Miskolc Mathematical Notes

GENERALIZED CONVEXITY OF THE INVERSE HYPERBOLIC COSINE FUNCTION

YUE HE AND GENDI WANG

Received 08 May, 2018

Abstract

The generalized convexity of the inverse hyperbolic cosine function related to the hyperbolic metric is investigated in this paper.

2010 Mathematics Subject Classification: 33B10; 26D07
Keywords: Hölder mean, convexity, concavity, inverse hyperbolic cosine function

1. Introduction

The hyperbolic functions and their inverses play an important role in the study of the hyperbolic geometry and quasiconformal mappings [1, 4, 5, 8, 9, 11, 12]. For example, the explicit formulas for the hyperbolic metric in the unit disk \mathbb{B}^{2} and the upper half plane $\mathbb{-}^{2}$ are given in terms of the inverse hyperbolic sine and cosine functions, respectively, as follows [5, p.35, p.40]:

$$
\begin{gathered}
\rho_{\mathbb{B}^{2}}(x, y)=2 \operatorname{arsh} \frac{|x-y|}{\sqrt{\left(1-|x|^{2}\right)\left(1-|y|^{2}\right)}}, \\
\rho_{\mathbb{H}^{2}}(x, y)=\operatorname{arch}\left(1+\frac{|x-y|^{2}}{2 \operatorname{Im} x \operatorname{Im} y}\right) .
\end{gathered}
$$

In recent papers [9,11], the authors investigated the properties of hyperbolic Lambert quadrilaterals in the unit disk by studying the inverse hyperbolic tangent and sine functions.

The study of the convexity/concavity with respect to Hölder means, or simply $H_{p, q}$-convexity/concavity, of special functions has attracted attentions of many researchers, see $[2,6,7,9-11,13-17]$. In particular, the convexity/concavity of the inverse hyperbolic tangent and sine functions has been studied in [9] and [11], respectively. For the definition of the above so-called generalized convexity/concavity, the reader is referred to Section 2.

In this paper, we continue the work of $[9,11]$ to study the generalized convexity for the inverse hyperbolic cosine function. Our main result is stated in the following theorem.

Theorem 1. For $p, q \in \mathbb{R}$, the inverse hyperbolic cosine function arch is strictly $H_{p, q}$-convex on $(1,+\infty)$ if and only if $(p, q) \in D_{1}$, while arch is strictly $H_{p, q^{-}}$ concave on $(1,+\infty)$ if and only if $(p, q) \in D_{2} \cup D_{3}$, where

$$
\begin{aligned}
D_{1} & =\{(p, q) \mid-\infty<p \leq 0,2 \leq q<+\infty\} \\
D_{2} & =\left\{(p, q) \left\lvert\, 0 \leq p \leq \frac{2}{3}\right.,-\infty<q \leq C(p)\right\}, \\
D_{3} & =\left\{(p, q) \left\lvert\, \frac{2}{3}<p<+\infty\right.,-\infty<q \leq 2\right\},
\end{aligned}
$$

and $C(p)$ is the same as in Lemma 3(4) with $C(0)=1$ and $C\left(\frac{2}{3}\right)=2$. In particular, for all $x, y \in(1,+\infty)$, there hold

$$
\begin{equation*}
\operatorname{arch} \sqrt{x y} \leq \sqrt{\frac{\operatorname{arch}^{2} x+\operatorname{arch}^{2} y}{2}} \leq \operatorname{arch} \sqrt{\left(\frac{\sqrt[3]{x^{2}}+\sqrt[3]{y^{2}}}{2}\right)^{3}} \tag{1.1}
\end{equation*}
$$

with equalities if and only if $x=y$.

2. Preliminaries

For $r, s \in(0,+\infty)$, the Hölder mean of order p is defined by

$$
H_{p}(r, s)=\left(\frac{r^{p}+s^{p}}{2}\right)^{\frac{1}{p}} \text { for } p \neq 0, \quad H_{0}(r, s)=\sqrt{r s}
$$

For $p=1$, we get the arithmetic mean $A=H_{1}$; for $p=0$, the geometric mean $G=H_{0}$; and for $p=-1$, the harmonic mean $H=H_{-1}$. It is well known that $H_{p}(r, s)$ is continuous and increasing with respect to p.

A function $f: I \rightarrow J$ is called $H_{p, q}$-convex (concave) if it satisfies

$$
f\left(H_{p}(r, s)\right) \leq(\geq) H_{q}(f(r), f(s))
$$

for all $r, s \in I$, and strictly $H_{p, q}$-convex (concave) if the inequality is strict except for $r=s$.

The following monotone form of l'Hôpital's rule is of great use in deriving monotonicity properties and obtaining inequalities. See the extensive bibliography of [3].

Lemma 1 ([1, Theorem 1.25]). For $-\infty<a<b<\infty$, let functions $f, g:[a, b] \rightarrow$ \mathbb{R} be continuous on $[a, b]$, and be differentiable on (a, b). Let $g^{\prime}(x) \neq 0$ on (a, b). If $f^{\prime}(x) / g^{\prime}(x)$ is increasing (deceasing) on (a, b), then so are

$$
\frac{f(x)-f(a)}{g(x)-g(a)} \text { and } \frac{f(x)-f(b)}{g(x)-g(b)}
$$

If $f^{\prime}(x) / g^{\prime}(x)$ is strictly monotone, then the monotonicity in the conclusion is also strict.

We prove the following three lemmas before giving the proof of Theorem 1.

Lemma 2. Let $r \in(1,+\infty)$.
(1)The function $f_{1}(r) \equiv \frac{\operatorname{arch} r}{\sqrt{r^{2}-1}}$ is strictly decreasing with range $(0,1)$;
(2)The function $f_{2}(r) \equiv 2+\frac{\operatorname{arch} r+r \sqrt{r^{2}-1}-2 r^{3} \sqrt{r^{2}-1}}{\left(r^{2}-1\right)\left(\operatorname{arch} r+r \sqrt{r^{2}-1}\right)}$ is strictly decreasing with range ($0, \frac{2}{3}$).

Proof. (1) Let $f_{11}(r)=\operatorname{arch} r$ and $f_{12}(r)=\sqrt{r^{2}-1}$, then $f_{11}\left(1^{+}\right)=f_{12}\left(1^{+}\right)=$ 0 . By differentiation, we have

$$
\frac{f_{11}^{\prime}(r)}{f_{12}^{\prime}(r)}=\frac{1}{r}
$$

which is strictly decreasing. Hence by Lemma 1 , the function f_{1} is strictly decreasing with $f_{1}\left(1^{+}\right)=1$ and $f_{1}(+\infty)=0$.
(2) Let $f_{21}=\operatorname{arch} r+r \sqrt{r^{2}-1}-2 r^{3} \sqrt{r^{2}-1} \quad$ and $f_{22}=\left(r^{2}-1\right)\left(\operatorname{arch} r+r \sqrt{r^{2}-1}\right)$, then $f_{21}\left(1^{+}\right)=f_{22}\left(1^{+}\right)=0$. By differentiation, we have

$$
\frac{f_{21}^{\prime}(r)}{f_{22}^{\prime}(r)}=\frac{-4}{2+\frac{f_{1}(r)}{r}}
$$

which is strictly decreasing by (1). Hence by Lemma 1 , the function f_{2} is strictly decreasing with $f_{2}\left(1^{+}\right)=\frac{2}{3}$ and $f_{2}(+\infty)=0$.

Lemma 3. For $p \in \mathbb{R}$ and $r \in(1,+\infty)$, define

$$
h_{p}(r)=1+p \sqrt{r^{2}-1} \cdot \frac{\operatorname{arch} r}{r}+\frac{1}{\sqrt{r^{2}-1}} \cdot \frac{\operatorname{arch} r}{r} .
$$

(1) If $p \geq \frac{2}{3}$, then h_{p} is strictly increasing with range $(2,+\infty)$.
(2) If $p<0$, then h_{p} is strictly decreasing with range $(-\infty, 2)$.
(3) If $p=0$, then h_{p} is strictly decreasing with range $(1,2)$.
(4) If $0<p<\frac{2}{3}$, then h_{p} is not monotone and the range of h_{p} is $[C(p),+\infty)$, where

$$
C(p)=\min _{r \in(1,+\infty)} h_{p}(r)
$$

with $1<C(p)<2$.
Proof. By Lemma 2(1), it is easy to get

$$
h_{p}\left(1^{+}\right)=2 \quad \text { and } \quad h_{p}(+\infty)=\left\{\begin{array}{cc}
+\infty, & p>0 \\
1, & p=0 \\
-\infty, & p<0
\end{array}\right.
$$

By differentiation, we have

$$
h_{p}^{\prime}(r)=\frac{1}{r}\left(1+\frac{\operatorname{arch} r}{r \sqrt{r^{2}-1}}\right)\left(p-f_{2}(r)\right)
$$

where $f_{2}(r)$ is the same as in Lemma 2(2).

By Lemma 2(2), we have (1)-(3).
(4) If $0<p<\frac{2}{3}$, since the range of f_{2} is $\left(0, \frac{2}{3}\right)$, there exists one and only one point $r_{p} \in(1,+\infty)$ such that $p=f_{2}\left(r_{p}\right)$. Then h_{p} is strictly decreasing on $\left(1, r_{p}\right)$ and increasing on $\left(r_{p},+\infty\right)$. Since h_{p} is continuous in r, there exists

$$
C(p)=\min _{r \in(1,+\infty)} h_{p}(r)
$$

and $1<C(p)<2$.
Lemma 4. Let $p, q \in \mathbb{R}, r \in(1,+\infty)$, and $C(p)$ be the same as in Lemma 3(4). Let

$$
g_{p, q}(r)=\frac{\operatorname{arch}^{q-1} r}{r^{p-1} \sqrt{r^{2}-1}}
$$

(1) If $p \geq \frac{2}{3}$, then $g_{p, q}$ is strictly decreasing for each $q \leq 2$, and $g_{p, q}$ is not monotone for any $q>2$.
(2) If $p<0$, then $g_{p, q}$ is strictly increasing for each $q \geq 2$, and $g_{p, q}$ is not monotone for any $q<2$.
(3) If $p=0$, then $g_{p, q}$ is strictly increasing for each $q \geq 2$, and $g_{p, q}$ is strictly decreasing for each $q \leq 1$, and $g_{p, q}$ is not monotone for any $1<q<2$.
(4) If $0<p<\frac{2}{3}$, then $g_{p, q}$ is strictly decreasing for each $q \leq C(p)$, and $g_{p, q}$ is not monotone for any $q>C(p)$.

Proof. By logarithmic differentiation in r, we have

$$
\frac{g_{p, q}^{\prime}(r)}{g_{p, q}(r)}=\frac{1}{\sqrt{r^{2}-1} \cdot \operatorname{arch} r}\left(q-h_{p}(r)\right)
$$

where $h_{p}(r)$ is the same as in Lemma 3. Hence the results immediately follow from Lemma 3.

3. Proof of main result

We are now in a position to prove Theorem 1.
Proof of Theorem 1. Without loss of generality, we may assume that $1<x \leq y<$ $+\infty$. Let $t=H_{p}(x, y)$, then $x \leq t \leq y$ and

$$
\frac{\partial t}{\partial x}=\frac{1}{2}\left(\frac{x}{t}\right)^{p-1}
$$

The proof is divided into the following four cases.
Case 1. $p \neq 0$ and $q \neq 0$.
Define

$$
F(x, y)=\operatorname{arch}^{q}\left(H_{p}(x, y)\right)-\frac{\operatorname{arch}^{q} x+\operatorname{arch}^{q} y}{2}
$$

By differentiation, we have

$$
\frac{\partial F}{\partial x}=\frac{q}{2} x^{p-1}\left(\frac{\operatorname{arch}^{q-1} t}{t^{p-1} \sqrt{t^{2}-1}}-\frac{\operatorname{arch}^{q-1} x}{x^{p-1} \sqrt{x^{2}-1}}\right)=\frac{q}{2} x^{p-1}\left(g_{p, q}(t)-g_{p, q}(x)\right)
$$

where $g_{p, q}$ is defined in Lemma 4.
Case 1.1 $p \geq \frac{2}{3}$ and $q \leq 2$.
By Lemma 4(1), the function $g_{p, q}$ is strictly decreasing on $(1,+\infty)$.
Case 1.1.1 If $q>0$, then $\frac{\partial F}{\partial x} \leq 0$. Hence $F(x, y)$ is strictly decreasing and $F(x, y) \geq F(y, y)=0$. Namely,

$$
\operatorname{arch}\left(H_{p}(x, y)\right) \geq\left(\frac{\operatorname{arch}^{q} x+\operatorname{arch}^{q} y}{2}\right)^{\frac{1}{q}}=H_{q}(\operatorname{arch} x, \operatorname{arch} y)
$$

with equality if and only if $x=y$.
Case 1.1.2 If $q<0$, then $\frac{\partial F}{\partial x} \geq 0$. Hence $F(x, y)$ is strictly increasing and $F(x, y) \leq$ $F(y, y)=0$. Namely,

$$
\operatorname{arch}\left(H_{p}(x, y)\right) \geq\left(\frac{\operatorname{arch}^{q} x+\operatorname{arch}^{q} y}{2}\right)^{\frac{1}{q}}=H_{q}(\operatorname{arch} x, \operatorname{arch} y)
$$

with equality if and only if $x=y$.
In conclusion, arch is strictly $H_{p, q}$-concave on the whole interval $(1,+\infty)$ for $(p, q) \in\left\{(p, q) \left\lvert\, \frac{2}{3} \leq p<+\infty\right., 0<q \leq 2\right\} \cup\left\{(p, q) \left\lvert\, \frac{2}{3} \leq p<+\infty\right., q<0\right\}$.

Case $1.2 p \geq \frac{2}{3}$ and $q>2$.
By Lemma 4(1), the function $g_{p, q}$ is not monotone on $(1,+\infty)$. With an argument similar to Case 1.1 , it is easy to see that arch is neither $H_{p, q}$-concave nor $H_{p, q}$-convex on the whole interval $(1,+\infty)$ for $(p, q) \in\left\{(p, q) \left\lvert\, p \geq \frac{2}{3}\right., q>2\right\}$.

Case $1.3 p<0$ and $q \geq 2$.
By Lemma 4(2), the function $g_{p, q}$ is strictly increasing on $(1,+\infty)$ and hence $\frac{\partial F}{\partial x} \geq 0$. Then $F(x, y)$ is strictly increasing and $F(x, y) \leq F(y, y)=0$. Namely,

$$
\operatorname{arch}\left(H_{p}(x, y)\right) \leq\left(\frac{\operatorname{arch}^{q} x+\operatorname{arch}^{q} y}{2}\right)^{\frac{1}{q}}=H_{q}(\operatorname{arch} x, \operatorname{arch} y)
$$

with equality if and only if $x=y$.
In conclusion, arch is strictly $H_{p, q}$-convex on the whole interval $(1,+\infty)$ for $(p, q) \in\{(p, q) \mid p<0, q \geq 2\}$.

Case $1.4 p<0$ and $q<2$.
By Lemma 4(2), the function $g_{p, q}$ is not monotone on $(1,+\infty)$. With an argument similar to Case 1.3 , it is easy to see that arch is neither $H_{p, q}$-concave nor $H_{p, q}$-convex on the whole interval $(1,+\infty)$ for $(p, q) \in\{(p, q) \mid p<0, q<0\} \cup\{(p, q) \mid p<0,0<$ $q<2\}$.

Case $1.50<p<\frac{2}{3}$ and $q \leq C(p)$.

By Lemma 4(4), the function $g_{p, q}$ is strictly decreasing on $(1,+\infty)$.
Case 1.5.1 If $q>0$, then $\frac{\partial F}{\partial x} \leq 0$. Hence $F(x, y)$ is strictly decreasing and $F(x, y) \geq F(y, y)=0$. Namely,

$$
\operatorname{arch}\left(H_{p}(x, y)\right) \geq\left(\frac{\operatorname{arch}^{q} x+\operatorname{arch}^{q} y}{2}\right)^{\frac{1}{q}}=H_{q}(\operatorname{arch} x, \operatorname{arch} y)
$$

with equality if and only if $x=y$.
Case 1.5.2 If $q<0$, then $\frac{\partial F}{\partial x} \geq 0$. Hence $F(x, y)$ is strictly increasing and $F(x, y) \leq$ $F(y, y)=0$. Namely,

$$
\operatorname{arch}\left(H_{p}(x, y)\right) \geq\left(\frac{\operatorname{arch}^{q} x+\operatorname{arch}^{q} y}{2}\right)^{\frac{1}{q}}=H_{q}(\operatorname{arch} x, \operatorname{arch} y)
$$

with equality if and only if $x=y$.
In conclusion, arch is strictly $H_{p, q}$-concave on the whole interval $(1,+\infty)$ for $(p, q) \in\left\{(p, q) \left\lvert\, 0<p<\frac{2}{3}\right., 0<q \leq C(p)\right\} \cup\left\{(p, q) \left\lvert\, 0<p<\frac{2}{3}\right., q<0\right\}$.

Case $1.60<p<\frac{2}{3}$ and $q>C(p)$.
By Lemma 4(4), the function $g_{p, q}$ is not monotone on $(1,+\infty)$. With an argument similar to Case 1.5, it is easy to see that arch is neither $H_{p, q}$-concave nor $H_{p, q}$-convex on the whole interval $(1,+\infty)$ for $(p, q) \in\left\{(p, q) \left\lvert\, 0<p<\frac{2}{3}\right., q>C(p)\right\}$.

Case 2. $p \neq 0$ and $q=0$.
Define

$$
F(x, y)=\frac{\operatorname{arch}^{2}\left(H_{p}(x, y)\right)}{\operatorname{arch} x \cdot \operatorname{arch} y}
$$

By logarithmic differentiation, we obtain

$$
\frac{1}{F} \frac{\partial F}{\partial x}=x^{p-1}\left(g_{p, 0}(t)-g_{p, 0}(x)\right)
$$

where $g_{p, 0}$ is defined in Lemma 4.
Case $2.1 p \geq \frac{2}{3}$ and $q=0$.
By Lemma $4(1)$, the function $g_{p, q}$ is strictly decreasing on $(1,+\infty)$ and hence $\frac{\partial F}{\partial x} \leq 0$. Then $F(x, y)$ is strictly decreasing and $F(x, y) \geq F(y, y)=1$. Namely,

$$
\operatorname{arch}\left(H_{p}(x, y)\right) \geq \sqrt{\operatorname{arch} x \cdot \operatorname{arch} y}=H_{0}(\operatorname{arch} x, \operatorname{arch} y)
$$

with equality if and only if $x=y$.
In conclusion, arch is strictly $H_{p, q}$-concave on the whole interval $(1,+\infty)$ for $(p, q) \in\left\{(p, q) \left\lvert\, p \geq \frac{2}{3}\right., q=0\right\}$.

Case $2.2 p<0$ and $q=0$.
By Lemma 4(2), the function $g_{p, q}$ is not monotone on $(1,+\infty)$. With an argument similar to Case 2.1, it is easy to see that arch is neither $H_{p, q}$-concave nor $H_{p, q}$-convex on the whole interval $(1,+\infty)$ for $(p, q) \in\{(p, q) \mid p<0, q=0)\}$.

Case $2.30<p<\frac{2}{3}$ and $q=0$.

By Lemma 4(4), the function $g_{p, q}$ is strictly decreasing on $(1,+\infty)$ and hence $\frac{\partial F}{\partial x} \leq 0$. Then $F(x, y)$ is strictly decreasing and $F(x, y) \geq F(y, y)=1$. Namely,

$$
\operatorname{arch}\left(H_{p}(x, y)\right) \geq \sqrt{\operatorname{arch} x \cdot \operatorname{arch} y}=H_{0}(\operatorname{arch} x, \operatorname{arch} y)
$$

with equality if and only if $x=y$.
In conclusion, arch is strictly $H_{p, q}$-concave on the whole interval $(1,+\infty)$ for $(p, q) \in\left\{(p, q) \left\lvert\, 0<p<\frac{2}{3}\right., q=0\right\}$.

Case 3. $p=0$ and $q \neq 0$.
Define

$$
F(x, y)=\operatorname{arch}^{q}(\sqrt{x y})-\frac{\operatorname{arch}^{q} x+\operatorname{arch}^{q} y}{2}
$$

By differentiation, we obtain

$$
\frac{\partial F}{\partial x}=\frac{q}{2 x}\left(g_{0, q}(t)-g_{0, q}(x)\right)
$$

where $g_{0, q}$ is defined in Lemma 4.
Case $3.1 p=0$ and $q \geq 2$.
By Lemma $4(3)$, the function $g_{p, q}$ is strictly increasing on $(1,+\infty)$ and hence $\frac{\partial F}{\partial x} \geq 0$. Then $F(x, y)$ is strictly increasing and $F(x, y) \leq F(y, y)=0$. Namely,

$$
\operatorname{arch}\left(H_{0}(x, y)\right) \leq\left(\frac{\operatorname{arch}^{q} x+\operatorname{arch}^{q} y}{2}\right)^{\frac{1}{q}}=H_{q}(\operatorname{arch} x, \operatorname{arch} y)
$$

with equality if and only if $x=y$.
In conclusion, arch is strictly $H_{p, q}$-convex on the whole interval $(1,+\infty)$ for $(p, q) \in\{(p, q) \mid p=0, q \geq 2\}$.

Case $3.2 p=0$ and $q \leq 1$.
By Lemma 4(3), the function $g_{p, q}$ is strictly decreasing on $(1,+\infty)$.
Case 3.2.1 If $0<q \leq 1$, then $\frac{\partial F}{\partial x} \leq 0$. Hence $F(x, y)$ is strictly decreasing and $F(x, y) \geq F(y, y)=0$. Namely,

$$
\operatorname{arch}\left(H_{0}(x, y)\right) \geq\left(\frac{\operatorname{arch}^{q} x+\operatorname{arch}^{q} y}{2}\right)^{\frac{1}{q}}=H_{q}(\operatorname{arch} x, \operatorname{arch} y)
$$

with equality if and only if $x=y$.
Case 3.2.2 If $q<0$, then $\frac{\partial F}{\partial x} \geq 0$. Hence $F(x, y)$ is strictly increasing and $F(x, y) \leq$ $F(y, y)=0$. Namely,

$$
\operatorname{arch}\left(H_{0}(x, y)\right) \geq\left(\frac{\operatorname{arch}^{q} x+\operatorname{arch}^{q} y}{2}\right)^{\frac{1}{q}}=H_{q}(\operatorname{arch} x, \operatorname{arch} y)
$$

with equality if and only if $x=y$.
In conclusion, arch is strictly $H_{p, q}$-concave on the whole interval $(1,+\infty)$ for $(p, q) \in\{(p, q) \mid p=0,0<q \leq 1\} \cup\{(p, q) \mid p=0, q<0\}$.

Case $3.3 p=0$ and $1<q<2$.

By Lemma 4(3), the function $g_{p, q}$ is not monotone on $(1,+\infty)$. With an argument similar to Case 3.2, it is easy to see that arch is neither $H_{p, q}$-concave nor $H_{p, q}$-convex on the whole interval $(1,+\infty)$ for $(p, q) \in\{(p, q) \mid p=0,1<q<2)\}$.

Case 4. $p=0$ and $q=0$.
By Case 2.3 , for all $x, y \in(1,+\infty)$, we have

$$
\operatorname{arch}\left(H_{p}(x, y)\right) \geq H_{0}(\operatorname{arch} x, \operatorname{arch} y) \quad \text { for } \quad 0<p<\frac{2}{3}
$$

By the continuity of H_{p} in p and arch in x, we have

$$
\operatorname{arch}\left(H_{0}(x, y)\right) \geq H_{0}(\operatorname{arch} x, \operatorname{arch} y),
$$

with equality if and only if $x=y$.
In conclusion, arch is strictly $H_{0,0}$-concave on the whole interval $(1,+\infty)$.
By Case 1.1 and Case 3.1, arch is strictly $H_{\frac{2}{3}, 2}$-concave and strictly $H_{0,2}$-convex on $(1,+\infty)$. Therefore, the inequalities (1.1) hold with equalities if and only if $x=y$. This completes the proof of Theorem 1.

Setting $p=1=q$ in Theorem 1, we easily obtain the concavity of arch.
Corollary 1. The inverse hyperbolic cosine function arch is strictly concave on $(1,+\infty)$.

Acknowledgments

This research was supported by National Natural Science Foundation of China (NNSFC) under Grant No. 11601485 and No.11771400, and Science Foundation of Zhejiang Sci-Tech University (ZSTU) under Grant No. 16062023 -Y.

REFERENCES

[1] G. D. Anderson, M. K. Vamanamurthy, and M. Vuorinen, Conformal Invariants, Inequalities, and Quasiconformal Maps. New York: John Wiley \& Sons, 1997.
[2] G. D. Anderson, M. K. Vamanamurthy, and M. Vuorinen, "Generalized convexity and inequalities." J. Math. Anal. Math., vol. 335, no. 2, pp. 1294-1308, 2007, doi: 10.1016/j.jmaa.2007.02.016.
[3] G. D. Anderson, M. Vuorinen, and X.-H. Zhang, Topics in special functions III. Analytic Number Theory, Approximation Theory, and Special Functions. New York: Springer, 2014. doi: 10.1007/978-1-4939-0258-3.
[4] J. W. Anderson, Hyperbolic Geometry. London: Springer-Verlag, 2005.
[5] A. F. Beardon, The Geometry of Discrete Groups. New York: Springer-Verlag, 1995. doi: 10.1007/978-1-4612-1146-4.
[6] Y.-M. Chu, Y.-F. Qiu, and M.-K. Wang, "Hölder mean inequalities for the complete elliptic integrals." Integral Transforms Spec. Funct., vol. 23, no. 7, pp. 521-527, 2012, doi: 10.1080/10652469.2011.609482.
[7] Y.-M. Chu, M.-K. Wang, Y.-P. Jiang, and S.-L. Qiu, "Concavity of the complete elliptic integrals of the second kind with respect to Hölder means." J. Math. Anal. Math., vol. 395, no. 2, pp. 637-642, 2012, doi: 10.1016/j.jmaa.2012.05.083.
[8] M. Vuorinen, "Geometry of metrics." J. Anal., vol. 18, pp. 399-424, 2010.
[9] M. Vuorinen and G.-D. Wang, "Hyperbolic Lambert quadrilaterals and quasiconformal mappings." Ann. Acad. Sci. Fenn. Math., vol. 38, pp. 433-453, 2013, doi: 10.5186/aasfm.2013.3845.
[10] G.-D. Wang, "The inverse hyperbolic tangent function and Jacobian sine function." J. Math. Anal. Math., vol. 448, no. 1, pp. 498-505, 2017, doi: 10.1016/j.jmaa.2016.11.002.
[11] G.-D. Wang, "The adjacent sides of hyperbolic lambert quadrilaterals." Bull. Malays. Math. Sci. Soc. , vol. 41, pp. 1995-2010, 2018, doi: 10.1007/s40840-016-0439-7.
[12] G.-D. Wang and M. Vuorinen, "The visual angle metric and quasiregular maps." Proc. Amer. Math. Soc., vol. 144, no. 11, pp. 4899-4912, 2016, doi: 10.1090/proc/13188.
[13] G.-D. Wang, X.-H. Zhang, and Y.-M. Chu, "Hölder concavity and inequalities for Jacobian elliptic functions." Integral Transforms Spec. Funct., vol. 23, no. 5, pp. 337-345, 2012, doi: 10.1080/10652469.2011.590482.
[14] M.-K. Wang, Y.-M. Chu, S.-L. Qiu, and Y.-P. Jiang, "Convexity of the complete elliptic integrals of the first kind with respect to Hölder means." J. Math. Anal. Appl., vol. 388, no. 2, pp. 1141-1146, 2012, doi: 10.1016/j.jmaa.2011.10.063.
[15] X.-H. Zhang, "Solution to a conjecture on the Legendre M-function with an application to the generalized modulus." J. Math. Anal. Appl., vol. 431, no. 2, pp. 1190-1196, 2015, doi: 10.1016/j.jmaa.2015.06.033.
[16] X.-H. Zhang, "Monotonicity and functional inequalities for the complete p-elliptic integrals." J. Math. Anal. Appl., vol. 453, no. 2, pp. 942-953, 2017, doi: 10.1016/j.jmaa.2017.04.025.
[17] X.-H. Zhang, "On the generalized modulus." Ramanujan J. , vol. 43, no. 2, pp. 405-413, 2017, doi: 10.1007/s11139-015-9746-0.

Authors' addresses

Yue He

School of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
E-mail address: yuehe_zstu@163.com

Gendi Wang

School of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
E-mail address: gendi.wang@zstu.edu.cn

