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Abstract. For the linear boundary value problem

x0.t/D p.x/.t/Cq.t/; l.x/D c0

on the closed interval I �R, where p W C.I;Rn/!L.I;Rn/ is a strongly bounded linear oper-
ator, l WC.I;Rn/!Rn is the bounded linear functional, q 2L.I;Rn/ and c0 2Rn, we describe
a method of construction of its solution using successive approximations by the sequence of the
solutions of simple boundary value problems. We prove the conditions which guarantee the con-
vergence of the above mentioned sequences in general and special cases, we prove the stability of
the convergence in some sense. Also, for illustration, we solve some typical problems in MAPLE.
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1. STATEMENT OF THE MAIN RESULTS

1.1. Introduction

Consider the system of linear functional differential equations on interval I D
Œa;b�

x0.t/D p.x/.t/Cq.t/; (1.1)

with the linear boundary value conditions

l.x/D c0; (1.2)

where p W C .I IRn/! L.I IRn/ is a linear strongly bounded operator (i.e., p is
a linear operator and there is Lebesgue integrable function � W I ! RC such that
kp.x/.t/k � �.t/kxkC for almost all t 2 I; x 2 C .I IRn/), l W C.I IRn/! Rn is a
linear bounded functional (i.e., l is linear functional and there is the constant ˛ 2RC
such that kl.x/k � ˛kxk for all x 2 C .I IRn/), q 2 L.I IRn/ and c0 2Rn.
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The a solution of the problem (1.1), (1.2) is understood to be an absolutely con-
tinuous vector valued function x W I ! Rn which satisfies the system (1.1) almost
everywhere on I; and satisfies the conditions (1.2).

Papers dealing with boundary value problems contain numerous interesting and, in
a sense, optimal conditions ensuring the unique solvability and correctness of various
boundary value problems for linear functional differential equations and systems,
both in regular and singular cases (see, e.g., [1–14, 21, 22] and references therein).
However, unlike systems of ordinary differential equations, in the case of boundary
value problems for more general systems of functional differential equations, there
are still almost no methods for approximate construction of their solutions. We can
mention in this relation the parametrization methods (see, e.g., [18, 24]) using the
ideas close to [17, 19, 20, 23] in the ordinary case.

This lack is dealt with in the present paper, which gives a construction that can
be considered as a generalization of a number of previously published. A special
attention should be paid to work [12], to which this paper is a follow-up. The work
[11], using the Fredholm problem (1.1), (1.2), provide general sufficient and, in the
cases where p is a Volterra type operator, also necessary and sufficient (in a sense,
unimprovable) conditions for the unique solvability of the boundary value problems
(1.1), (1.2). A number of consequences for specific kinds of systems (1.1) and special
cases of boundary conditions (1.2) are given. The works mentioned also contain
statements on the continuous dependence of solutions of problems in question on
small changes in right-hand side terms of systems (1.1) and boundary conditions
(1.2) (the so-called correctness of problems (1.1), (1.2)).

1.2. Notation and definitions

The following notations are used throughout the paper:
RD��1;C1Œ; RC D Œ0;1Œ; �I

is a characteristic function of interval I , i.e.,

�
I
.t/D

(
1 for t 2 I;
0 for t 62 I I

Rn is the space of n-dimensional column vectors x D .xi /niD1 with elements xi 2 R
.i D 1; : : : ;n/; and norm

kxk D

nX
iD1

jxi jI

Rn�n is the space of n�n-matrices X D .xik/ni;kD1 with elements xik 2 R .i;k D
1; : : : ;n; / and norm

kXk D

nX
i;kD1

jxikjI

RnC D
˚
.xi /

n
iD1 2R

n
W xi � 0 .i D 1; : : : ;n/

	
I
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Rn�nC D

n
.xik/

n
i;kD1 2R

n�n
W xik � 0.i;k D 1; : : : ;n/

o
I

if x; y 2Rn and X; Y 2Rn�n, then

x � y, y�x 2RnC; X � Y , Y �X 2Rn�nC I

if x D .xi /niD1 2R
n and X D .xik/ni;kD1 2R

n�n, then

jxj D .jxi j/
n
iD1; jX j D .jxikj/

n
i;kD1I

det.X/ is the determinant of matrix X ;
X�1 is the inverse matrix to X ;
r.X/ is the spectral radius of matrix X ;
E is the unit matrix;
� is the zero matrix;
C.I IRn/ is the space of continuous vector functions1 x W I !Rn with norm

kxk
C
Dmax

˚
kx.t/k W t 2 I gI

if x D .xi /niD1 2 C.I IR
n/, then

jxj
C
D .kxikC

/niD1I

QC.I IRn/ is the space of absolutely continuous vector functions x W I ! Rn with
norm

kxk
QC
D kxk

C
Ckx0k

L
I

C.I IRn�n/ is the space of continuous matrix functions X !Rn�n;
L.I IRn/ is the space of vector valued functions x W I ! Rn with the Lebesgue
integrable elements, with norm

kxk
L
D

Z b

a

kx.t/kdt I

if x D .xi /niD1 2 L.I IR
n/, then

jxj
L
D .kxikL

/niD1 I

L.I IRn�n/ is the space of Lebesgue integrable matrix functions X W I !Rn�nI

If g W C.I IRn/! L.I IRn/ is a linear operator, then jgj W C.I IRn/! L.I IRn/

denotes a non-negative operator such that

jg.x/j � jgj.jxj/ for all x 2 C.I IRn/:

IfZ 2C.I IRn�n/ is a matrix function with columns ´1; : : : ;´n; and g WC.I IRn/!
L.I IRn/ is a linear operator, respectively g W C.I IRn/! Rn is a linear functional,
then g.Z/ denote a matrix function, respectively the constant matrix with columns
g.´1/; : : : ;g.´n/.

1A vector (matrix) function is said to be continuous, integrable, etc., if such are its elements.
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Let us say that p W C.I IRn/! L.I IRn/ is the Volterra operator with respect to
t0 2 I , if for any t 2 I and x 2 C.I;Rn/ where x.s/ D 0 for s 2 It0;t the equality
p.x/.s/D 0 holds for almost all s 2 It0;t ; where

It0;t D

(
Œt0; t � if t0 � t
Œt; t0� if t < t0

:

Special cases of system frequently occurring in practice (1.1) are: a linear system
of ordinary differential equations

x0.t/D P.t/x.t/Cq.t/; (1.3)

a linear system of ordinary differential equations with a deviated argument

x0.t/D P.t/x.�.t//Cq.t/; (1.4)

respectively with multiple argument deviations

x0.t/D

NsX
iD1

Pi .t/x .�i .t//Cq.t/; (1.5)

whereP;Pi 2L.I;Rn�n/, �;�i W I!R are measurable functions (i D 1; : : : ; Ns/ and if
�.t/� t , �i .t/� t for almost all t 2 I; then � and �i ; are so-called delayed arguments,
and q 2 L.I;Rn/:

Systems (1.3), (1.4) and (1.5) are special cases of linear systems (1.1) with a Vol-
terra operator.

For example special cases of conditions (1.2) are: the initial condition

x.t0/D c0; (1.6)

the multi-point boundary condition
sX

jD1

Ajx.tj /D c0; (1.7)

the Cauchy type condition
x.Nt0/D l0.x/C c0; (1.8)

and the periodic boundary condition

x.b/�x.a/D 0; (1.9)

where Nt0; tj 2 I.j D 1; : : : ; s/, l0 W C.I;Rn/! Rn is a linear bounded functional,
Aj 2R

n�n .j D 1; : : : ; s/ and c0 2Rn.
For the construction of solution of the problem (1.1), (1.2) and description of its

properties we use the method and notifications from work [13]:
Let x 2 C .I IRn/, k;m 2N and t0 2 I; then we use following notations:

p0.x/.t/D pk;0.x/.t/D x.t/; pk.x/.t/D

Z t

t0

p.pk�1.x//.s/ds;
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�k D l

0@ kX
iD1

pi�1.E/

1A ; Oq.t/D Z t

t0

q.s/ds;

and if �k is regular, then

pk;m.x/.t/D pm.x/.t/�

"
mX
iD1

pi�1.E/.t/

#
��1k l

�
pk.x/

�
;

and

Dk;m. Oq;c0/.t/D

24 kX
iD1

pi�1.E/.t/

35��1k
"
c0�l

� kX
iD1

pi�1. Oq/

�
C

mX
iD1

pi�1. Oq/.t/

#
:

1.3. Main results

The following fundamental propositions about the solvability of a general linear
boundary value problem (1.1), (1.2) is proved in [13, Theorem 1.1.1]:

Proposition 1. The boundary value problem (1.1), (1.2) is uniquely solvable if the
corresponding homogeneous problem

x0.t/D p.x/.t/;

l.x/D 0

has only the trivial solution.

Proposition 2. Let k;m 2N , m0 2N [f0g and A 2Rn�n
C

be such that

r.A/ < 1; (1.10)

�k is regular, and for all the solutions of homogeneous boundary value problem
corresponding to the nonhomogeneous problem (1.1), (1.2), the inequality

jpk;m.x/jC � Ajp
k;m0.x/jC (1.11)

holds. Then problem (1.1), (1.2) is uniquely solvable.

It is clear that the solution of system (1.1) is also the solution of the systems

x.t/D x.t0/C

Z t

t0

p.x/.s/dsC

Z t

t0

q.s/ds D : : :

D pk.x/.t/C

24 kX
iD1

pi�1.E/.t/

35x.t0/C
24 kX
iD1

pi�1. Oq/.t/

35
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for any k 2 N and arbitrary value x.t0/. If for our k 2 N the matrix �k is regular,
then from the boundary condition (1.2) it follows that

c0 D l
�
pk.x/

�
C l

0@ kX
iD1

pi�1.E/

1Ax.t0/C l
0@ kX
iD1

pi�1. Oq/

1A
and then

x.t0/D�
�1
k

24c0� l �pk.x/�� l
0@ kX
iD1

pi�1. Oq/

1A35 : (1.12)

Therefore, the solution of the problem (1.1), (1.2) is also the solution of equation

x.t/D pk;m.x/.t/CDk;m. Oq;c0/.t/: (1.13)

and vice versa.
Let now x0 2 C.I;R

n/; and for arbitrary � 2N the vector-function x� be defined
by equality

x�.t/D p
k;m.x��1/.t/CD

k;m. Oq;c0/.t/: (1.14)

Then the next theorem is true.

Theorem 1. Let k;m 2 N;m0 2 N [f0g ; and A 2 Rn�n
C

be such that the matrix
�k is regular,

r.A/ < 1; r
�
Ajjpk;m0 j.E/jC

�
< 1; (1.15)

and for arbitrary x 2 C.I;Rn/ the inequality

jpk;m.x/jC � Ajp
k;m0.x/jC (1.16)

holds. Then the problem (1.1), (1.2) has unique solution x; and

x D lim
�!1

x� uniformly on I

where functions x� are defined by the equality (1.14) and x0 2 C.I IRn/ is arbitrary.

Proof. From the conditions of our theorem and Proposition 2 it follows that there
is a unique solution x of problem (1.1), (1.2). Now, let us assume that x� (� 2 N )
are vector functions defined by the equation (1.14) for arbitrary x0 2 C.I IRn/: Then
from (1.13), (1.14), (1.16), and the positivity of the operator jpk;m0 j, we obtain:

jx�x� jC D jp
k;m.x�x��1/jC

� Ajpk;m0.x�x��1/jC � Ajjp
k;m0 j.E/jC jx�x��1jC

� .Ajjpk;m0 j.E/jC /
2
jx�x��2jC � : : :

� .Ajjpk;m0 j.E/jC /
�
jx�x0jC :
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From conditions (1.15) it follows that

lim
�!1

�
Ajjpk;m0 j.E/jC

��
D�;

and from the last inequality, it is obvious that x� ! x uniformly on I; which prove
our theorem. �

Let us p WC.I;Rn/!L.I;Rn/ the Volterra operator. Then, as it is proved in [13],
the equality pk;m0.x/ � x holds, and the conditions of Proposition 2 are sufficient
and necessary for the unique solvability of problem (1.1), (1.2).

Theorem 2. Let p be the Volterra operator with respect to t0 2 I: Then the bound-
ary value problem (1.1), (1.2) is uniquely solvable if and only if there are k;m 2 N
and A 2Rn�n

C
such that the matrix �k is regular,

r.A/ < 1; (1.17)

and for all x 2 C.I;Rn/ the inequality

jpk;m.x/jC � AjxjC (1.18)

holds. Moreover, for the solution x of the boundary value problem (1.1), (1.2), the
representation x D lim�!1x� holds, where functions x� (� 2 N ) are defined by
equality (1.14), and x0 2 C.I IRn/ is arbitrary.

Proof. The first part of our theorem, the necessity and sufficiency of its conditions
for unique solvability of problem (1.1), (1.2), when p is the Volterra operator, follows
from the theorems proved in [13].

On the other hand, from our assumptions it is clear that pk;m0.x/ � x and then
jpk;m0 j.E/DE: Therefore, the assertion of the second part of our theorem concern-
ing the construction of the solution follows from the second part of Theorem 1. �

Remark 1. As problems (1.1), (1.2), and (1.13) are equivalent for such k 2N that
matrix �k is regular, problem (1.1), (1.2) is also equivalent to problem (1.1), (1.12).

The functional on the right-hand side of equality (1.12) is composed from con-
tinuous functionals and operators and it is continuous with respect to x: Therefore, in
view of the unique solvability of problem (1.1), (1.2), we can construct the sequence
fx�g

1
�D1 of successive approximations for the solution of problem (1.1), (1.2) using

the method of iterations, where

x0�.t/D p.x��1/.t/Cq.t/ (1.19)

and

x�.t0/D�
�1
k

24c0� l.pk .x��1//� l
0@ kX
iD1

pi�1. Oq/

1A35 ; (1.20)

if x0 2 C.I;Rn/ is arbitrary.
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Remark 2. The above-mentioned method of successive approximations is in a cer-
tain sense stable. Let x be the solution of problem (1.1), (1.2), and Nx� be defined by
equalities:

Nx�.t/D p
k;m. Nx��1/.t/CD

k;m. OqC ONq� ; c0C Nc�/.t/;

where Nq� 2 L.I;Rn/, Nc� 2Rn and

lim
�!1

 Z b

a

j Nq�.t/jdtCjNc� j

!
D 0;

then

jx� Nx� jC � jp
k;m.x� Nx�/jC CjD

k;m. ONq� ; Nc�/jc

� A� jx�x0jC CjD
k;m. ONq� ; Nc�/jc :

From the last inequality, given our assumptions about Nq� and Nc� ; and the facts
that lim�!1Dk;m. ONq� ; Nc�/D 0 (uniformly on I ), and A�!� if �!1; it follows
that the sequence Nx� converges to function x uniformly on I: As the problems under
consideration are equivalent, problem (1.19), (1.20) is also stable in this sense.

Remark 3. If we introduce notation T .x/ D pk;m.x��1/.t/CDk;m. Oq;c0/, then
T W C.I;Rn/! C.I;Rn/ is a linear operator, and from inequality

jT .x/�T .y/jC D jp
k;m.x�y/jC �

� Ajjpk;m0 j.E/jC jx�yjC ;

where r
�
Ajjpk;m0 j.E/jC

�
< 1; it follows that operator T is a contraction.

It is clear that unique solvability of problem (1.1),(1.2), and possibility of con-
struction of this solution by the method of successive approximations, follows from
the Banach’s fixed-point theorem.

The theorems stated above imply the following corollaries. First, if we assume that
l.x/D x.t0/, where t0 2 I is arbitrary, we obtain the conditions of unique solvabil-
ity and construction of the solution of the initial problem for a of linear functional-
differential equations.

Corollary 1. Let p be the Volterra operator. Then problem (1.1), (1.6) is uniquely
solvable if there are m 2 N; and A 2 Rn�

C
; such that r.A/ < 1; and for arbitrary

x 2 C.I;Rn/ inequality
j pm.x/ jC � A j x jC

holds. Moreover, for solution x of problem (1.1), (1.6) representation xD lim�!1x�
holds, where x� (� 2N ) are the solutions of problem (1.19),

x�.t0/D c0 (1.21)

and x0 2 C.I;Rn/ is arbitrary.
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If we assume that p.x/.t/ D P.t/x.�.t//; and l.x/ D
Ps
jD1Ajx.tj /, where � W

I ! R is a measurable function, �.t/ � t for t 2 I , Aj 2 Rn�n and tj 2 I if j D
1; : : : ; s we obtain the conditions of unique solvability and construction of the solution
of a multi-point problem for the system of linear differential equations with deviated
argument.

Corollary 2. Let � W I !R be a measurable function, �.t/� t for almost all t 2 I ,
u W ��1;a�! Rn be a continuous bounded function, det �1 ¤ 0, x.t/D u.t/ for
t � a; and

r

 Z b

a

NP .t/dsC

sX
1

j�1Aj j

Z tj

a

NP .t/dt

!
< 1;

where �1 D
Ps
jD1Aj ; and NP .t/ D �I .�.t//jP.t/j. Then problem (1.4), (1.7) is

uniquely solvable.
Moreover, for solution x of problem (1.4), (1.7) the representation xD lim�!1x�

holds (uniformly on I ), where x� (� 2N ) are solutions of the problem

x0�.t/D �I .�.t//P.t/x.�0.t//C .1��I .�.t///P.t/u.�.t//Cq.t/;

x�.t0/D�
�1
1

24c0� sX
jD1

Aj

Z tj

t0

Œ�I .�.t//P.t/x��1.t/�q.t//dt

35 ;
where

�0.t/D

(
�.t/ if �.t/� a;
a if �.t/ < a;

and x0 2 C.I;Rn/ is arbitrary.

Remark 4. An analogous proposition can be obtained also for the system with
deviating arguments (1.5).

Remark 5. From Corollary 2, a criterion of unique solvability and description of
successive approximations for the initial problem for system (1.4) with delay (see
also Corollary 1) also follows. On the other hand Corollary 2 does not include a
criterion of unique solvability and description of successive approximations for the
periodic problem, because if l.x/D x.b/�x.a/; then�1DE�E D 0 and therefore
det�1 D 0.

We will obtain a criterion of unique solvability and description of successive ap-
proximations for the periodic problem for the systems of linear differential equations
with deviated arguments (1.4) and (1.5) assuming that l.x/D x.b/�x.a/ and kD 2.

Corollary 3. Let i D 1; : : : ; Ns; the measurable functions �i W I ! R be such that
�i .t/� t for almost all t 2 I ,

�0i .t/D

(
�i .t/ if �i .t/� a
a if �i .t/ < a;
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u W ��1;a�!Rn be a continuous bounded function, and Pi 2 L.I;Rn�n/. Then if

det�2 ¤ 0

and

r

 Z b

a

NP .t/dtC j��12 j

Z b

a

NP .t/dt

!
< 1;

where

�2 D

Z b

a

NsX
iD1

�.�i .t//Pi .t/dt; NP .t/D

NsX
iD1

�I .�i .t// j Pi .t/ j;

system (1.5) has unique solution x under the periodic condition

x.b/�x.a/D c0; x.t/D u.t/ for t 2R nI;

and the representation x D lim�!1x� holds, where x� (� 2N ) are solutions of the

x0�.t/D

NsX
iD1

�I .�i .t//Pi .t/x��1.�0i .t//C

C

NsX
iD1

.1��I .�i .t///Pi .t/u.t/Cq.t/;

x�.b/D�
�1
2

"
c0�

Z b

a

 
NsX

iD1

�I .�i .t//Pi .t/x��1.t/�q.t/

!
dt

#
for arbitrary x0 2 C.I;Rn/:

If we assume that l.x/D x.t0/� l0.x/, we will obtain conditions of unique solvab-
ility and construction of the solution of Cauchy-Nicoletti type problems (1.1), (1.8)
for arbitrary systems with the Volterra operator, with deviated arguments (1.4) and
(1.5).

In the general case, we have

�k DE�

kX
iD1

l0.p
i�1.E//; (1.22)

and then from (1.12) we obtain

x.t0/D�
�1
k

24c0C l0.pk.x//C kX
iD1

l0.p
i�1. Oq//

35 : (1.23)

Corollary 4. Let k;m 2N , m0 2N [f0g ; A 2Rn�nC be such that the matrix �k
from (1.22) be regular, and condition (1.17) holds, u W ��1;a�!Rn be a continuous
bounded function, and for arbitrary x 2 C.I;Rn/ inequality (1.18) holds.
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Then problem (1.1), (1.8) has unique solution x and the representation xD lim�!1x�
holds, where x� (� 2N ) are solutions of the problem (1.19),

x�.t0/D�
�1
k

24c0C l0.pk.x��1/C kX
iD1

l0.p
i�1/. Oq/

35
for arbitrary x0 2 C.I;Rn/:

In this corollary if we assume that l0D 0; or t0D a; l0.x/D x.b/ or t0D b; l0.x/D
x.a/; we will obtain a criterion of unique solvability and construction of successive
approximations for the periodic problems for the mentioned above systems.

Now, if we assume that l0.x/� 0, i,e., x.t0/D c0; then�k DE (k 2N ), l0.x/D
x.b/, Nt0 D a, i.e., x.a/D x.b/, and therefore

�1 D 0;

�2 D�

Z b

a

p.E/.t/dt;

�k D�

kX
iD1

Z b

a

p.pi�1.E//.t/dt for k � 3;

and

x.t0/D�
�1
k

�
c0C

Z b

a

p.pk�1.x//.t/dtC

kX
iD2

Z b

a

p.pi�2. Oq//.t/dtC

Z b

a

q.s/ds

�
:

Also, if l0.x/D x.a/, Nt0 D b, i.e., x.b/D x.a/, then

�1 D 0;

�2 D

Z b

a

p.E/.t/dt;

�k D

kX
iD1

Z b

a

p.pi�1.E//.t/dt for k � 3;

and

x.b/D��1k

�
c0�

Z b

a

p.pk�1.x//.t/dt�

kX
iD2

Z b

a

p.pi�2. Oq//.t/dt�

Z b

a

q.s/ds

�
:

2. EXAMPLES

For the illustration of calculations of (converging to solution) approximations of
solutions of a given problem, only such approximations are used, the graphs of which
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are differentiable under given conditions. On Figures 1 and 2 shown below, the func-
tion of “history” u is marked by a dotted line � � � , the “starting function” x0 of the
iterative process is marked by a dashed line ���, approximations of solutions are
marked by a dot-and-dash line � ���, and the last calculated approximation of solu-
tion x� is marked by a solid line —— . Analogous problems are solved by MAPLE
in the works [3, 15, 16].

2.1.

Let us solve the problem

x0.t/D �x.t/C�x.t �1/; x.0/D 1; (2.1)

on interval I D Œ0; 10�; where u.t/D �t C 1 for t 2 Œ�1;0� : The problem is solved
by local methods in [2].

By choosing �D�3;5, �D 4, x0.t/D 1 and � D 9 we obtain the 9th approxim-
ation of the solution of the problem, see Figure 1a.

By choosing �D 0;5, �D�1, x0.t/D 1 and � D 10 we obtain the 10th approx-
imation of the solution to the problem, see Figure 1b.

(a) (b)

FIGURE 1. Solution of problem (2.1)

2.2.

Let us solve the problem
x0.t/D�x.t �1/;

x.0/D 1;
(2.2)

on interval I D Œ0; 3�; where x.t/D 1 for t 2 Œ�1;0� : The problem is solved by the
local methods in [2].
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By choosing x0.t/D 1, we obtain the 3rd approximation of solution of the prob-
lem, see Figure 2a.

By choosing x0.t/D 0, we obtain the 3th approximation of solution to the prob-
lem, see Figure 2b, variant 2.

(a) (b)

FIGURE 2. Solution of problem (2.2)

The next example is a generalization of the problem studied by Jan Tinbergen, a
Dutch physicist and economist.

2.3.

Let us solve the problem

f 0.t/D�a.t/f .t � ı.t//; t 2 Œ0;T � ; (2.3)

f .t/D h.t/; t 2 Œ�m;0�; (2.4)

where functions a and ı are (for the sake of simplification) continuous on interval
Œ0;T � ; ı.t/ > 0 for t 2 Œ0;T � ; �m D mint2Œ0;T � .t � ı.t// ; and h is a continuous
function on interval Œ�m;0�. If ı.t/�� � 0 (i.e., is a constant), equation (2.3) will
be an equation with a constant delay and �m D��. Moreover, if a.t/� a > 0 i.e.,
(2.3) is a linear differential equation with constant coefficients and constant delay,
studied by Jan Tinbergen. In this case we construct 6th (� D 6) approximation.

In order to demonstrate possibilities of a new approach to solution of the original
problem, assume that the “historical development” prior to time t D 0 can be simu-
lated by the function f D 2sin t C 1 and that the length of delay will vary. For that
reason, the paper [25] considered a situation in which the delay �.t/ is not constant,
but it is a function of time t . For illustration, we worked on the assumption that the
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FIGURE 3. Solution to Tinbergen’s model for a fluctuating delay

delay can be expressed by the function �.t/ D 2;5C 0;5sin.5t/. The parameter a
was chosen in accordance with Tinbergen’s findings.
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[18] A. Rontó and M. Rontó, “On nonseparated three-point boundary value problems for linear
functional differential equations,” Abstr. Appl. Anal., pp. 1–22, Art. ID 326 052, 2011, doi:
10.1155/2011/326052. [Online]. Available: http://dx.doi.org/10.1155/2011/326052

[19] A. Rontó, M. Rontó, and N. Shchobak, “Notes on interval halving procedure for periodic
and two-point problems,” Bound. Value Probl., pp. 2014:164, 20, 2014. [Online]. Available:
https://doi.org/10.1186/s13661-014-0164-9
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Bedřich Půža
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