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ON SOME DIOPHANTINE EQUATIONS
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Abstract. In this paper we deal with some Diophantine equations and present infinitely many
positive integer solutions for each one of them.
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1. INTRODUCTION

The Diophantine equations

xn + yn = un + vn, n = 2,3,4

have been considered by many mathematicians. The case n = 2 was presented in
[13,14] while Euler [8] and Binet [3] considered the case n = 3. Parametric solutions
of the above equation for n = 4 can be found in [4, 10]. Some researches considered
more general Diophantine equations with more variables or with integer coefficients
that are not all equal to 1 [5–7, 11, 12].

In this paper, we deal with the equations

X3−Y 2 = X2−Z3,
X3±Y 3 =U4−V 4 (1.1)

and obtain infinitely many positive integer solutions for each one of them. We con-
sider the equation of the form

Am4 +Bn4 +Cp4 +Dq4 = Ar4 +Bs4 +Ct4 +Du4, A,B,C,D ∈ Z,
introduce some linear transformations and set some special conditions on its coeffi-
cients. Some recent papers deal with the similar problems. In [9] the authors invest-
igate Diophantine equations of the form

T 2 = G(X), X = (X1,X2, · · · ,Xm),
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where m = 3 or m = 4 and G is a specific homogenous quintic form. The equations

a(X ′51 +X ′52 )+
n

∑
i=0

a1X5
i = b(Y ′31 +Y ′32 )+

n

∑
i=0

biY 3
i , (1.2)

where m,n ∈ N∪ {0} and a,b 6= 0, ai,bi are fixed arbitrary rational numbers are
studied in [2]. The theory of elliptic curves is used in order to solve (1.2) which is
transformed to a cubic or a quartic elliptic curve with a positive rank. In [1, Main
Theorem 2] authors prove that

n

∑
i=1

pi · xai
i =

m

∑
j=1

q j · y
b j
j ,

m,n,ai,b j ∈ N, pi,q j ∈ Z, i = 1, . . . ,n, j = 1, . . . ,m has a parametric solution and
infinitely many solutions in nonzero integers if there exists an i such that pi = 1
and (ai,a1a2 · · ·ai−1ai+1 · · ·anb1b2 · · ·bm) = 1 or there exists a j such that q j = 1 and
(b j,a1 · · ·anb1 · · ·b j−1b j+1 · · ·bm) = 1. In this article, even though linear transforma-
tions are also used, we introduce a different approach and some different conditions
on the integer coefficients in order to solve (1.1).

2. EQUATION X3−Y 2 = X2−Z3

For start, we deal with the Diophantine equation

X3−Y 2 = X2−Z3. (2.1)

It is easily shown that equation (2.1) has infinitely many solutions
(X ,Y,Z) = (1,n3,n2), n ∈N. The main task of our work in this section is to discover
whether there are more positive integer solutions of (2.1). We set

c = x2, d = y2

and obtain

c3 +d3 = x6 + y6 = (x3− (yi)3)(x3 +(yi)3)

= (x− yi)(x2 + xyi− y2)(x+ yi)(x2− xyi− y2).

If we define

a−bi = (x+ yi)(x2 + xyi− y2) and a+bi = (x− yi)(x2− xyi− y2),

we get
c3 +d3 = a2 +b2 (2.2)

for a = x3−2y2x and b = y3−2x2y. From (2.2) we obtain the equation

(x2)3 +(y2)3 = (x3−2y2x)2 +(y3−2x2y)2.

First we deal with the case

y2 = y3−2x2y, y 6= 0
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and get

(2y−1)2−8x2 = 1. (2.3)

After introducing y′ = 2y−1 in (2.3) a Pell equation

y′2−8x2 = 1

is obtained. Some of its solutions are (y′,x) = {(3,1),(17,6),(99,35), . . .}. Finally,
solutions of equation (2.3) are

(x,y) = {(1,2),(6,9),(35,50), . . .}.

The inequality x < y implies x3−2y2x < 0, so Y < 0. Because we deal with equation
of the form (2.1), we take |Y | and get infinitely many positive integer solutions

(X ,Y,Z) = (y2, x3−2y2x, x2) = {(4,7,1), (81,756,36), (502,132125,352), . . .}

of (2.1).
Alternatively, we get

8y2 =
8x3

2x+1

for y2 = x3− 2y2x. Obviously, 8x3

2x+1 ∈ N if and only if (2x + 1)|1 which happens
for only 2x+ 1 = 1 which implies x = 0, y = 0. This case is not considered. Cases
x2 = x3−2y2x and x2 = y3−2x2y do not provide us with new solutions. Consequently,
(2.1) has infinitely many positive integer solutions of the form

(X ,Y,Z) = (y2, x3−2y2x, x2),

where (x,y) are solutions of equation (2.3).

Remark 1. It can be noticed that for X = Z equation (2.1) becomes

X2(2X−1) = Y 2,

so X = Z = 2k2 +2k+1, k ∈N will provide a solution. This approach can be gener-
alized by taking X = mZ, Y = nZ for m,n ∈ N. We get

Z =
m2 +n2

m3 +1

and by fixing m we may yield some solutions. For example, if m = 4, then
n ≡ 7,32,33,58 (mod 65) will provide solutions. Similarily, for m = 9, we obtain
that n ≡ 97,243,487,630 (mod 730) will provide solutions. This approach works
if m is a square, however we also have solutions for m = 28. Therefore, it may be
difficult to completely classify all the solutions here.
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3. EQUATION X3 +Y 3 =U4−V 4

In this section we deal with the equation

X3 +Y 3 =U4−V 4. (3.1)

It is easy to notice that (X ,Y,U,V ) = (m,−m,n,n) is a trivial solution of (3.1) for
m,n ∈ N, while the smallest nontrivial solution of (3.1) is (X ,Y,U,V ) = (4,1,3,2).

Two different linear transformations are considered and for each one of them we
give a different class of infinitely many positive integer solutions of equation (3.1).

3.1. The First Method

Let

X = px+u, Y = qx−u, U = x+ v, V = px− v, (3.2)

p,q,u,v ∈ N. Introducing (3.2) into the initial equation (3.1), we get

αx4 +βx3 + γx2 +δx = 0, (3.3)

where
α = p4−1, β = p3 +q3−4v−4p3v,

γ = 3p2u−3q2u−6v2 +6p2v2, δ = 3pu2 +3qu2−4v3−4pv3.
(3.4)

For δ = 0 in (3.4), we obtain

3(p+q)u2 = 4(p+1)v3.

Additionally, we set u = t3, v = t2 and get p = 3q− 4. Finally, the following is
obtained

α = 81q4−432q3 +864q2−768q+255,

β = 432q2t2−576t2q−108q2 +252t2−108q3t2 +28q3 +144q−64,

γ = 24q2t3 +54q2t4−72qt3−144qt4 +90t4 +48t3.

Let
γ = 6t3(q−1)(4q+9qt−15t−8) = 0.

In that case, we have q = 15t+8
9t+4 and therefore (3.3) becomes

11664t3 +23328t2 +16128t +3840
(9t +4)4 x4+

+
−52488t6−128304t5−87480t4 +27216t3 +61632t2 +27648t +4096

(9t +4)4 x3 = 0.

We get

x =
(9t +4)(243t4 +324t3−27t2−192t−64)

6(81t2 +108t +40)
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and

X =
2673t5 +5508t4 +2589t3−1944t2−2112t−512

6(81t2 +108t +40)
,

Y =
3159t5 +6156t4 +1947t3−3096t2−2496t−512

6(81t2 +108t +40)
,

U =
2187t5 +4374t4 +1701t3−1596t2−1344t−256

6(81t2 +108t +40)
,

V =
2187t5 +4374t4 +1701t3−2184t2−2112t−512

6(81t2 +108t +40)
.

(3.5)

After eliminating denominators in (3.5), we have

X = 216(81t2 +108t +40)3(2673t5 +5508t4 +2589t3−1944t2−2112t−512),

Y = 216(81t2 +108t +40)3(3159t5 +6156t4 +1947t3−3096t2−2496t−512),

U = 36(81t2 +108t +40)2(9t +8)(243t4 +270t3−51t2−132t−32),

V = 36(81t2 +108t +40)2(2187t5 +4374t4 +1701t3−2184t2−2112t−512).

For t = 1, the solutions of (3.1) are

(X ,Y,U,V ) = (16087625952048, 13379550896592, 9563979816, 65207230704),

while t = 2 leads us to

(X ,Y,U,V ) = (7664511333888000,8313869044224000,

1746900979200,1696715481600) .

We get a positive integer solution (X ,Y,U,V ) of equation (3.1) for every t ∈ N. So,
the presented method generates infinitely many positive integer solutions of the initial
equation (3.1).

3.2. The Second Method

Again, we deal with (3.1) and start this new method by introducing a different
linear transformation in order to reach more (different) positive integer solutions. Let

X = u, Y = qx−u, U = x+u, V = px+u, (3.6)

p,q,u ∈ N. Like in the previous subsection, introducing these linear transformations
into (3.3), leads us to the expression of the form

Ax4 +Bx3 +Cx2 +Dx = 0, (3.7)
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where
A = p4−1, B = q3 +4p3u−4u,

C = 6p2u2−6u2−3q2u, D = 4u3 p−4u3 +3u2q.
(3.8)

We obtain u = 3q
4(1−p) , p 6= 1 for D = 0. After introducing the latter expression into

(3.8) and canceling the denominators we get

A = 8p5−8p4−8p+8, B = 8q3 p−24p3q−8q3 +24q, C = 27q2 p+18q3 +27q2.

We obtain q =−3
2(p+1) for C = 0. Under those conditions we get

A = p4−1, B =
9
8
(p+1)(p−1)2

and (3.7) becomes (p4−1)x4 + 9
8(p+1)(p−1)2x3 = 0 where

x =
9(1− p)
8(p2 +1)

.

After plugging all of these results into (3.6) and canceling the denominators, we
finally get

X = 18(p−1)3(p+1)(p2 +1)4,

Y = 9(p+1)(p2−6p+1)(p−1)3(p2 +1)3,

U = 9p(p2 +3)(p−1)2(p2 +1)2,

V = 9(3p2 +1)(p2 +1)2(p−1)2.

(3.9)

Remark 2. According to (3.9), X > 0 is satisfied for p ∈ Z\{0,1}. Also, Y > 0 is
satisfied for p ∈ Z\{−1,0,1,2,3,4,5}. Therefore, by the introduced method we are
again able to generate infinitely many positive integer solutions of (3.1).

4. THE EQUATION X3−Y 3 =U4−V 4

In this section we deal with the equation

X3−Y 3 =U4−V 4. (4.1)

If we introduce Y →−Y or X →−X in (3.1), it is clear that one gets solutions of
(4.1), but, as we mentioned earlier, we are interested only in positive integer solutions.
Therefore, we consider (3.1) and (4.1) as two different equations.

Clearly, (X ,Y,U,V ) = (1,n4,1,n3), n ∈ N are trivial solutions of (4.1).
After introducing linear transformations

X = px+u, Y = qx+u, U = rx+u, V = u,

p,q,r,u ∈ N into (4.1), we get the equation

Mx4 +Nx3 +Px2 +Qx = 0,
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where
M =−r4, N = p3−q3−4r3u,

P = 3p2u−3q2u−6r2u2, Q = 3u2 p−3u2q−4u3r.
(4.2)

If we set Q = 0, it is easily obtained u = 3(p−q)
4r . Plugging this new form of u into

(4.2), we get

M =−r4, N = (p−q)(p2 + pq−3r2 +q2), P = 9(p−q)2(2p+2q−3r)
8r . (4.3)

We obtain r = 2
3(p+q) for 2p+2q−3r = 0. So, introducing the above expressions

into (4.3), we get

−16
81

(p+q)4x4− 1
3
(p−q)(p2 +5pq+q2)x3 = 0,

x =−27
16

(p−q)(p2 +5pq+q2)

(p+q)4 .

Finally, we define p2 +5pq+q2−16 = 0 which is a quadratic equation in p. So,

p =
−5q±

√
21q2 +64
2

.

Let 21q2+64= r2, r∈Z. Solution (q,r)= (0,8) is a trivial solution for this equation.
Therefore, considering r = mq+ 8 and 21q2 + 64 = r2 leads us to q = 16m

21−m2 and

p = 4(m2+10m+21)
m2−21 or p = 4(m2−10m+21)

21−m2 . We get

x =
−27(m2−21)3(m2 +14m+21)

64(m2 +6m+21)4

for p = 4(m2+10m+21)
m2−21 . After canceling the denominators, we obtain

X =−9(m2 +14m+21)(m6−6m5−405m4−3204m3−8505m2−2646m+9261),

Y = 18(m2 +14m+21)(m6 +24m5 +171m4 +720m3 +3591m2 +10584m+9261),

U = 27 ·22 ·m(m2 +14m+21)(m2 +10m+21), (4.4)

V = 9(m2 +6m+21)2(m2 +14m+21).

Some elementary analysis leads us to conclusion that X ,Y > 0 for every m ∈ N.
The described method generates infinitely many positive integer solutions (X ,Y,U,V )
for the initial equation (4.1). Some of them are introduced in the following table.

m X Y U V
1 1783296 15780096 124416 254016
2 29712807 51631434 515160 653013
3 126531072 146686464 1399680 1492992
4 375132519 380970594 3093552 3114477
5 911771136 917584128 6013440 6030144
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Remark 3. If we apply the previous process by taking p = 4(m2−10m+21)
21−m2 , no new

solutions are obtained.

Some basic calculations give us X ,Y > 0 for m ≤ −1 and these solutions are
already obtained for m > 0 in (4.4). This is shown in the following table. It is useful
to notice that, even though we get integer solutions in this case, we do not consider
negative ones because U,V are introduced with even powers in (4.1).

m X Y U V
−1 1783296 15780096 −124416 254016
−2 29712807 51631434 −515160 653013
−3 126531072 146686464 −1399680 1492992
−4 375132519 380970594 −3093552 3114477
−5 911771136 917584128 −6013440 6030144

5. THE EQUATION Am4 +Bn4 +Cp4 +Dq4 = Ar4 +Bs4 +Ct4 +Du4

We deal with the equation of the form

Am4 +Bn4 +Cp4 +Dq4 = Ar4 +Bs4 +Ct4 +Du4, A,B,C,D ∈ Z. (5.1)

Let

m = lx+1, n = 5x+ k, p = 4x+1, q = 2x,
r = lx−1, s = 4x− k, t = 5x−1, u = x,

for k, l ∈N. Introducing these linear transformations into (5.1), one gets the equation
of the form

ax4 +bx3 + cx2 +dx = 0, (5.2)

where

a =−396C+15E +369B, b = 756Bk+8Al3 +756C,

c =−54C+54Bk2, d = 8Al +36Bk3 +36C.

We set the conditions c = d = 0 and get

C = Bk2 and l =−9
2
· Bk3 +C

A
. (5.3)

Introducing (5.3) into (5.2) leads us to

− 3(−123BA2 +123Bk2A2−5EA2)x4

A2

− 3(729B3k7 +243B3k6 +243B3k9 +729B3k8−252Bk2A2−252BA2k)x3

A2 = 0
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and

x =
9Bk(−27B2k8−81B2k7−81B2k6−27B2k5 +28A2 +28kA2)

A2(123Bk2−5E−123B)
.

After plugging all results into (5.3) and cancelling the denominators, we get

m =2187B4k12 +8748B4k11 +13122B4k10 +8748B4k9

−4536B2k4A2−2268B2k5A2 +2187B4k8−2268B2k3A2

+246A3Bk2−10A3E−246A3B,

n =2Ak
(
−1215B3k8−3645B3k7−3645B3k6−1215B3k5

+1137BA2 +1260BkA2 +123A2Bk2−5A2E
)
,

p =2A
(
−972B3k9−2916B3k8−2916B3k7−972B3k6

+1008BkA2 +1131A2Bk2−5A2E−123BA2) ,
q =36ABk(−27B2k8−81B2k7−81B2k6−27B2k5 +28A2 +28kA2),

r =−2187B4k12−8748B4k11−13122B4k10−8748B4k9

+4536B2k4A2 +2268B2k5A2−2187B4k8 +2268B2k3A2

+246A3Bk2−10A3E−246A3B,

s =2Ak
(
972B3k8 +2916B3k7 +2916B3k6 +972B3k5−1131BA2

−1008BkA2 +123A2Bk2−5A2E
)
,

t =2A
(
−1215B3k9−1645B2k8−1645B3k7−1215B3k6 +1260BkA2

+1137A2Bk2 +5A2E +123BA2) ,
u =18ABk(−27B2k8−81B2k7−81B2k6−27B2k5 +28A2 +28kA2).

(5.4)

5.1. Numerical examples

We solve equation (5.1) of the form

m4 +2n4 +2p4 +5q4 = r4 +2s4 +2t4 +5u4

where A = 1, B = 2, C = 2, D = 5, so k = 1. According to (5.4), we obtain

m = 523534, n = 145490, p = 116402, q = 58176,
r = 523634, s = 116302, t = 145390, u = 39088

or

m = 261767, n = 72745, p = 58201, q = 29088,
r = 261817, s = 58151, t = 72695, u = 14544.

Let
3m4 +2n4 +8p4 +5q4 = 3r4 +2s4 +8t4 +5u4.
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We have

m = 719753958, n = 99883476, p = 79929882 q = 39984192,
r = 719676954, s = 80045388, t = 99998982, u = 19992096

or

m = 13328777, n = 1849694, p = 1480183, q = 740448,
r = 13327351, s = 1482322, t = 1851833, u = 370224.

Remark 4. Even though the introduced method in Section 2 provides us with
the primitive solution of (2.1), methods for solving equations (3.1) and (4.1) do not
provide us with primitive solutions. In these particular cases, we can find some of
them using a few simple computer algorithms. For example,

(X ,Y,U,V ) =(4,15,10,9),(4,16,9,7),(14,23,16,15),

(20,31,14,5),(25,71,37,35), ...

are primitive integer solutions of (3.1) and

(X ,Y,U,V ) =(9,22,3,10),(10,25,2,11),(16,81,8,27),

(26,73,20,27),(57,58,3,10),(62,87,21,28),

(70,71,15,16),(79,92,18,25),(148,177,10,39), . . . .

are primitive integer solutions of (4.1). So, introducing a slightly different approach
could be a good starting point for our further research.
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