes a nilpotent element *-nilpotent.

Proposition 22. *In a *-reversible *-ring R, every nilpotent element is *-nilpotent.*

Proof. Let a be a nilpotent element of a *-reversible *-ring R. Hence $a^n = 0$, for some positive integer n, and multiplying by a^* form right, we get $a^{n-1}(aa^*) = 0$. From the *-reversibility of R, we have $(aa^*)a^{n-1} = 0$. Multiply again by a^* form right and apply the *-reversible property, we get $(aa^*)a^{n-2} = 0$. Continuing this process, we get $(aa^*)^n = 0$ and a is *-nilpotent.

However, the *-reversibility condition in the previous proposition is sufficient but not necessary as clear from Example 6. Indeed, the elements of the *-ideal

$$\begin{pmatrix} 0 & D & D \\ 0 & 0 & D \\ 0 & 0 & 0 \end{pmatrix}$$
 are precisely all the nilpotent (which also *-nilpotent) elements of the ring R .

Corollary 5. *Every* *-reduced *-reversible *-ring is reduced.

By the definition of nilpotency, an element is nilpotent if and only if a power of it is also nilpotent. This is not the case for *-nilpotent elements as shown in the following examples.

Example 13. In the *-ring $R = M_2(\mathbb{C})$ of 2×2 matrices with complex entries and transpose involution *, the element $a = \begin{pmatrix} \frac{\sqrt{3}+\iota}{2} & 1\\ 1 & \frac{\sqrt{3}-\iota}{2} \end{pmatrix}$ satisfies $(aa^*)^6 = \begin{pmatrix} -1 & 1\\ 1 & -1 \end{pmatrix}$ which can not tend to zero ever with any power. Thus a is not *-nilpotent, while $(a^3(a^3)^*)^1 = (a^3)^2 = 0$ which means that a^3 is *-nilpotent.

In the next, a sufficient condition is given to make *-nilpotency transfers between the element and its powers.

Lemma 2. In a *- reversible *-ring R, the element a is *-nilpotent if and only if a^2 is *-nilpotent.

Proof. Let a be a *-nilpotent element of R, then $a^n = (aa^*)^m = 0$, for some positive integers m and n. Now, $0 = (aa^*)^m = a^*(aa^*)^m = a^*(aa^*)^{m-1}(aa^*)$ and from the *-reversibility of R, we get $0 = (aa^*)a^*(aa^*)^{m-1} = a(a^*)^2(aa^*)^{m-1}$. Multiply the last equation by a from right to get $a(a^*)^2a(a^*a)^{m-2}(a^*a) = 0$ and applying the *-reversible property again, we get $a^*a^2(a^*)^2a(a^*a)^{m-2} = 0 = a^*a^2(a^*)^2(aa^*)^{m-2}a$. Multiply again by a^* from right and apply the *-reversibility, we get $a(a^*)^2a^2(a^*)^2(aa^*)^{m-2} = 0$. Continuing, we get $(a^2(a^*)^2)^m = 0$ and a^2 is *-nilpotent.

For sufficiency, if a^2 is *-nilpotent; that is $(a^2)^n = 0 = (a^2(a^*)^2)^m$ for some positive integers m and n, we get by the same procedure as above $(a^*a)^4m = 0$ and a is *-nilpotent.

Proposition 23. In a *- reversible *-ring R, the element a is *-nilpotent if and only if a^k is also *-nilpotnet for every positive integer k.

Proof. The sufficient condition is clear. For the necessity, let a be a *-nilpotent element of R, then $a^l = (aa^*)^n = 0$ for some positive integers l and n. We use induction on k to show that $a^k(a^*)^k$ is nilpotent. The case k = 2 is clear from Lemma 2. Now, we have to show that $a^{k+1}(a^*)^{k+1}$ is also nilpotent if $a^k(a^*)^k$ is nilpotent. Now, if $0 = (a^k(a^*)^k)^m = a^k(a^*)^k(a^k(a^*)^k)^{m-1}$, multiply by $(a^*)^{k+1}a$ from left and apply the *-reversibility, we get $(a^*)^k(a^k(a^*)^k)^{m-1}(a^*)^{k+1}a^{k+1} = 0$. Multiply by a^* from left and take involution of both sides, we obtain $(a^*)^{k+1}a^{k+1}(a^k(a^*)^k)^{m-1}a^{k+1} = 0$. The *-reversibility of R gives $a^k(a^*)^k(a^k(a^*)^k)^{m-2}a^{k+1}(a^*)^{k+1}a^{k+1} = 0$. Multiplying by $(a^*)^{k+1}a$ from left gives $(a^*)^k(a^k(a^*)^k)^{m-2}a^{k+1}(a^*)^{k+1}a^{k+1} = 0$ and the *-reversibility of R gives $(a^*)^k(a^k(a^*)^k)^{m-2}a^{k+1}((a^*)^{k+1}a^{k+1})^2 = 0$. Multiply again by $(a^*)^{k+1}$, we get $(a^*)^k(a^k(a^*)^k)^{m-2}a^{k+1}(a^*)^{k+1}a^{k+1} = 0$. Continuing, we get $(a^*)^k(a^{k+1}a^{k+1})^{2m-1} = 0$ and multiplication by $a^{k+1}a^*$ gives $(a^*)^k(a^{k+1}a^{k+1})^{2m-1} = 0$.

Conjecture 1 (Köthe's conjecture). *If a ring has a non-zero nil right ideal, then it has a nonzero nil ideal, is still unsolved.*

In [9, Theorem 2.2], Cohn proved that for reversible rings, Köthe's conjecture has an affirmative solution. In the next, we have a strong affirmative solution for *-reversible *-rings.

Proposition 24. Every *-reversible *-ring which is not *-reduced, contains a nonzero nilpotent ideal.

Proof. If R is not *-reduced and *-reversible *-ring, then R contains a nonzero *-nilpotent element, say a. So that $a^m = (aa^*)^n = 0$, for some positive integers m and n. If n = 1, we have $a^m = aa^* = 0$ which implies $r_1a^m = r_1a^{m-1}a^* = 0$ for every $r_1 \in R$. From the *-reversibility of R, we get $ar_1a^{m-1} = 0$. Again $r_2ar_1a^{m-1} = r_2ar_1a^{m-2}a^* = 0$ implies $ar_2ar_1a^{m-2} = 0$ for every $r_1, r_2 \in R$. Continuing, we get $(RaR)^m = 0$; that is the ideal generated by a is a nonzero nilpotent ideal. If n > 1, we have $aa^* \neq 0$. Since $(aa^*)^n = 0$, then $r_1(aa^*)^n = 0$ gives $(aa^*)r_1(aa^*)^{n-1} = 0$ due to the self-adjointness of aa^* and using the *-reversible property. As before, we get $(Raa^*R)^n = 0$; that is the *-ideal generated by aa^* is a nonzero nilpotent ideal.

Corollary 6. In a *-reversible *-ring R, if R has a non-zero nil right ideal, then it has a nonzero nil ideal.

Corollary 7. Each semiprime *-reversible *-ring is *-reduced.

CONCLUSION

We can now sate the following implications in the class of rings with involution.

REFERENCES

- [1] U. A. Aburawash and M. Saad, "On biregular, IFP and quasi-Baer *-rings," *East-West J. Math.*, vol. 16, no. 2, pp. 182–192, 2014.
- [2] U. A. Aburawash and K. B. Sola, "*-zero divisors and *-prime ideals," *East-West J. Math.*, vol. 12, no. 1, pp. 27–31, 2010.

- [3] U. A. Aburawash and M. Saad, "*-Baer property for rings with involution," *Studia Sci. Math. Hungar*, vol. 53, no. 2, pp. 243–255, 2016, doi: 10.1556/012.2016.53.2.1338.
- [4] K. I. Beidar, L. Márki, R. Mlitz, and R. Wiegandt, "Primitive involution rings," *Acta Mathematica Hungarica*, vol. 109, no. 4, pp. 357–368, 2005, doi: 10.1007/S10474-005-0253-4.
- [5] H. E. Bell, "Near-rings in which each element is a power of itself," Bull. Austral. Math. Soc., vol. 2, pp. 363–368, 1970, doi: 10.1017/S0004972700042052.
- [6] G. F. Birkenmeier and N. J. Groenewald, "Prime ideals in rings with involution," *Quaest. Math.*, vol. 20, no. 4, pp. 591–603, 1997, doi: 10.1080/16073606.1997.9632228.
- [7] G. F. Birkenmeier, "Idempotents and completely semiprime ideals," *Comm. Algebra*, vol. 11, pp. 567–58, 1983, doi: 10.1080/00927878308822865.
- [8] G. F. Birkenmeier, J. Y. Kim, and J. K. Park, "Quasi-Baer ring extensions and biregular rings," Bull. Austral. Math. Soc., vol. 61, no. 1, pp. 39–52, 2000, doi: 10.1017/S0004972700022000.
- [9] P. M. Cohn, "Reversible rings," *London Math. Soc.*, vol. 31, pp. 641–648, 1999, doi: 10.1112/S0024609399006116.
- [10] J. Y. Kim and J. U. Baik, "On idempotent reflexive rings," Kyungpook Math. J., vol. 46, pp. 597–601, 2006.
- [11] N. K. Kima and Y. Lee, "Extensions of reversible rings," J. Pure App. Algebra, vol. 185, pp. 207–223, 2003, doi: 10.1016/S0022-4049(03)00109-9.
- [12] T. K. Kwak and Y. Lee, "Reflexive property of rings," Comm. Algebra, vol. 40, no. 4, pp. 1576–1594, 2012, doi: 10.1080/00927872.2011.554474.
- [13] G. Mason, "Reflexive ideals," Comm. Algebra, vol. 9, pp. 1709–1724, 1981, doi: 10.1080/00927878108822678.

Authors' addresses

Usama A. Aburawash

Alexandria University, Department of Mathematics and Computer Science, Alexandria, Egypt *E-mail address*: aburawsh@alexu.edu.eg

Muhammad Saad

Alexandria University, Department of Mathematics and Computer Science, Alexandria, Egypt *E-mail address:* muhammad.saad@alex-sci.edu.eg