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Abstract. We consider two kinds of second order linear recurrences whose subscripts are powers
and present certain new identities including these recurrences. Furthermore, we derive first-order
nonlinear homogeneous recurrence relations for these recurrences. Our results generalize earlier
results as well as they provide new solutions for certain uncompleted cases of the literature.
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1. INTRODUCTION

Let p be a nonzero integer such that A = p? + 4 # 0. Define the generalized
Fibonacci type {u,} and Lucas type {v,} sequences as follows:

Up = PUp—1 T Up—2
and

Up = PUp—1+ Up—2,
where ug = 0,u; = 1 and v9 = 2,v; = p, respectively.

If the roots of x2 — px —1 = 0 are « and f, then the Binet forms of {u, } and {v,}

are

an_ﬁn

- W
If p =1, then u,, = F,, (nth Fibonacci number) and v, = L, (nth Lucas number)
respectively.

Usiskin [7, 8] suggested the following problems: For n > 0, show that

Uy and v, = " + B".

n—1
Fan =[] Ly —1 (1.1)
k=0

and
n—1

Lyn=[[Lypac+1. (1.2)
k=0
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In [4], the author asked for the solution of the first order cubic recurrence relation:
an+1 = 5a; —3ay (1.3)

withag = 1.

Then in [6], the solution is given as a, = F3». The same problem appeared as
Problem 1809 in Crux Mathematicorum 20 (1994): 19-20.

In the same issue, there was a proposal to solve the recurrence

Pyt1 =25P) —25P2 +5P,, Pp=1.

The solution was given as P, = 5". Also the following recurrences and their solu-
tions were commented by Murray S. Klamkin as an addendum to the solution of the
problem given in [6]:

Any1=A2-2, A =3,
Byt1 =B} —4B>+2, B1 =7,
Cnt1=C2—6Cy+9C2—2, C; = 18,

where A, = Loyn, By, = Lgn and C,, = Lgn.

In [1], the author presented some identities involving Fibonacci numbers of the
form Fyn for positive odd k and gave a first-order nonlinear homogeneous recurrence
relation for Fi», which generalized (1.3), (1.1) and (1.2).

Recently in [2], Helmut Prodinger gave a general expansion formula for a sum of
powers of Fibonacci numbers, as considered by Melham, as well as some extensions.

In this paper, we consider two generalized second order recursion sequences and
then generalize the results of [1] for the odd k case as well as derive a new first-order
nonlinear homogeneous recurrence relation for the sequence {1y~ } for possible even
k. Further we present that the generalized Lucas numbers vy»+1 is a polynomial of
generalized Fibonacci numbers ug» of degree k for even k.

2. MAIN RESULTS

In this section, in order to derive a recurrence relation for both even and odd sub-
scripted terms ugn, we start with the following result.

Proposition 1. Forn > 1 and even k,

n—1 [k/2
Upn = Uk l_[ Zv(zj—l)ki
i=1\j=
Proof. Consider
Up2 U3 Ufn nl Upi+1
Upn = up—— K2 = [ ] . (2.1)
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From [5], we have that for even k > 2,
k_ k k/2—1

Z (mn)’ ( k=2i—1 4 k—2i—1> 2.2)

Whenm = a”,n = " in (2.2), we get

m

y k/2—1 k/2—1
n Z (0(,3)“’( (k—2j—1)n +,B(k 2j l)n) — Z (-1)/" V(k—2/—1)n
j=0
y k/2—1 k/2
kl+1
Z D% vgeajonii = D v (2.3)
—
By (2.3), equation (2.1) equals to
u n—1 [k/2
k1+l
Upn = U l_[ =Ug l_[ Zv(zj—l)ki
i=1 i=1 \j=1
Thus the proof is complete. O

For the Fibonacci and Lucas case when p = 1, we also refer to [9].
For later use, we give the following two identities:

Yo =Dvai =) (=D a4+ (1) g 2.4)

i=1 i=1 i=1
=+ (=) @) LA CRR
B 1+ 1+ B4
DT v+ (=D a1y —va —2 (=17
va + 1+ (=1)*

and
Vab — (1" v = Auguy. (2.5)
Proposition 2. For odd k andn > 1,
n—1 (k—1)/2

gn = (=D DED2 T 4 Z (=17 vy

i=1

Proof. If (k —1) /2 is even, we write by (2.4) and (2.5)

Upi+1 Aupiviyi
wr = [ K k]‘[(1+ Wi Uy
i=1 ki i=1 ki Yk
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n—1 ki
Vi i —(=1)" vpivi1_gi
— O+_k+Wk =D k+1k_4)

Vpi 4 i — (=¥ Vi _ki

- Vogi k1 F Vapi kst —Vppi —2
Uzki +2

(k—1)/2

= uy 1+ Z (—l)jvzkij

i=1 j=1
n—1 (k—1)/2

= ()EEDR [T+ 30 D oy

i=1 j=1
If (k —1) /2 is odd, then we write

n—1

n—1
_ Ui+l _ AUgiviUyi
ugn = (="M [ ] ’; =(=1)" 1uk]_[(1—M—1)

Auki

j=1 K i=1

n—1 —V ikl —VUspik—1_Uppi —2
2ki 2kt — Y2k
— _1 n—lu | | 1+ 2 2
( ) k ( Uzki +2

i=1
n—1 (k—1)/2

=) ue [T+ YD D vy
k=1

i=1

So we have proved the conclusion for all cases. U

3. RECURRENCE RELATION FOR {ugn}

We shall derive recurrence relations for {uyn } or {vg» } for odd or even k. Thus we
need the following result:

Lemma 1. Forn,q >0,

q
2qg+1 kfqg+k+1
— etk 4T 024y 2k’
"@q+1n ””kz_o( ) q+k—|—1(p +4) 41 M

q
2qg [q+k k
— -1 n(g+k) _—1 2 4 2k’
V2gn k§=0( ) q k 2% (p + ) Uy,

q
2g+1 [qg+k+1
— E _)rtD(gtk) _“1 T zk’
Y@a+Dn v”k_o( ) g+k+i\ 2k+1 |
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q
2q q+k
_ 1) +D@+k) 2%k
v2qn lg)( ) q+k 2k Un

Proof. The proof can be easily obtained from [5] by considering the classical bi-
nomial expansions for a” —b" and a” + b" where a and b are real numbers. d

We give a recurrence relation for the sequence {uy~} for odd k.

Proposition 3. For odd k > 0 andn > 0,

(k—3)/2

Upn+1 = A(k_l)/zullin - Z Alci,k“]%iﬁ_l

where the coefficients C; j are given by

2k (k+1)/24i
C‘ — _1 (k+1)/2+l =
ik = (=1 k+2i+1\  2i+1

forO0<i<(k-3)/2
Proof. Consider

k
un = Ak/ Z( )( 1)/ p/K" o k=K G.1)

1 (k—1)/2 k
A(k /2 Ugn+1 + Z (j>u(k—2j)k” s
j=1

where A is defined as before. By (3.1), we obtain for odd &,

(k—1)/2 k
Upn+1 = A(k—l)/Zu/]in — Z ( ,)M(k_zj)kn. (32)
j=1
Then by (3.2) and Lemma 1, we write
Upnt1 = A(k_l)/zuk
k lk 1_ ~ k41
_Z Z ( 1) 1+l jAl k T+Z_] k_2J u2i+1
j=1 i=0 J 2i+1 ]%—i_i_j g

which, after reversing the order of summation, can be rewritten as

(k—1)/2
ugnt1 = AKTD2yk Z AT A gudiT (3.3)
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where
(k—1)/2—i o .
Aig= Y. l(_l)(k—l)/Z—H—j kK\((k+1)/2+i— k—2j |
” =1 J 2i+1 k+1)/2+i—j
Since A(k—])/z’k = 0, the equality (3.3) becomes

(k—3)/2
Upnt+1 = A(k_l)/zuin — Z Al A; kuif{“.

From (pp. 58, [3]), we have the combinatonal 1dent1ty: forl<m<(k—-3)/2

k k\(k—m—] k—
B (o) o

If we replace m by % —i in (3.4), then we obtain C; x = A; ;. Thus the proof is
complete. O

In a similar manner, we may give the following result:

Proposition 4. Forn > 0 and odd k > 1,
k k=3 k—1
= kg 2k St 02041
U1 = 47T ukn—;oﬁ( h3 m<zi+1 Al

Proof. For odd k, we get

k
1 n n
uk”:_kZ( )( l)]ﬂ]k (k—j)k
0
(”an + Z )M(k—zj)kn

So we write

k=1 g k
Upnt1 = A 2 up, — Z | ue—2))kn-

—\J

j_
Using Lemma 1 and reversing the order of summation, we write
- e A
j=1 i=0

L 2(k-2)) (K L pi—j+1 A2
k—2j+2i+1\j 2i 41 e
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k=3 k—1__
2 2

:A%Min_uknz Z (- 1) Lyi—j

i=0 j=1

L 2(k-2)) (K L pi—j+1 e
k—2j +2i+1\j 2i +1 ke

By simplifying, we derive

k 3

k1 2k k=1 4\ ..
Upn+1 = Az“k"—“knz( 2 +’m<i~+1 Aluj.

We give a recurrence relation for the sequence {vgn} for odd k.

Proposition 5. Forn > 0 and odd k > 1,

Tz
Vgn+1 = vllin - Z E; Uiﬁz-H,

2k k=1
Eix=—"—| 7 o
’ —k+2i +1\ 2i+1
Proof. By the Binet formula of {v, } and the binomial expansion, we write

k
k SN _A\Ln
ok, =Z(~)ﬂjk Q=D

j=o \J

where

for0<i<((k—1)/2.

k—l
_Uk;1+l+Z( I)J( )U(k 2/)k"-
Jj=
By Lemma 1, we write
St k+1
_ Kk j S\ k=2 s
vkn+l—vkn_z Z (=1 ()( . )van
j=1 i=0 2i+1 2 T
and by reversing the order of summation, we get
. k+1
S ti—] k—2j 241
" =vf, — 1] 2 s ’ll+
SR L N TS e IS

i=0 j=1 J
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which, by the definition of C; k., gives

k=3 k—1_;
2 2 1 k+1 , .
NV AVES SR k—2j ;
— K J 2 2i+1
i=0 j=1 J 20+l R i
If we take m = k%l —11in (3.4), we get
Vgn+1 = vllsn — Z Ei,kvifﬁl,
i=0
where
e 2% L yi
T Tk2ii\ 2i 41 )
O
For example, when k = 5,
Usnt1 = V20 + 5030 + 50dn. (3.5)

We give a recurrence relation for the sequence {vgn } for even k.

Proposition 6. For n and even k > 0,

Vgn+1 = vllgn — Z H,',kl)]%;ﬂ,
=0
where for 1 <m <k/2

k .
ke [5+i—1 2k
H . = (—1G+) (2 .
ke = (=1) ( 2i )—k+2i

Proof. It is easy to see that

k
kY ,ikn e jyrn
vk, :Z(j)ﬂ’k qk=ik

Jj=0

k
k 2 [k
:vk"+1_<11)+Z(‘)U(k_2j)k”’
2 j=1 J

Then by Lemma 1 and reversing the order of summation, we get

k
k Sy
vllgn = Ukn+l — (k) +Z ( _)U(k_zj)kn
2) =S\
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K (KN (k- +i\2(5-))
= Ugn+1 + (11) + Z (—1)(5_1+l) ( ) (2 5 )k—v/%fz
2/ j=ii=o J 2 J i

k=2 k

R N AV .211_j
:vkn+1+ZZ(—1)(2_1+1)(]_)<2 2]i+l) k(2 )v,%i,

i=0j=1 2~ Jti

k=2
e Koy (S4+i-1\ 2k
= Uun INCEHN 2
Ok +1+§0( ) ( 2i | —k+2i'k
Thus the proof is complete. 0

When k = 6, we get
Vgnt1 = Von — 6vgn + 902, — 202, (3.6)

Here we note that the coefficients of the formulas in (3.5) and (3.6) with adjusted
sings appears to be the terms of the sequence A034807 in the OEIS.

4. A POLYNOMIAL REPRESENTATIONS FOR Ugn+1

In this section, we show that the generalized Lucas numbers vj»+1 are polynomials
of the generalized Fibonacci numbers uy» of degree k for even k.

Proposition 7. For even k > 0 andn > 0,

k=2
2

Ukn+1 = Z Di,k Al Misz,
i=0

ok
Dif= 2k [i+3
’ k+2i\ 2i

Ly k) (1)) pik g k=ik"
as o\

1 k[ k k[ k
= A— ((—1)2 (k/2) + Ukn+1 —(—1)2 (k/z)l)()
Mk
1( 1)/ (J.)v(k—Zj)k”

where D i is given by

forl <m<k/2.
Proof. Consider

ukn -

[Nt

[Nt

+

'MN\»

J
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: ot () e (¢
= — | vpn+1 — (— - =2 Hkn
A kj2) T T e

=

After using Lemma 1 and reversing the order of summation, we get for even k,

1 k
k

—_— n 1
X Vgnt+1 + (— ) k)2

Upn =

FE (00

ui,,:Ai ukn+1+22—:i (-1)) —=— "~ <__j> k (%_j>+i A2,

which becomes

k ; .
2 i=0,=1 ( J) +i \/ 2
If we take m = % —iin (3.4) for 1 <m < k/2, the last equation takes the form:
k 2
1
uin == _k vkn+l + Z Dl kAlukn
Az =0

where D; x is the right hand side of (3.4) for m = % —1, that is,

—2k \ (i +1k
D, — 2
ik (k+2i) 2

Thus we have proved the conclusion. O
When k = 6, we have that
vent1 = 125uy + 150ugn + 45ul. +2. 4.1

Note that the coefficients of the formula in (4.1) with adjusted sings appears to be the
terms of the sequence A 104064 in the OEIS.
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