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Abstract. We provide an optimized closed formula for the volume of the solid, bounded
by a Bézier surface and the cones determined by its boundary curves and the origin. The
obtained formula is easy to implement in programming languages, since it contains only
basic arithmetic operations.
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1. Introduction

Bézier curves and surfaces play a significant role in Computer Aided Geometric De-
sign (CAGD), therefore their specification, modification and different properties are
of interest. Specification and modification of Bézier objects are well explored fields of
CAGD but there are some special problems to be solved, such as to find the optimal
way of computing the volume of solids bounded by Bézier surfaces. Following an
elementary approach, we derive an exact closed formula which can substitute approx-
imating numerical procedures. This task can be considered as a spatial generalization
of the problem of computing the signed area of a plane figure bounded by Bézier
curves, cf. [3].

In this paper we consider Bézier surfaces of the following definition:

Definition 1 The tensor product surface defined by the equation

b (u, v) =
nX
i=0

mX
j=0

bijB
n
i (u)B

m
j (v) , u ∈ [0, 1] , v ∈ [0, 1] (1.1)

is called Bézier surface, where bij ∈ R3 are the control points of the surface and

Bn
i (u) =

µ
n
i

¶
ui (1− u)n−i, (i = 0, . . . , n) is the ith Bernstein polynomial of degree

n.
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2. Volume calculation

Theorem 2 The signed volume of the solid bounded by the Bézier surface (1.1) and
the cones determined by its boundary curves and the origin is

V =
1

3 (3n− 1) (3m− 1)
z−3X
r=0

z−2X
s=r+1

z−1X
t=s+1

βmn
ijklpq (bij ,bkl,bpq)

where (bij ,bkl,bpq) denotes the mixed product of the specified vectors,
z = (n+ 1) (m+ 1),

j = r mod (m+ 1) , i = (r − j) / (m+ 1) ,

l = s mod (m+ 1) , k = (s− l) / (m+ 1) ,

q = t mod (m+ 1) , p = (t− q) / (m+ 1) ,

and

βmn
ijklpq =

l (i− p) + q (k − i) + j (p− k)µ
3n− 2

i+ k + p− 1
¶µ

3m− 2
j + l + q − 1

¶
µ

n
i

¶µ
n
k

¶µ
n
p

¶µ
m
j

¶µ
m
l

¶µ
m
q

¶
.

Proof. First we determine the signed volume V of the solid bounded by the
surface s (u, v) , u ∈ [u0, u1] , v ∈ [v0, v1] and the cones determined by its boundary
curves and the origin. For this purpose we divide the interval [u0, u1] into c, and
[v0, v1] into d equal parts. The corresponding parameter lines divide the surface into
rectangular patches. We approximate the volume of the solid determined by such a
patch and the origin with tetrahedra of Figure 1. Their volumes are

Vij =
1

6
(s (ui+1, vj)− s (ui, vj) , s (ui, vj+1)− s (ui, vj) , s (ui, vj)) and

V ij =
1

6
(s (ui+1, vj+1)− s (ui+1, vj) , s (ui+1, vj+1)− s (ui, vj+1) , s (ui+1, vj+1)) .

Denoting the sum of the appropriate tetrahedra by Vcd and V cd we obtain

Vcd =
c−1X
i=0

d−1X
j=0

Vij , V cd =
c−1X
i=0

d−1X
j=0

V ij and lim
c→∞
d→∞

¡
Vcd + V cd

¢
= V ,

moreover, the equalities

lim
c→∞
d→∞

Vcd = limc→∞
d→∞

V cd =
1

6

u1Z
u0

v1Z
v0

µ
∂

∂u
s (u, v) ,

∂

∂v
s (u, v) , s (u, v)

¶
dudv
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hold, thus

V =
1

3

u1Z
u0

v1Z
v0

µ
∂

∂u
s (u, v) ,

∂

∂v
s (u, v) , s (u, v)

¶
dudv.

Figure 1. The approximating tetrahedra

The partial derivatives of the Bézier surface of Equation (1.1) are

∂

∂u
b (u, v) = n

nX
i=0

mX
j=0

bij
¡
Bn−1
i−1 (u)−Bn−1

i (u)
¢
Bm
j (v) ,

∂

∂v
b (u, v) = m

nX
k=0

mX
l=0

bklB
n
k (u)

¡
Bm−1
l−1 (v)−Bm−1

l (v)
¢

and the required volume is

V =
nm

3

1Z
0

1Z
0

 nX
i=0

mX
j=0

bij
¡
Bn−1
i−1 (u)−Bn−1

i (u)
¢
Bm
j (v) ,

nX
k=0

mX
l=0

bklB
n
k (u)

¡
Bm−1
l−1 (v)−Bm−1

l (v)
¢
,

nX
p=0

mX
q=0

bpqB
n
p (u)B

m
q (v)

!
dudv

=
nm

3

nX
i=0

mX
j=0

nX
k=0

mX
l=0

nX
p=0

mX
q=0

(bij ,bkl,bpq)

1Z
0

1Z
0

¡
Bn−1
i−1 (u)−Bn−1

i (u)
¢

Bn
k (u)B

n
p (u)

¡
Bm−1
l−1 (v)−Bm−1

l (v)
¢
Bm
j (v)B

m
q (v) dudv.
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The double integrals of the sum have a closed form but the sum contains many
superfluous terms, namely ((n+ 1) (m+ 1))3. Taking into consideration the equalities

(bij ,bkl,bpq) = (bkl,bpq,bij) = (bpq,bij ,bkl) =

− (bkl,bij ,bpq) = − (bpq,bkl,bij) = − (bij ,bpq,bkl)
and the property that a mixed product is zero if at least two of its operands are equal,

we can reduce the number of terms in the sum to
µ
(n+ 1) (m+ 1)

3

¶
.

This sum consists of the terms

(bij ,bkl,bpq)
1R
0

1R
0

(A1 (u, v) +A2 (u, v) +A3 (u, v)−
A4 (u, v)−A5 (u, v)−A6 (u, v)) dudv

where

A1 (u, v) =
¡
Bn−1
i−1 (u)−Bn−1

i (u)
¢
Bm
j (v)

¡
Bm−1
l−1 (v)−Bm−1

l (v)
¢

Bn
k (u)B

n
p (u)B

m
q (v) ,

A2 (u, v) =
¡
Bn−1
k−1 (u)−Bn−1

k (u)
¢
Bm
l (v)

¡
Bm−1
q−1 (v)−Bm−1

q (v)
¢

Bn
p (u)B

n
i (u)B

m
j (v) ,

A3 (u, v) =
¡
Bn−1
p−1 (u)−Bn−1

p (u)
¢
Bm
q (v)

¡
Bm−1
j−1 (v)−Bm−1

j (v)
¢

Bn
i (u)B

n
k (u)B

m
l (v) ,

A4 (u, v) =
¡
Bn−1
k−1 (u)−Bn−1

k (u)
¢
Bm
l (v)

¡
Bm−1
j−1 (v)−Bm−1

j (v)
¢

Bn
i (u)B

n
p (u)B

m
q (v) ,

A5 (u, v) =
¡
Bn−1
p−1 (u)−Bn−1

p (u)
¢
Bm
q (v)

¡
Bm−1
l−1 (v)−Bm−1

l (v)
¢

Bn
k (u)B

n
i (u)B

m
j (v) ,

A6 (u, v) =
¡
Bn−1
i−1 (u)−Bn−1

i (u)
¢
Bm
j (v)

¡
Bm−1
q−1 (v)−Bm−1

q (v)
¢

Bn
p (u)B

n
k (u)B

m
l (v) .

After some simplification we gain

A1 (u, v)−A6 (u, v) =
¡
Bn−1
i−1 (u)−Bn−1

i (u)
¢
Bn
k (u)B

n
p (u)¡

Bm−1
l−1 (v)B

m−1
q (v)−Bm−1

q−1 (v)B
m−1
l (v)

¢
Bm
j (v) =

µ
n
k

¶µ
n
p

¶
µ

n− 1
i− 1

¶
µ

3n− 1
i+ k + p− 1

¶B3n−1i+k+p−1 (u)−

µ
n− 1
i

¶
µ
3n− 1
i+ k + p

¶B3n−1i+k+p (u)


µ

m
j

¶µµ
m− 1
l − 1

¶µ
m− 1
q

¶
−
µ

m− 1
l

¶µ
m− 1
q − 1

¶¶
µ

3m− 2
j + l + q − 1

¶ B3m−2j+l+q−1 (v) .
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Analogously we can obtain

A2 (u, v)−A4 (u, v) =

µ
n
i

¶µ
n
p

¶
µ

n− 1
k − 1

¶
µ

3n− 1
i+ k + p− 1

¶B3n−1i+k+p−1 (u)−

µ
n− 1
k

¶
µ
3n− 1
i+ k + p

¶B3n−1i+k+p (u)


µ

m
l

¶µµ
m− 1
q − 1

¶µ
m− 1
j

¶
−
µ

m− 1
j − 1

¶µ
m− 1
q

¶¶
µ

3m− 2
j + l + q − 1

¶ B3m−2j+l+q−1 (v) ,

and

A3 (u, v)−A5 (u, v) =

µ
n
i

¶µ
n
k

¶
µ

n− 1
p− 1

¶
µ

3n− 1
i+ k + p− 1

¶B3n−1i+k+p−1 (u)−

µ
n− 1
p

¶
µ
3n− 1
i+ k + p

¶B3n−1i+k+p (u)


µ

m
q

¶µµ
m− 1
j − 1

¶µ
m− 1

l

¶
−
µ

m− 1
j

¶µ
m− 1
l − 1

¶¶
µ

3m− 2
j + l + q − 1

¶ B3m−2j+l+q−1 (v) .

Utilizing that
1R
0

Bn
i (u) du = 1/ (n+ 1), (i = 0, 1, . . . , n) cf. [2] we gain

1Z
0

1Z
0

A1 (u, v)−A6 (u, v) dudv =
1

3n (3m− 1)
1µ

3m− 2
j + l + q − 1

¶
µ

n
k

¶µ
n
p

¶
µ

n− 1
i− 1

¶
µ

3n− 1
i+ k + p− 1

¶ −
µ

n− 1
i

¶
µ
3n− 1
i+ k + p

¶


µ
m
j

¶µµ
m− 1
l − 1

¶µ
m− 1
q

¶
−
µ

m− 1
l

¶µ
m− 1
q − 1

¶¶
.
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Simplifying the binomials above (cf. [4]) we obtain

1R
0

1R
0

A1 (u, v)−A6 (u, v) dudv =

(l−q)(2i−k−p)

3n(3m−1)m(3n−1)
 3m− 2

j + l + q − 1
 3n− 2

i+ k + p− 1
µ

n
i

¶µ
n
k

¶µ
n
p

¶µ
m
j

¶µ
m
l

¶µ
m
q

¶
.

(2.1)

The integral of the differences A2 (u, v)−A4 (u, v) and A3 (u, v)−A5 (u, v) can anal-
ogously be expressed and we obtain the equations

1R
0

1R
0

A2 (u, v)−A4 (u, v) dudv =

(q−j)(2k−i−p)

3n(3m−1)m(3n−1)
 3m− 2

j + l + q − 1
 3n− 2

i+ k + p− 1
µ

n
i

¶µ
n
k

¶µ
n
p

¶µ
m
j

¶µ
m
l

¶µ
m
q

¶ (2.2)

and

1R
0

1R
0

A3 (u, v)−A5 (u, v) dudv =

(j−l)(2p−i−k)

3n(3m−1)m(3n−1)
 3m− 2

j + l + q − 1
 3n− 2

i+ k + p− 1
µ

n
i

¶µ
n
k

¶µ
n
p

¶µ
m
j

¶µ
m
l

¶µ
m
q

¶
.

(2.3)

The sum of the integrals (2.1), (2.2) and (2.3) is

l (i− p) + q (k − i) + j (p− k)

n (3n− 1)m (3m− 1)
µ

3n− 2
i+ k + p− 1

¶µ
3m− 2

j + l + q − 1
¶

µ
n
i

¶µ
n
k

¶µ
n
p

¶µ
m
j

¶µ
m
l

¶µ
m
q

¶
.

The choice of the point triplets bij ,bkl,bpq is still left. For this we transform
the matrix with elements bij , (i = 0, 1, . . . , n; j = 0, 1, . . . ,m) to a vector cr, (r =
0, 1, . . . , z − 1). This vector has z = (n+ 1) (m+ 1) components. The sum of the
required triplets can be gained by the triple summation

z−3X
r=0

z−2X
s=r+1

z−1X
t=s+1

(cr, cs, ct) .
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The subscripts of the original matrix can be calculated from r, s, t by means of the
equalities

j = r mod (m+ 1) , i = (r − j) / (m+ 1) ,

l = s mod (m+ 1) , k = (s− l) / (m+ 1) ,

q = t mod (m+ 1) , p = (t− q) / (m+ 1) ,

which completes the proof.

Although the formula looks a bit involved, it is pleasing due to its symmetry in
n and m. Moreover, it is easy to implement in a programming language, and the
program based on this formula will be efficient since the number of terms in the sum
is minimized.

3. Conclusions

By means of Theorem 2 one can compute the volume of any solid, the boundary of
which can be decomposed to Bézier surfaces. Moreover, we can compute the signed
volume of the solid bounded by a B—spline patch and the cones determined by its
boundary curves and the origin. In order to do this, we generate the Bézier points of
the B—spline patch, cf. [1], i.e. we decompose the B—spline patch to Bézier surfaces.
The sum of the signed volumes of the solids determined by these Bézier surfaces is
the signed volume of the solid determined by the B—spline patch.
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