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1. INTRODUCTION
As usual, the Fibonacci polynomials { F}, (x)} are defined by the second-order lin-
ear recurrence
Fry2(x) = xFpi1(x) + Fp(x) (1.1)
forn >0and Fo(x) =0, F1(x) =1.
The Lucas polynomials {L, (x)} are defined by the second-order linear recurrence

Lnt2(x) = xLpy1(x) + Ln(x) (1.2)

forn >0and Lo (x) =2,L1(x) = x.

These polynomials are of great importance in the study of many subjects such as
algebra, geometry and number theory itself. Obviously (1.1) and (1.2) have a deep
relationship with Fibonacci numbers { F; },-., and Lucas numbers {L,},,- respect-
ively.

Wenpeng Zhang [7] and Fengzhen Zhao [8] obtained some identities involving the
Fibonacci numbers. Yuan Yi and Wenpeng Zhang [5] studied the calculation on the
summation involving the Fibonacci polynomials and obtained the following

Z Fay+1 (%) Fay41(X) ... Fa41 (x) =

ait-ta=n
3] n+k—1-m\[{n+k—-1-2m
X720 (1.3)
m k—1

m=0
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where k, n are positive integers and the summation is over all k—dimension nonneg-
ative integer coordinates (a1,das,...,ax) such that a; +as +---+ay = n where k,n
are any positive integers.

Tianping Zhang and Yuankui Ma [6] studied the relationship between the gener-
alized Fibonacci polynomials and the famous Bernoulli numbers and gave several
interesting identities involving them. They [4] also studied the relationships between
the Chebyshev polynomials of the first kind and the Euler numbers.

In this paper we study the relationship between the generalized Lucas polynomials
and the Euler numbers and give several interesting identities involving them.

2. MAIN RESULTS

Definition 1. Let {V}, (x)} be the polynomial sequence. The generalized Lucas
polynomials are defined by Vy (x) =2, V7 (x) = P(x) and
Va2 (x) = P(x) Va1 (x) + Q(x) Vi (x) (2.1)
where P(x) and Q(x) are polynomials of an indeterminate x with real coefficients.

Definition 2 ([2]). The ordinary Euler numbers are defined by their generating
function as follows

o tn
F(1) eFt=3" Ep— |t < (2.2)
=0 :

= m =
where our notation replaced E™ by E,,(m > 0), symbolically.

The first few ones are 1,—%,0, %,--- ,and E5; =0fork =1,2,3,---. These num-
bers arise in the series expansions of trigonometric functions and are extremely im-

portant in number theory and analysis.

Theorem 1. For all positive integers k and n with k < n, we have the formula

Val (x) Vak (X) Eb] Ebk bi+-+by
Z ay! T ag! b_ﬂ"'m(VA(x)) (2.3)
al+"'+ak +b1+'-~+bk=n
_ e (B o
n! .

where B(x) = PE=NA) 454 A(x) = P2(x) +40(x).

Proof. Leta(x) = % VA and B(x) = % VAW denote the roots of char-

acteristic polynomial A2 — P(x)A — Q(x) of the generalized Lucas polynomial se-
quence {V, (x)}. Then the terms of the sequence {V;, (x)} can be expressed as [, 3]

Ve () = (P(x) +2,/A(x)) N (P(x)—,/A(x)) | 2s)

2
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Then we easily deduce that the generating function of V (¢, x) is

tn
V(t,x) = Z V,,(x)—. = 2;)(01(36) + B(x) )n!. (2.6)
n

That is,

V(t,x) = e L BT eﬂ(x)t(l +et«/A(X)).
Therefore, we have

eﬂ(x)t V(t,X)
1+ et\/A(x)
V(t, x) 2
2 1teVB®

Then from (2.2) and (2.5) we have

m o0 (t«/A(x))n

B Z Vo (x)— Z 2.7)

n!

o0
Note that for two absolutely convergent power series Z ant™ and Y b,t", we have

n=0 n=0
(Zant") (Z bnt”) = Z( > aubv) ", (2.8)
n=0 n=0 n=0 \u+v=n

so for the k't power of both sides of formula (2.6) we have

LHS =( ﬂ<x)t) _ B _ Z (kﬁ(x)) |

[ ! Vay (x)
RHS:XE) o 3 a, (X
n=

ay!
ay+-+tay +by++bg=n

- Vak (x) Eb| Ebk (\/T)C))bl—i_.“—i_bk)tn.

ag! b1l by!
Comparing the coefficients of ¢, we obtain the following identity

Z Va1 (x) Vak (x) %% (m)b1+...+bk

al! ak! bl! bk!
ay+-tay +by++bg=n

_ B

n!

If we take P(x) = 2x and Q(x) = 1 in Theorem 1, then we have
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Corollary 1. For all positive integers k and n with k < n, we have

2. fo ) Tal) B She (o Sy
a1+...+ak +b1+"'+bk=n aig. aj: 1- k-
_ ok (kB(x))"
N n!

where { Py, (x)} is the Pell-Lucas Polynomial sequence, B(x) = x —~/x% + 1.
If we take P(x) = x and Q(x) = 1 in Theorem I, then we have

Corollary 2. For all positive integers k and n with k < n, we have

Z La1 (X) Lak (X) Ebl Ebk (\/x2—+4)b1+...+bk

a! ag! by! " by!

artetag +hietbg=n k 1 k
"
B n! ’

where { L, (x)} is Lucas Polynomial sequence, p*(x) = X=Y3~1= ‘;2+4.

If P(x) and Q(x) in Theorem | are integers with P2 +4Q > 0 and V4o =
PVy+1+ OVy, where Vo = 2, V1 = P, then we obtain the following

Corollary 3. For all positive integers k and n with k < n, we have the identity

Va, Vay Eb, Ep, 2 bt
Z al  a Bl B P2+4Q
ay+-tay +by++bg=n
_ e (kB
o n! ’

where B®(x) = PovP+4Q ';)2+4Q.

Taking x = 1 in Corollary 2 or P = Q = 1 in Corollary 3, we obtain the identity

Corollary 4 ([4]). For all positive integers k and n with k < n, we have

al! ak! b]! bk!

’

Z i Lay Ep, & (\/g)bl—}_m-i_bk — ok (kﬁ/(l))n

n!
ay+-tay +b1+-+bg=n

where B (1) = %g

In particular, taking k = 1,2, 3 in Corollary 4, we easily get
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Corollary 5. [4] For all positive integers n, we have

4 n
B (1)
;%%(ﬁ)b =2¥.

Corollary 6. [4] For all positive integers n > 2, we have

5 La, L@&&(ﬁ)bﬁbz :22M_

' as! bi! bo! !
a1 +ay+b1 Abr=n al. djp. bl. bz. n:
Corollary 7 ([4]). For all positive integers n > 3, we have
/ n
Z La, Lay Lay Ep, Ep, Ep, <ﬁ)b1+bz+b3 3 (3ﬂ (1))
ai! ax! az! by! by! b3! B n!

al +a2+a3 +b1 +b2+b3=l’l
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