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1. INTRODUCTION

As usual, the Fibonacci polynomials fFn .x/g are defined by the second-order lin-
ear recurrence

FnC2.x/D xFnC1.x/CFn.x/ (1.1)

for n� 0 and F0 .x/D 0, F1 .x/D 1.
The Lucas polynomials fLn .x/g are defined by the second-order linear recurrence

LnC2.x/D xLnC1.x/CLn.x/ (1.2)

for n� 0 and L0 .x/D 2,L1 .x/D x.
These polynomials are of great importance in the study of many subjects such as

algebra, geometry and number theory itself. Obviously (1.1) and (1.2) have a deep
relationship with Fibonacci numbers fFngn�0 and Lucas numbers fLngn�0 respect-
ively.

Wenpeng Zhang [7] and Fengzhen Zhao [8] obtained some identities involving the
Fibonacci numbers. Yuan Yi and Wenpeng Zhang [5] studied the calculation on the
summation involving the Fibonacci polynomials and obtained the followingX
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where k; n are positive integers and the summation is over all k�dimension nonneg-
ative integer coordinates .a1;a2; : : : ;ak/ such that a1Ca2C�� �Cak D n where k;n
are any positive integers.

Tianping Zhang and Yuankui Ma [6] studied the relationship between the gener-
alized Fibonacci polynomials and the famous Bernoulli numbers and gave several
interesting identities involving them. They [4] also studied the relationships between
the Chebyshev polynomials of the first kind and the Euler numbers.

In this paper we study the relationship between the generalized Lucas polynomials
and the Euler numbers and give several interesting identities involving them.

2. MAIN RESULTS

Definition 1. Let fVn .x/g be the polynomial sequence. The generalized Lucas
polynomials are defined by V0 .x/D 2, V1 .x/D P.x/ and

VnC2 .x/D P.x/VnC1 .x/CQ.x/Vn .x/ (2.1)

where P.x/ and Q.x/ are polynomials of an indeterminate x with real coefficients.

Definition 2 ([2]). The ordinary Euler numbers are defined by their generating
function as follows

F.t/D
2

et C1
D eEt D

1X
nD0

En
tn

nŠ
; jt j< � (2.2)

where our notation replaced Em by Em.m� 0/, symbolically.

The first few ones are 1;�1
2
;0; 1

4
; � � � ; and E2k D 0 for k D 1;2;3; � � � : These num-

bers arise in the series expansions of trigonometric functions and are extremely im-
portant in number theory and analysis.

Theorem 1. For all positive integers k and n with k � n, we have the formulaX
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where ˇ.x/D P.x/�
p
�.x/

2
and �.x/D P 2.x/C4Q.x/.

Proof. Let ˛.x/D P.x/C
p
�.x/

2
and ˇ.x/D P.x/�

p
�.x/

2
denote the roots of char-

acteristic polynomial �2�P.x/��Q.x/ of the generalized Lucas polynomial se-
quence fVn .x/g. Then the terms of the sequence fVn .x/g can be expressed as [1, 3]
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Then we easily deduce that the generating function of V.t;x/ is

V.t;x/D
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That is,
V.t;x/D e˛.x/t C eˇ.x/t D eˇ.x/t .1C et
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Therefore, we have

eˇ.x/t D
V.t;x/

1C et
p
�.x/

D
V.t;x/

2

2

1C et
p
�.x/

:

Then from (2.2) and (2.5) we have
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Note that for two absolutely convergent power series
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so for the kth power of both sides of formula (2.6) we have
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Comparing the coefficients of tn, we obtain the following identityX
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□

If we take P.x/D 2x and Q.x/D 1 in Theorem 1, then we have
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Corollary 1. For all positive integers k and n with k � n, we haveX
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where fPn .x/g is the Pell-Lucas Polynomial sequence, ˇ.x/D x�
p
x2C1.

If we take P.x/D x and Q.x/D 1 in Theorem 1, then we have

Corollary 2. For all positive integers k and n with k � n, we haveX
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where fLn .x/g is Lucas Polynomial sequence, ˇ�.x/D x�
p
x2C4
2

.

If P.x/ and Q.x/ in Theorem 1 are integers with P 2C 4Q > 0 and VnC2 D
PVnC1CQVn, where V0 D 2, V1 D P , then we obtain the following

Corollary 3. For all positive integers k and n with k � n, we have the identityX
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Taking x D 1 in Corollary 2 or P DQD 1 in Corollary 3, we obtain the identity

Corollary 4 ([4]). For all positive integers k and n with k � n, we have
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In particular, taking k D 1;2;3 in Corollary 4, we easily get
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Corollary 5. [4] For all positive integers n, we have
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Corollary 6. [4] For all positive integers n� 2, we have
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Corollary 7 ([4]). For all positive integers n� 3, we have

X
a1Ca2Ca3

Cb1Cb2Cb3Dn

La1

a1Š

La2

a2Š

La3

a3Š

Eb1

b1Š

Eb2

b2Š

Eb3

b3Š

�p
5
�b1Cb2Cb3

D 23

�
3ˇ
0

.1/
�n

nŠ
:

REFERENCES

[1] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers. Oxford: Oxford Uni-
versity Press, 1962.

[2] T. Kim, “On the q-extension of euler and genocchi numbers.” J. Math. Anal. Appl., vol. 326, no. 2,
pp. 1458–1465, 2007.

[3] T. Koshy, Fibonacci and Lucas numbers with applications, ser. Pure and Applied Mathematics
(New York). New York: Wiley-Interscience, 2001.

[4] Y. K. Ma and T. P. Zhang, “An identity involving the first-kind chebyshev polynomials and the euler
numbers,” J. Ningxia Univ. Nat. Sci. Ed., vol. 27, no. 1, pp. 13–14,17, 2006.

[5] Y. Yuan and W. Zhang, “Some identities involving the fibonacci polynomials,” Fibonacci Quart.,
vol. 40, no. 4, pp. 314–318, 2002.

[6] T. Zhang and Y. Ma, “On generalized fibonacci polynomials and bernoulli numbers,” J. Integer
Seq., vol. 8, no. 5, p. 6, 2005.

[7] W. Zhang, “Some identities involving the fibonacci numbers,” Fibonacci Quart., vol. 35, no. 3, pp.
225–229, 1997.

[8] F. Zhao and T. Wang, “Generalizations of some identities involving the fibonacci numbers,” Fibon-
acci Quart., vol. 39, no. 2, pp. 165–167, 2001.

Authors’ addresses
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