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Abstract. In this paper, we consider a discrete population model and obtain a couple of criteria
to guarantee our model being stable, including the global attractor, the extreme stability, and the
periodicity.
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1. INTRODUCTION

This paper is devoted to consider the stable behavior for a discrete population
model with survival rate given by

x.tC1/D .t/x.t/Cx.�.t//e
r.t/

�
1�x.�.t//

k.t/

�
; t 2ZC; (1.1)

where ZC is the set of nonnegative integers, .t/ 2 .0;1/ is the survival rate for each
t 2 ZC, �.t/ 2 ZC denotes the delay in t , and r.t/ and k.t/ stand respectively, for
the intrinsic growth rate and the carrying capacity of the habitat.

The motivation of our considerations stems from the papers [2, 3, 5, 6, 8]. Con-
cretely speaking, Diagana in [2] studied the periodic problem of population models
of the form

x.tC1/D .t/x.t/Cf .t;x.t//; t 2Z;

where Z is the set of integers. Hamaya considered the almost periodic solutions in
[3] for the discrete Ricker delay model

x.tC1/D x.t/ef .t;x.t��.t///; t 2ZC:

In [5, 8] Liz and Saker et al. discussed respectively, the qualitative behavior of peri-
odic Ricker equation

x.tC1/D x.t/er.t/�x.t/
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and in [6], the authors investigated the extreme stability of the following discrete
logistic equation

x.tC1/D x.t/e
r.t/

�
1�x.t/

k.t/

�
; t 2ZC:

We observe that the stability is of vital importance when considering the period-
icity of a model, see, for example, [3, 6, 9]. In this paper, we will concentrate our
attention on the stability of (1.1), including the global attractor, the extremely stabil-
ity and the periodicity.

In what follows, we always assume that
(H1) there exist 0 and 1 in .0;1/, and an integer �0 > 0 such that

inf
t2ZC

.t/D 0; sup
t2ZC

.t/D 1

and

t � �0 � �.t/� t for t 2ZCI

(H2) there exist ri and ki in .0;1/ for i D 0;1, such that

r0 � r.t/� r1 and k0 � k.t/� k1 for t 2ZC;

where

inf
t2ZC

r.t/D r0; sup
t2ZC

r.t/D r1; inf
t2ZC

k.t/D k0; sup
t2ZC

r.t/D k1I

(H3) the functions L.x/ and U.x/, and the constants M and m are defined, respect-
ively, by

L.x/D xe
r0�

r1x

k0 and U.x/D xer1�
r0x

k1 for x � 0

as well as

M D U

�
k1

r0

�
and mD L

�
M

1�1

�
I

(H4) for ı � 1, the constant � is defined by

�D

8<: L.ıM.1�1/
�1/D ıM

1�1
e
r0�

ır1M

k0.1�1/ ; L.ıM.1�1/
�1/ < r0k0

r1
;

r0k0
r1
; otherwise;

where r0k0
r1

is the fixed point of L.x/. See the following diagram when allowing
ı D 1 and .1�1/�1 D 1:
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Let D Œ��0;0� be the set of all discrete functions ' W f��0;��0C1; :::;0g!R with
the norm j'j Dmax��0�t�0 j'.t/j. For a given ' 2D Œ��0;0�, from (1.1) we can get
a unique sequence fx.t/gt���0 satisfying x.t/ D '.t/ for t D ��0;��0C 1; :::;0.
This sequence is called a solution of (1.1), and sometimes we denote this solution by
fx.t I'/gt���0 .

To continue our discussions in the sequel, we require some notions as follows.

Definition 1 ([9]). (i) The set S � R is said to be invariant relative to (1.1) if for
' 2 D Œ��0;0� with '.t/ 2 S for t 2 Œ��0;0�, the solution fx.t I'/gt���0 of (1.1)
satisfies x.t I'/ 2 S for all t � ��0.

(ii) The set S � R is said to be a global attractor of (1.1) if for any " > 0 and
positive function ' 2 D Œ��0;0�, there exists an integer N.";'/ > 0 such that the
solution fx.t I'/gt���0 of (1.1) satisfies

min
s2S
jx.t I'/� sj< " for all t �N.";'/:

Definition 2 ([6]). We say (1.1) to be extremely stable provided any two positive
solutions fx.t/gt���0 and fy.t/gt���0 of (1.1) satisfy

lim
t!1

jx.t/�y.t/j D 0:

Definition 3 ([7]). A sequence fx.t/gt���0 is said to be asymptotically � -periodic
if there exist two sequences fp.t/gt���0 and fq.t/gt���0 such that

x.t/D p.t/Cq.t/;

where fp.t/gt���0 is a � -periodic sequence, and q.t/! 0 as t !1.

2. STABILITY OF (1.1)

In this section we study the stability of (1.1). For this end, we first note that any
solution fx.t I'/gt���0 of (1.1) verifies that

x.t I'/D

t�1Y
vD0

.v/'.0/C

t�1X
vD0

"
t�2Y
sDv

.sC1/

#
f .v;x.�.v///; t � 1; (2.1)
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where

f .v;u/D ue
r.v/

�
1� u

k.v/

�
;

t�1Y
vD0

.v/D .0/.1/ : : :.t �1/;

and x.�.v// expresses the term x.�.v/I'/.
Since (1.1) denotes a realistic model of populations, we only consider the positive

initial values ' 2D Œ��0;0�. Then, from (2.1) it follows that the solution fx.t I'/gt���0
of (1.1) is positive.

In addition, in view of the assumption (H2), we have

ue
r0�

r1u

k0 � f .v;u/� ue
r1�

r0u

k1 for v 2ZC and u� 0; (2.2)

which results in

f .v;u/�M D
k1

r0
er1�1 for v 2ZC and u� 0: (2.3)

Now, for the positive initial value ' 2D Œ��0;0�, in combination with the assump-
tion (H1), we have from (2.1) and (2.3) that

x.t I'/�  t1'.0/CM

t�1X
vD0

 t�v�11

D  t1'.0/CM.1�1/
�1.1� t1/; t 2ZC:

(2.4)

Hence, for j'j 2 .0;ıM.1�1/�1� with ı � 1, coupled with (2.4), it holds that

x.t I'/� ıM.1�1/
�1; t 2ZC: (2.5)

On the other hand, by the assumptions (H3)–(H4) and the left inequality in (2.2)
we have

f .v;u/�� for v 2ZC and u 2
�
�.1�0/

�1; ıM.1�1/
�1
�
; (2.6)

where the constant � defined as in (H4). Consequently, similar to (2.4) it follows
from (2.1) and (2.6) that when j'j 2 Œ�.1�0/�1; ıM.1�1/�1�,

x.t I'/�  t0'.0/C�

t�1X
vD0

 t�v�10

D  t0'.0/C�.1�0/
�1.1� t0/

��.1�0/
�1; t 2ZC:

(2.7)

Summarizing (2.5) and (2.7) we obtain the following result:

Theorem 1. Under the assumptions (H1)–H(4), the set Œ�.1� 0/�1; ıM.1�
1/
�1� is invariant relative to (1.1), here ı � 1, and � is defined as in (H4).
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Let em D minfm; r0k0
r1
g. Note that in Theorem 1, � D em as ı D 1. Note further

that, since 0 and 1 2 .0;1/, for any given " > 0 and positive function ' 2D Œ��0;0�,
there exists an N.";'/ > 0 for which it follows that

 t1j'.0/�M.1�1/
�1
j< ";  t0j'.0/�em.1�0/�1j< " for t �N.";'/:

Consequently, from (2.4) and (2.7) we have

x.t I'/ <M.1�1/
�1
C " for t �N.";'/

and
x.t I'/ > em.1�0/�1� " for t �N.";'/:

This induces our second result:

Theorem 2. Under the assumptions (H1)–(H3), the set Œem.1�0/�1;M.1�1/�1�
is a global attractor of (1.1), here emDminfm; r0k0

r1
g.

Next we continue to employ emDminfm; r0k0
r1
g and consider the extreme stability

with respect to (1.1). To do this, we first show the following conclusion.

Lemma 1. Suppose that fx.t I'/gt���0 (fx.t/g for short) is a solution of (1.1)
and em

k1.1�0/
> 1: (2.8)

Then, under the assumptions (H1)–(H3), it follows that

limsup
t!1

ˇ̌̌̌
1�

r.t/x.�.t//

k.t/

ˇ̌̌̌
e
r.t/

�
1�x.�.t//

k.t/

�

�max
�ˇ̌̌̌
1�

r0em
k1.1�0/

ˇ̌̌̌
;

ˇ̌̌̌
1�

r1M

k0.1�1/

ˇ̌̌̌�
: (2.9)

Proof. We proceed in steps.
Assertion 1:

limsup
t!1

ˇ̌̌̌
1�

r.t/x.�.t//

k.t/

ˇ̌̌̌
�max

�ˇ̌̌̌
1�

r0em
k1.1�0/

ˇ̌̌̌
;

ˇ̌̌̌
1�

r1M

k0.1�1/

ˇ̌̌̌�
:

Indeed, for a given solution fx.t I'/gt���0 of (1.1), Theorem 2 indicates that for any
given " > 0, there exits an N DN.";'/ such thatem

1�0
� " < x.�.t// <

M

1�1
C " for t �N: (2.10)

Hence, from (2.10) we have for t �N ,

1�
r.t/x.�.t//

k.t/
< 1�

r0

k1

� em
1�0

� "

�
(2.11)

and

1�
r.t/x.�.t//

k.t/
> 1�

r1

k0

�
M

1�1
C "

�
: (2.12)
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Since " ia arbitrary, with the aid of (2.11)–(2.12), we see that our statement is true.
Assertion 2:

limsup
t!1

e
r.t/

�
1�x.�.t//

k.t/

�
� 1:

Indeed, by (2.8) and the left inequality in (2.10), we can derive
x.�.t//

k.t/
>

em
k1.1�0/

�
1

k1
" > 1�

1

k1
" for t �N;

which lead to the result

liminf
t!1

x.�.t//

k.t/
� 1:

This implies the assertion 2 is valid.
In summary, the conclusion (2.9) is effective. The proof is complete. �

We now consider the extreme stability of (1.1).

Theorem 3. Let emD minfm; r0k0
r1
g. Suppose that condition (2.8) in Lemma 1 is

verified and

max
�ˇ̌̌̌
1�

r0em
k1.1�0/

ˇ̌̌̌
;

ˇ̌̌̌
1�

r1M

k0.1�1/

ˇ̌̌̌�
< 1�1: (2.13)

Then (1.1) is extremely stable under the assumptions (H1)–(H3).

Proof. By the condition (2.13), we can choose a real number fM so that

1�1 >fM >max
�ˇ̌̌̌
1�

r0em
k1.1�0/

ˇ̌̌̌
;

ˇ̌̌̌
1�

r1M

k0.1�1/

ˇ̌̌̌�
: (2.14)

Let fx.t/g and fy.t/g be any two positvie solutions of (1.1). Then, both fx.t/g and
fy.t/g verify (1.1). Thereby, it follows that for any integer N � 0,

x.t/D

t�1Y
vDN

.v/x.N /C

t�1X
vDN

"
t�2Y
sDv

.sC1/

#
x.�.v//e

r.v/
�
1�x.�.v//

k.v/

�
; t �N

as well as

y.t/D

t�1Y
vDN

.v/y.N /C

t�1X
vDN

"
t�2Y
sDv

.sC1/

#
y.�.v//e

r.v/
�
1�y.�.v//

k.v/

�
; t �N:

Hence, it holds that

x.t/�y.t/D

t�1Y
vDN

.v/.x.N /�y.N //

C

t�1X
vDN

"
t�2Y
sDv

.sC1/

#n
x.�.v//e

r.v/
�
1�x.�.v//

k.v/

�
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�y.�.v//e
r.v/

�
1�y.�.v//

k.v/

�o
; t �N;

which derives

jx.t/�y.t/j � N�t1 j.x.N /�y.N //j (2.15)

C

t�1X
vDN

 t�v�11

ˇ̌̌̌
1� r.v/

�.�.v//

k.v/

ˇ̌̌̌
e
r.v/

�
1� �.�.v//

k.v/

�
jx.�.v//�y.�.v//j; t �N;

where �.�.v// is between x.�.v// and y.�.v//. Hence, Lemma 1 implies that there
exists an N for whichˇ̌̌̌

1� r.v/
�.�.v//

k.v/

ˇ̌̌̌
e
r.v/

�
1� �.�.v//

k.v/

�
�fM for t �N: (2.16)

Note that Theorem 1–2 imply that fx.t/�y.t/g is bounded. Thus, we can set

limsup
t!1

jx.t/�y.t/j D w:

Consequently, for any " > 0, there exists an N1 DN1."/ large enough such that

jx.�.t//�y.�.t//j<wC " for t �N1: (2.17)

For convenience, we deem that (2.16)–(2.17) hold whenever t �N1. Then, by invok-
ing (2.15)–(2.17) we have

jx.t/�y.t/j � 
t�N1
1 j.x.N1/�y.N1//j

C
1�

t�N1
1

1�1
fM.wC "/; t �N1;

which results in

w �
1

1�1
fM.wC "/:

Now we impose (2.14) on the inequality above and then obtain w D 0. This shows
that limt!1 jx.t/�y.t/j D 0. The proof is complete. �

Next we give an example to illustrate our results above.

Example 1. Let

.t/D 0:34C0:14sin t; r.t/D 0:51C0:01sin t; k.t/D 1:1C0:1sin t

and consider

x.tC1/D .t/x.t/Cx.t �2/e
r.t/

�
1�x.t�2/

k.t/

�
; t 2ZC: (2.18)

Then
0 D 0:2; 1 D 0:48I r0 D 0:5; r1 D 0:52I k0 D 1; k1 D 1:2I
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and, for M D k1
r0
er1�1 and mD M

1�1
e
r0�r1

M
k0.1�1/ ,

emDmin
�
m;
r0k0

r1

�
D
r0k0

r1
D
50

52

as well as

1�
r1

k0
�
M

1�1
D�0:485080140; 1�

r0

k1
�
em

1�0
D 0:4991987179:

Therefore, we have em
k1.1�0/

D 1:001602564;

and

max
�ˇ̌̌̌
1�

r0em
k1.1�0/

ˇ̌̌̌
;

ˇ̌̌̌
1�

r1M

k0.1�1/

ˇ̌̌̌�
< 1�1:

So far, Theorem 2 implies that the interval
h
125
104
; 60
13
e�

12
25

i
is a global attractor of

(2.18), and Theorem 3 shows that (2.18) is extremely stable. The following diagram
supports partly our inferences.

0 10 20 30 40 50 60 70 80
-1

-0.5

0

0.5

1

1.5

2

2.5

3

Part of difference of two solutions for (2.18)

Part of a solution for (2.18)

125/104

60*exp(-12/25)/13

3. PERIODICITY OF (1.1)

This section is devoted to consider the existence of periodic solutions of (1.1). For
this purpose, we consider the Banach space

l1 WD fx D fx.t/gt���0 W sup
t���0

jx.t/j<1g

equipped with the norm defined by jjxjj D supt���0 jx.t/j. Let

emDmin
�
m;
r0k0

r1

�
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and the set S � l1 be defined by

S WD ffx.t/gt���0 2 l
1
W em.1�0/�1 � jjxjj �M.1�1/�1g:

.
The following result is similar to Lemma 1, and since the proof is analogous, we

neglect it.

Lemma 2. Suppose that fx.t/g 2 S andem
k1.1�0/

� 1:

Then, under the assumptions (H1)–(H2), it follows thatˇ̌̌̌
1�

r.t/x.�.t//

k.t/

ˇ̌̌̌
e
r.t/

�
1�x.�.t//

k.t/

�

�max
�ˇ̌̌̌
1�

r0em
k1.1�0/

ˇ̌̌̌
;

ˇ̌̌̌
1�

r1M

k0.1�1/

ˇ̌̌̌�
; t � 0:

We now establish a criterion to guarantee the existence of periodic solutions of
(1.1). As we shall see below, our work is due to the celebrated Krasnoselskii fixed-
point theorem:

Lemma 3 ([1, 4]). Let S be a closed, convex, and bounded subset of a Banach
space X and T;U W S !X be two operators such that
(i) T is a contraction;
(ii) U is completely continuous, and
(iii) T xCUy 2 S for all x;y 2 S .
Then T CU has a fixed point in S .

Theorem 4. Suppose that the assumptions (H1)–(H3) hold and f.t/g, fr.t/g and
fk.t/g are all periodic with the common period � . Suppose further that

�.tC�/D �.t/C� for all integer t � 0; (3.1)

em
k1.1�0/

� 1 (3.2)

and

max
�ˇ̌̌̌
1�

r0em
k1.1�0/

ˇ̌̌̌
;

ˇ̌̌̌
1�

r1M

k0.1�1/

ˇ̌̌̌�
< 1�1: (3.3)

Then the following is true:
(S1). equation (1.1) admits an unique � -periodic solution;
(S2). any solution of (1.1) is asymptotically � -periodic.
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Proof. To prove the first statement (S1), we introduce a subset l1ap � l
1 defined

by
l1ap WD fx 2 l

1
W x is asymptotically � -periodic g:

Then l1ap becomes a Banach space according to the norm jj � jj of l1. Let

Sap WD ffx.t/gt���0 2 l
1
ap W em.1�0/�1 � jjxjj �M.1�1/�1g:

It is clear that Sap is bounded, convex and closed. Now we define two operators
T;U W Sap! l1ap as follows:

.T x/.t/D

�
0; t D��0; ��0C1; : : : ;0;

.t �1/x.t �1/Cf .t �1;x.�.t �1///; t � 1

and

.Ux/.t/D

�
x.t/; t D��0; ��0C1; : : : ;0;

0; t � 1;

where f .t � 1;u/ D uer.t�1/
�
1� u

k.t�1/

�
. Then, for any x;y 2 Sap, we have from

(H1) and (H3) that

.T x/.t/C .Uy/.t/D .t �1/x.t �1/Cf .t �1;x.�.t �1///

� 1
M

1�1
CM

DM.1�1/
�1; t � 1

as well as

.T x/.t/C .Uy/.t/� 0
em

1�0
Cem

D em.1�0/�1; t � 1;
where the relation em.1� 0/�1 � x.t � 1/ �M.1� 1/�1 have been employed for
the first and second inequality. Hence, we have shown thatem.1�0/�1 � .T x/.t/C .Uy/.t/�M.1�1/�1 for all t � ��0: (3.4)

Next we proceed in several steps.
(i) Assertion 1: if fx.t/g is asymptotically � -periodic, then ff .t;x.�.t///g is also

too.
Indeed, since fx.t/g is asymptotically � -periodic, we have the following decom-

position
x.t/D p.t/Cq.t/; t � ��0; (3.5)

where fp.t/g is � -periodic and q.t/! 0 as t !1. In addition,

f .t;u/ D ue
r.t/

�
1� u

k.t/

�
implies that @f .t;u/

@u
D

�
1� r.t/

k.t/
u
�
e
r.t/

�
1� u

k.t/

�
. Then, by
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the mean value theorem, it holds that

jf .t;x.t//�f .t;p.t//j D

ˇ̌̌̌
x.t/e

r.t/
�
1�x.t/

k.t/

�
�p.t/e

r.t/
�
1�p.t/

k.t/

� ˇ̌̌̌
D

ˇ̌̌̌
1�

r.t/�.t/

k.t/

ˇ̌̌̌
e
r.t/

�
1� �.t/

k.t/

�
jx.t/�p.t/j; (3.6)

where, �.t/ is between x.t/ and p.t/.
Hence, in the light of (3.5)– (3.6) we see that ff .t;x.t//g is asymptotically � -

periodic, which, together with (3.1), infers the assertion 1 is true.
(ii) Assertion 2: T xCUy 2 Sap for any x;y 2 Sap.
It is clear that the assertion 1, together with (3.4), results in T x 2 Sap for any

x 2 Sap. The belonging Uy 2 Sap is obvious. Hence, with the aid of (3.4), we have
shown that the assertion 2 is valid.

(iii) Assertion 3: T is contractive.
Indeed, for any x;y 2 Sap we have

.T x/.t/� .Ty/.t/D .t �1/.x.t �1/�y.t �1//C

.f .t �1;x.�.t �1///�f .t �1;y.�.t �1////; t � 1;

which amounts to

j.T x/.t/� .Ty/.t/j

� 1jjx�yjjCˇ̌̌̌
1�

r.t �1/�.�.t �1//

k.t �1/

ˇ̌̌̌
e
r.t�1/

�
1� �.�.t�1//

k.t�1/

�
jjx�yjj; t � 1; (3.7)

where �.�.t � 1// is between x.�.t � 1// and y.�.t � 1//. Now by (3.3) we can
choose a "0 > 0 so that

max
�ˇ̌̌̌
1�

r0em
k1.1�0/

ˇ̌̌̌
;

ˇ̌̌̌
1�

r1M

k0.1�1/

ˇ̌̌̌�
� 1�1� "0:

Then, in association with (3.3) and Lemma 2, from (3.7) it holds that

j.T x/.t/� .Ty/.t/j � .1� "0/jjx�yjj; t � 1;

which implies that T is a contraction.
(iv) Assertion 4: U is completely continuous.
As a matter of fact, USap � R�0 and the boundedness of USap mean that it is

relatively compact. Consequently, U is completely continuous.
In summary, the Krasnoselskii fixed-point theorem implies that, there exists ex 2

Sap so that ex.t/D .Tex/.t/C .Uex/.t/; t � ��0;
which indicates thatex.tC1/D .t/ex.t/Cf .t;ex.�.t///; t � 0: (3.8)
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In other words,ex is an asymptotically � -periodic solution of (1.1).
(v) Assertion 5: Equation (1.1) has a unique � -periodic solution.
Indeed, note thatex D fex.t/g can be decomposed byex.t/Dep.t/Ceq.t/; t � ��0;

where fep.t/g is � -periodic, andeq.t/! 0 as t !1. Then, from (3.8) we have

ep.tC1/! .t/ep.t/Cep.�.t//er.t/�1�ep.�.t//k.t/

�
as t !1: (3.9)

Note that f.t/ep.t/Cep.�.t//er.t/�1�ep.�.t//k.t/

�
g is � -periodic. Hence, from (3.9) it

follows that

ep.tC1/D .t/ep.t/Cep.�.t//er.t/�1�ep.�.t//k.t/

�
; t � 0:

That is, fep.t/g is a � -periodic solution of (1.1).
Letey be another � -periodic solution of (1.1). Then Theorem 3 shows that

lim
t!1

jep.t/�ey.t/j D 0;
which, induces ey.t/Dep.t/ for all t � ��0:
That is, the first statement (S1) is true.

To prove the second statement (S2), assume that fx.t/g is any solution of (1.1).
Then, invoking Theorem 3 again, we arrive at

lim
t!1

jx.t/�ep.t/j D 0;
which leads to

x.t/Dep.t/Cq.t/; t � ��0;
where q.t/! 0 as t !1. That is, fx.t/g is an asymptotically � -periodic solution
of (1.1). The proof is complete. �

Example 2. Let

.t/D 0:34C0:14sin t�; r.t/D 0:51C0:01sin
t�

2
; k.t/D 1:1C0:1sin

t�

2

and consider

x.tC1/D .t/x.t/Cx.�.t//e
r.t/

�
1�x.�.t//

k.t/

�
; t 2ZC; (3.10)

where

�.t/D

�
t �3; t is evenI
t �2; otherwise:

Then, referring to example 1 we see that all the conditions in Theorem 4 are veri-
fied. Hence, (3.10) has a unique 4-periodic solution, and others are asymptotically
4-periodic. The facticity can be confirmed partly by the following:
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0 10 20 30 40 50 60 70 80 90 100
1

1.5

2

2.5

The first 100 terms of a solution for (3.10)

where we choose x.�2/ D 1, x.�1/ D 1:5 and x.0/ D 2:5 as the initial values of
(3.10).
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