

HU e-ISSN 1787-2413 DOI: 10.18514/MMN.2011.257

q-Szász Schurer operators

Mehmet Ali Özarslan

q-SZÁSZ SCHURER OPERATORS

MEHMET ALI ÖZARSLAN

Received January 11, 2010

Abstract. In this paper, we introduce q-Szász Schurer operators and calculate their moments. The transformation properties, Korovkin type approximation theorem and rate of convergence of the operators are studied. We further obtain global estimates for q-Szász Schurer operators in terms of some Lipschitz classes.

2000 Mathematics Subject Classification: 41A10; 41A25; 41A36; 40A25

Keywords: q-Szász Schurer operators, *q*-Szász-Mirakjan operators, Schurer-Szász-Mirakjan operators, Korovkin type theorem, modulus of continuity, Petree's K-functional, Lipschitz classes, global approximation

1. Introduction

Korovkin type approximation theory has been constructed on linear positive operators and has been an active research field during the last century because of its simple applicability [2]. After the works of A. Lupaş [9] and G.M. Phillips [19], where they introduced different analogues of the q-Bernstein polynomials $B_{n,q}(f;x)$, $n = 1,2,...,0 < q < \infty$, intensive research has been conducted on linear positive operators based on q-integers (see [4,6,8,15–18,20,21]).

In [4], [3] q-Szász Mirakjan operators were defined and their approximation properties were investigated. For $0 \le x < \frac{b_n}{(1-q)[n]}$, $f \in C[0,\infty)$, and $\{b_n\}$ is a sequence of positive numbers such that $\lim_{n\to\infty} b_n = \infty$, in [4], q-Szász Mirakjan operators were defined by

$$S_{n,q}(f)(x) := E_q\left(-[n]\frac{x}{b_n}\right) \sum_{k=0}^{\infty} f\left(\frac{[k]b_n}{[n]}\right) \frac{[n]^k x^k}{[k]!b_n^k},$$

where

$$[k] = \left\{ \begin{array}{l} (1-q^k)/(1-q) & if \ q \neq 1 \\ k & if \ q = 1 \end{array} \right., \ [k]! = \left\{ \begin{array}{l} [1][2]...[k] & if \ k \geq 1 \\ 1 & if \ k = 0 \end{array} \right.,$$

© 2011 Miskolc University Press

$$E_{q}(x) = \sum_{n=0}^{\infty} \frac{q^{\frac{n(n-1)}{2}}}{[n]!} x^{n} = (-(1-q)x;q)_{\infty}; x \in \mathbb{R}, |q| < 1, \qquad (1.1)$$

$$(a;q)_{\infty} = \prod_{j=0}^{\infty} (1-aq^{j}) \qquad (a \in \mathbb{C}).$$

As it was pointed out in [11], it is better to refer to these operators as q-parametric Szász-Mirakjan-Chlodowsky operators because of their structures. In [11], Mahmudov introduced the following q-Szász-Mirakjan operators

$$S_{n,q}^{*}(f)(x) = \frac{1}{E_{q}([n]x)} \sum_{k=0}^{\infty} f\left(\frac{[k]}{q^{k-2}[n]}\right) q^{\frac{k(k-1)}{2}} \frac{[n]^{k} x^{k}}{[k]!},$$

where $x \in [0, \infty)$, 0 < q < 1, $f \in C[0, \infty)$ and studied convergence properties of these operators. We note that these operators do not preserve linear functions. In [11], Mahmudov obtained inequalities for the weighted approximation error, and also for the rate of convergence in terms of weighted moduli of continuity, and a Voronoskaja-type formula for q-Szász-Mirakjan operators was derived, too.

Now let $E_q(x)$ be defined by (1.1). In the present paper we introduce q-Szász Schurer operators which is defined for fixed $p \in \mathbb{N}_0$ by

$$S_{n,q}(f;x;p) = \frac{1}{E([n+p]x)} \sum_{k=0}^{\infty} f\left(\frac{[k]}{q^{k-1}[n]}\right) q^{\frac{k(k-1)}{2}} \frac{[n+p]^k x^k}{[k]!}$$
(1.2)

where $x \in [0, \infty)$, 0 < q < 1, $f \in C[0, \infty)$. It is clear from (1.1) that

$$S_{n,q}(1;x;p) = 1,$$
 (1.3)

for each fixed $p \in \mathbb{N}_0$. Note that in the case p = 0, q-Szász Schurer operators reduces to the slightly modified form of the Mahmudov's q-Szász-Mirakjan operators. Furthermore, letting $q \to 1$ in (1.2), one can get Schurer-Szász-Mirakjan operators (see p.p. 338,[2]).

There are some recent papers related to the q-Szász operators. For instance, in [1] and in [10] different variants of King type q-Szász operators (preserving x^2 and providing better error estimation) has been considered. On the other hand, integral type q-Szász operators were recently investigated in [13],[14],[12] and [7]. These types of modifications of the q-Szász Schurer operators will be the subject of future studies.

In this paper we compute the moments of the q-Szász Schurer operators and investigate their transformation properties. Korovkin type approximation result and rate of convergence of the operators are obtained in Section 3. Section 4 is devoted to global estimates for q-Szász Schurer operators in terms of some Lipschitz classes.

2. AUXILIARY LEMMAS

In this section we calculate the moments of the q-Szász Schurer operators and investigate their transformation properties. We start with the following lemma:

Lemma 1. For $m \in \mathbb{N}_0$ and fixed $p \in \mathbb{N}_0$, we have

$$S_{n,q}(t^{m+1};x;p) = \frac{[n+p]x}{[n]} \sum_{i=0}^{m} \binom{m}{j} \frac{1}{q^{j}[n]^{m-j}} S_{n,q}(t^{j};x;p). \tag{2.1}$$

Using (1.3) and the above lemma, we get the following results immediately.

Corollary 1. For fixed $p \in \mathbb{N}_0$, we have

$$S_{n,q}(t;x;p) = \frac{[n+p]x}{[n]}, S_{n,q}(t^2;x;p) = \frac{1}{q} \left(\frac{[n+p]x}{[n]}\right)^2 + \frac{[n+p]x}{[n]^2},$$

$$S_{n,q}(t^3;x;p) = \frac{1}{q^3} \left(\frac{[n+p]x}{[n]}\right)^3 + \frac{2q+1}{q^2} \frac{[n+p]^2x^2}{[n]^3} + \frac{[n+p]x}{[n]^3}.$$

Note that the operators $S_{n,q}(t;x;0)$ preserve the linear functions while $S_{n,q}^*(f)(x)$ does not preserve them. Now, using linearity of the operators, we have the following:

Corollary 2. For the second central moment, we have

$$S_{n,q}((t-x)^2;x;p) = \left[\left(\frac{[n+p]}{q[n]}-2\right)\frac{[n+p]}{[n]}+1\right]x^2 + \frac{[n+p]}{[n]^2}x.$$

Lemma 2. For every $x \ge 0$, we have

$$\frac{1}{E([n+p]x)} \sum_{k=0}^{\infty} \left| \frac{[k]}{q^{k-1}[n]} - x \right| q^{\frac{k(k-1)}{2}} \frac{[n+p]^k x^k}{[k]!}$$

$$\leq \left(\left[\left(\frac{[n+p]}{q[n]} - 2 \right) \frac{[n+p]}{[n]} + 1 \right] x^2 + \frac{[n+p]}{[n]^2} x \right)^{1/2}.$$

From (2.1), it is not difficult to obtain the following result by induction.

Lemma 3. For the m^{th} moment (m = 1, 2, ...) we have the following:

$$S_{n,q}(t^m; x; p) = q^{\frac{-m(m-1)}{2}} \left(\frac{[n+p]x}{[n]}\right)^m + \frac{b_{m,1}(q)}{[n]} \left(\frac{[n+p]x}{[n]}\right)^{m-1} + \dots + \frac{b_{m,m-1}(q)}{[n]^{m-1}} \frac{[n+p]x}{[n]}, \quad (2.2)$$

where the coefficients $b_{m,i}(q)$ (i = 1,2,...,m-1) are constants depending on m and q. Furthermore, $b_{m,m-1}(q) = 1$ (m = 1,2,...).

Now let $C_B[0,\infty)$ denote the space of all real valued continuous bounded functions on $[0,\infty)$ endowed with the norm

$$||f|| = \sup_{x \in [0,\infty)} |f(x)|, f \in C_B[0,\infty).$$

It is obvious by (1.3) that $S_{n,q}$ maps $C_B[0,\infty)$ into itself.

Let $r \in \mathbb{N}_0 := \{0, 1, ...\}$ and define the weight function μ_r as follows: $\mu_0(x) := 1$ and $\mu_r(x) := (1 + x^r)^{-1}$ for $x \ge 0$ and $r \in \mathbb{N}_0$. Also for $r \in \mathbb{N}_0$, let $C_r[0, \infty)$ be the space of functions $f \in C[0, \infty)$, such that $\mu_r f$ is uniformly continuous and bounded on $[0, \infty)$, endowed with the norm

$$||f||_r := \sup_{x \in [0,\infty)} \mu_r(x) |f(x)| \text{ for } f \in C_r[0,\infty).$$

Using (2.2), we easily obtain the following transformation property.

Lemma 4. For the operators $S_{n,q}$, there exists a constant $K_r(q) > 0$ depending on r and q, such that

$$\mu_r(x)S_{n,q}\left(\frac{1}{\mu_r};x;p\right) \le K_r(q). \tag{2.3}$$

Furthermore, for all $f \in C_r[0,\infty)$, we have

$$||S_{n,q}(f)||_r \le K_r(q) ||f||_r,$$
 (2.4)

which guarantees that $S_{n,q}$ maps $C_r[0,\infty)$ into $C_r[0,\infty)$.

3. KOROVKIN TYPE THEOREM

In this section we consider the space

$$E := \left\{ f \in C_2[0, \infty) : \exists \lim_{x \to \infty} \frac{|f(x)|}{1 + x^2} < \infty \right\},\,$$

endowed with the norm

$$||f||_2 := \sup_{x \in [0,\infty)} \mu_2(x) |f(x)|.$$

Now let b > 0. The usual modulus of continuity of f on the closed interval [0, b] is defined by

$$\omega_b(f,\delta) = \sup_{\substack{|t-x| \le \delta \\ x,t \in [0,b]}} |f(t) - f(x)|. \tag{3.1}$$

It is well known that, for a function $f \in E$, we have $\lim_{\delta \to \infty} \omega_b(f, \delta) = 0$.

We start by obtaining the rate of convergence of the operators $S_{n,q}(f;x;p)$ to f(x), for all $f \in E$.

Theorem 1. Let $f \in E$ and let $\omega_{b+1}(f,\delta)$ (b>0) be its modulus of continuity on the finite interval $[0,b+1] \subset [0,\infty)$. Then for fixed $q \in (0,1)$, we have

$$||S_{n,q}(f;x;p) - f(x)||_{C[0,b]} \le 2\omega_{b+1}(f,\delta(q)) + N_f (1+b^2) \left\{ \left[\left(\frac{[n+p]}{q[n]} - 2 \right) \frac{[n+p]}{[n]} + 1 \right] b^2 + \frac{[n+p]}{[n]^2} b \right\}$$

where $\delta = \delta(q) = \left[\left[\left(\frac{[n+p]}{q[n]} - 2 \right) \frac{[n+p]}{[n]} + 1 \right] b^2 + \frac{[n+p]}{[n]^2} b \right]^{1/2}$ and N_f is a positive constant depending on f.

Proof. Let $q \in (0,1)$ be fixed. For $x \in [0,b]$ and $t \le b+1$, we can write from (3.1) that

$$|f(t) - f(x)| \le \omega_{b+1}(f, |t - x|) \le \left(1 + \frac{|t - x|}{\delta}\right) \omega_{b+1}(f, \delta)$$
 (3.2)

where $\delta > 0$. On the other hand, for $x \in [0,b]$ and t > b+1, using the fact that t-x > 1, we have

$$|f(t) - f(x)| \le M_f (1 + x^2 + t^2) \le M_f (2 + 3x^2 + 2(t - x)^2)$$

$$\le N_f (1 + b^2) (t - x)^2$$
(3.3)

where $N_f = 6M_f$. Combining (3.2) and (3.3), we get for all $x \in [0, b]$ and $t \ge 0$ that $|f(t) - f(x)| \le N_f (1 + b^2) (t - x)^2 + \left(1 + \frac{|t - x|}{\delta}\right) \omega_{b+1}(f, \delta)$ and therefore

$$|S_{n,q}(f;x;p) - f(x)| \le N_f (1+b^2) S_{n,q}((t-x)^2;x;p) + \left(1 + \frac{S_{n,q}(|t-x|;x;p)}{\delta}\right) \omega_{b+1}(f,\delta).$$

By Lemma 2 and Corollary 2, we obtain

$$\begin{aligned} & \left| S_{n,q}(f;x;p) - f(x) \right| \\ & \leq N_f \left(1 + b^2 \right) S_{n,q}((t-x)^2;x;p) + \left(1 + \frac{\left[S_{n,q}((t-x)^2;x;p) \right]^{1/2}}{\delta} \right) \omega_{b+1}(f,\delta) \\ & \leq N_f \left(1 + b^2 \right) \left\{ \left[\left(\frac{[n+p]}{q[n]} - 2 \right) \frac{[n+p]}{[n]} + 1 \right] x^2 + \frac{[n+p]}{[n]^2} x \right\} \\ & + \left(1 + \frac{\left[\left[\left(\frac{[n+p]}{q[n]} - 2 \right) \frac{[n+p]}{[n]} + 1 \right] x^2 + \frac{[n+p]}{[n]^2} x \right]^{1/2}}{\delta} \right) \omega_{b+1}(f,\delta) \\ & \leq N_f \left(1 + b^2 \right) \left\{ \left[\left(\frac{[n+p]}{q[n]} - 2 \right) \frac{[n+p]}{[n]} + 1 \right] b^2 + \frac{[n+p]}{[n]^2} b \right\} + 2\omega_{b+1}(f,\delta(q)), \end{aligned}$$

where $\delta = \delta(q) = \left[\left[\left(\frac{[n+p]}{q[n]} - 2 \right) \frac{[n+p]}{[n]} + 1 \right] b^2 + \frac{[n+p]}{[n]^2} b \right]^{1/2}$. Whence the result follows.

Corollary 3. Let $q := q_n \in (0,1)$ and fix $p \in \mathbb{N}_0$. Then for all $f \in E$, $\{S_{n,q}(f;x;p)\}$ converges uniformly to f on [0,b] if and only if $\lim_{n\to\infty} q_n = 1$.

4. GLOBAL RESULT

In this section we consider the following Lipschitz classes:

$$\begin{split} & \Delta_{h}^{2} f(x) \quad : \quad = f(x+2h) - 2f(x+h) + f(x), \\ & \omega_{r}^{2}(f,\delta) \quad : \quad = \sup_{h \in (0,\delta]} \left\| \Delta_{h}^{2} f \right\|_{r}, \\ & \omega_{r}^{1}(f,\delta) \quad : \quad = \sup_{h \in (0,\delta]} \left\| \mu_{r}(x) |f(t) - f(x)| : |t - x| \le \delta \text{ and } t, x \ge 0 \right\} \\ & Li p_{r}^{2} \alpha \quad : \quad = \left\{ f \in C_{r}[0,\infty) : \omega_{r}^{2}(f;\delta) = O(\delta^{\alpha}) \text{ as } \delta \to 0^{+} \right\}, \end{split}$$

where h > 0 and $0 < \alpha \le 2$.

Lemma 5. Fix $r \in \mathbb{N}$, $p \in \mathbb{N}_0$, $q \in (0,1)$. For the sequence of operators $\{S_{n,q}(f;x;p)\}$, there exists a constant $M_r(q,p)$ such that

$$\mu_{r}(x)S_{n,q}\left(\frac{\psi_{x}^{2}}{\mu_{r}};x;p\right) \leq M_{r}(q,p)\left\{ \left[\left(\frac{[n+p]}{q^{2r+1}[n]} - \frac{2}{q^{r}}\right)\frac{[n+p]}{[n]} + 1\right]x^{2} + \frac{[n+p]}{[n]^{2}}x \right\}$$

where $\psi_x^2(t) = (t - x)^2$.

Proof. Now let r=1. Since, for each fixed $p \in \mathbb{N}_0, q \in (0,1)$ and for all $n \in \mathbb{N}$, we have $\frac{[n+p]}{q[n]}-2 \leq \frac{[n+p]}{q^3[n]}-\frac{2}{q}$, then we can write using Corollary 1 and Corollary 2 that

$$\mu_{1}(x)S_{n,q}\left(\frac{\psi_{x}^{2}}{\mu_{1}};x;p\right)$$

$$= \mu_{1}(x)\left\{S_{n,q}\left(\psi_{x}^{2};x;p\right) + S_{n,q}\left(t^{3};x;p\right) - 2xS_{n,q}\left(t^{2};x;p\right) + x^{2}S_{n,q}\left(t;x;p\right)\right\}$$

$$\leq \mu_{1}(x)\left\{\left[\left(\frac{[n+p]}{q^{3}[n]} - \frac{2}{q}\right)\frac{[n+p]}{[n]} + 1\right)x^{2}\right]\left(1 + \frac{[n+p]}{[n]}x\right)$$

$$+ \frac{[n+p]}{[n]^{2}}x\left[\frac{2q+1}{q^{2}}\frac{[n+p]}{[n]}x - 2x + \frac{1}{[n]} + 1\right]\right\}$$

$$\leq M_{r}(q,p)\left\{\left[\left(\frac{[n+p]}{q^{3}[n]} - \frac{2}{q}\right)\frac{[n+p]}{[n]} + 1\right)x^{2}\right] + \frac{[n+p]}{[n]^{2}}x\right\}.$$

Finally, assume that $r \ge 2$. Since, for each fixed $p \in \mathbb{N}_0, q \in (0,1)$ and for all $n \in \mathbb{N}$, we have $\frac{[n+p]}{q[n]} - 2 \le \frac{[n+p]}{q^{2r+1}[n]} - \frac{2}{q^r}$, then, we get from Lemma 3 that

$$\begin{split} S_{n,q}\left(\frac{\psi_x^2}{\mu_r};x;p\right) &= S_{n,q}\left(\psi_x^2;x;p\right) + S_{n,q}(e_{r+2};x;p) - 2xS_{n,q}(e_{r+1};x;p) \\ &+ x^2S_{n,q}(e_r;x;p) = S_{n,q}\left(\psi_x^2;x;p\right) \\ &+ q^{\frac{-(r-1)(r+2)}{2}}\left(\frac{\left[n+p\right]x}{\left[n\right]}\right)^{r+2} + \frac{b_{r+2,1}(q)}{\left[n\right]}\left(\frac{\left[n+p\right]x}{\left[n\right]}\right)^{r+1} + \ldots + \frac{1}{\left[n\right]^{r+1}}\frac{\left[n+p\right]x}{\left[n\right]} \\ &- 2x\left\{q^{\frac{-r(r+1)}{2}}\left(\frac{\left[n+p\right]x}{\left[n\right]}\right)^{r+1} + \frac{b_{r+1,1}(q)}{\left[n\right]}\left(\frac{\left[n+p\right]x}{\left[n\right]}\right)^{r} + \ldots + \frac{1}{\left[n\right]^{r}}\frac{\left[n+p\right]x}{\left[n\right]} \right\} \\ &+ x^2\left\{q^{\frac{-r(r-1)}{2}}\left(\frac{\left[n+p\right]x}{\left[n\right]}\right)^{r} + \frac{b_{r,1}(q)}{\left[n\right]}\left(\frac{\left[n+p\right]x}{\left[n\right]}\right)^{r-1} + \ldots + \frac{1}{\left[n\right]^{r-1}}\frac{\left[n+p\right]x}{\left[n\right]} \right\}, \\ &= \left[\left(\frac{\left[n+p\right]}{q\left[n\right]} - 2\right)\frac{\left[n+p\right]}{\left[n\right]} + 1\right]x^2 + \frac{\left[n+p\right]}{\left[n\right]^2}x \\ &+ q^{\frac{-r(r-1)}{2}}\left[\left(\frac{\left[n+p\right]}{q^{2r+1}\left[n\right]} - \frac{2}{q^r}\right)\frac{\left[n+p\right]}{\left[n\right]} + 1\right]x^2\left(\frac{\left[n+p\right]x}{\left[n\right]}\right)^{r} \\ &+ \frac{\left[n+p\right]}{\left[n\right]^2}x \left[\left(b_{r+2}(q) - 2b_{r+1}(q) + b_r(q)\right)\left(\frac{\left[n+p\right]x}{\left[n\right]}\right)^{r} + \ldots + \frac{1}{\left[n\right]^{r}}\right] \end{split}$$

which implies that

$$\mu_{r}(x)S_{n,q}\left(\frac{\psi_{x}^{2}}{\mu_{r}};x;p\right) \leq M_{r}(q,p)\left\{\left[\left(\frac{[n+p]}{q^{2r+1}[n]}-\frac{2}{q^{r}}\right)\frac{[n+p]}{[n]}+1\right]x^{2}+\frac{[n+p]}{[n]^{2}}x\right\},\,$$

whence the result holds.

Now, for fixed $p \in \mathbb{N}_0$, consider the space

$$C_p^2[0,\infty) := \{ f \in C_p[0,\infty) : f'' \in C_p[0,\infty) \}.$$

Then we have the following result.

Lemma 6. Let $g \in C_p^2[0,\infty)$. For the operators $S_{n,q}^*(f;x;p) = S_{n,q}(f;x;p) - f(\frac{[n+p]x}{[n]}) + f(x)$, there exists a positive constant $M_r(q,p)$ such that, for all $x \in [0,\infty)$ and $n \in \mathbb{N}$, we have

$$\mu_{r}(x) \left| S_{n,q}^{*}(g;x;p) - g(x) \right| \leq M_{r}(q,p) \left\| g'' \right\|_{r} \\ \times \left\{ \left[\left(1 + \frac{1}{q^{2r+1}} \right) \frac{[n+p]^{2}}{[n]^{2}} - 2 \left(1 + \frac{1}{q^{r}} \right) \frac{[n+p]}{[n]} + 2 \right] x^{2} + \frac{[n+p]x}{[n]^{2}} \right\}.$$

Proof. Let $\psi_x(y) = y - x$. Using Taylor formula, we may write that

$$g(y) - g(x) = \psi_x(y)g'(x) + \int_{x}^{y} \psi_t(y)g''(t)dt, \ y \in [0, \infty).$$

Since $S_{n,q}^*(\psi_x(y); x; p) = 0$, we get

$$\begin{aligned} \left| S_{n,q}^*(g;x;p) - g(x) \right| &= \left| S_{n,q}^*(g(y) - g(x);x;p) \right| \\ &= \left| S_{n,q}^* \left(\int_x^y \psi_t(y) g''(t) dt; x; p \right) \right| \\ &= \left| S_{n,q} \left(\int_x^y \psi_t(y) g''(t) dt; x; p \right) - \int_x^{\frac{[n+p]x}{[n]}} \psi_t \left(\frac{[n+p]x}{[n]} \right) g''(t) dt \right|. \end{aligned}$$

Using the fact that

$$\left| \int_{x}^{y} \psi_{t}(y) g''(t) dt \right| \leq \frac{\|g''\|_{r} \psi_{x}^{2}(y)}{2} \left(\frac{1}{\mu_{r}(x)} + \frac{1}{\mu_{r}(y)} \right)$$

and

$$\left|\int\limits_{x}^{\frac{[n+p]x}{[n]}}\psi_{t}\left(\frac{[n+p]x}{[n]}\right)g''(t)dt\right|\leq \frac{\|g''\|_{r}}{2\mu_{r}(x)}\left(\frac{[n+p]x}{[n]}-x\right)^{2},$$

it follows from Lemma 5 that

$$\mu_{r}(x) \left| S_{n,q}^{*}(g;x;p) - g(x) \right| \leq \frac{\|g''\|_{r}}{2} \left\{ S_{n,q}(\psi_{x}^{2};x) + \mu_{r}(x) S_{n,q}\left(\frac{\psi_{x}^{2}}{\mu_{r}};x\right) \right\} \\ + \frac{\|g''\|_{r}}{2} \left(\frac{[n+p]x}{[n]} - x \right)^{2} \\ \leq M_{r}(q,p) \left\| g'' \right\|_{r} \\ \times \left\{ \left[\left(1 + \frac{1}{q^{2r+1}} \right) \frac{[n+p]^{2}}{[n]^{2}} - 2\left(1 + \frac{1}{q^{r}} \right) \frac{[n+p]}{[n]} + 2 \right] x^{2} + \frac{[n+p]x}{[n]^{2}} \right\}.$$
The Lemma is proved.

The main result of the section is the following.

Theorem 2. For each fixed $r \in \mathbb{N}$, $p \in \mathbb{N}_0$ and for all $n \in \mathbb{N}$, $f \in C_r[0,\infty)$ and $x \in [0,\infty)$ and fixed $q \in (0,1)$, there exists an absolute constant $M_r(q,p) > 0$ such that

$$\mu_r(x) \left| S_{n,q}(f;x;p) - f(x) \right| \le \omega_r^1(f; \frac{[n+p]x}{[n]} - x) + M_r(q,p)$$

$$\times \omega_r^2 \left(f, \sqrt{\left[\left(1 + \frac{1}{q^{2r+1}} \right) \frac{[n+p]^2}{[n]^2} - 2\left(1 + \frac{1}{q^r} \right) \frac{[n+p]}{[n]} + 2 \right] x^2 + \frac{[n+p]x}{[n]^2} \right),$$

where μ_r is the same as in Section 2. Particularly, if $f \in Lip_r^2 \alpha$ for some $\alpha \in (0,2]$, then

$$\mu_{r}(x) \left| S_{n,q}(f;x;p) - f(x) \right| \leq \omega_{r}^{1}(f;\frac{[n+p]x}{[n]} - x) + M_{r}(q,p)$$

$$\times \left(\left[\left(1 + \frac{1}{q^{2r+1}} \right) \frac{[n+p]^{2}}{[n]^{2}} - 2 \left(1 + \frac{1}{q^{r}} \right) \frac{[n+p]}{[n]} + 2 \right] x^{2} + \frac{[n+p]x}{[n]^{2}} \right)^{\frac{\alpha}{2}}$$

holds.

We first consider the modified Steklov means (see [5]) of a function $f \in C_r[0, \infty)$ as follows:

$$f_h(y) := \frac{4}{h^2} \int_0^{h/2} \int_0^{h/2} \{2f(y+s+t) - f(y+2(s+t))\} ds dt,$$

where h > 0 and $y \ge 0$. In this case, it is clear that

$$f(y) - f_h(y) = \frac{4}{h^2} \int_{0}^{h/2} \int_{0}^{h/2} \Delta_{s+t}^2 f(y) ds dt,$$

which guarantees that

$$||f - f_h||_r \le \omega_r^2(f; h).$$
 (4.1)

Furthermore, we have $f_h''(y) = \frac{1}{h^2} \left(8\Delta_{h/2}^2 f(y) - \Delta_h^2 f(y) \right)$, which implies

$$||f_h''||_r \le \frac{9}{h^2}\omega_r^2(f;h).$$
 (4.2)

Then, combining (4.1) with (4.2) we conclude that the Steklov means f_h corresponding to $f \in C_r[0,\infty)$ belongs to $C_r^2[0,\infty)$.

Proof. Let $r \in \mathbb{N}$, $f \in C_r[0,\infty)$ and $x \in [0,\infty)$ be fixed. Assume that, for h > 0, f_h denotes the Steklov means of f. For any $n \in \mathbb{N}$, the following inequality holds:

$$|S_{n,q}(f;x;p) - f(x)| \le S_{n,q}^*(|f(y) - f_h(y)|;x;p) + |f(x) - f_h(x)|$$

$$+\left|S_{n,q}^{*}\left(f_{h};x;p\right)-f_{h}(x)\right|+\left|f\left(\frac{[n+p]x}{[n]}\right)-f(x)\right|.$$

Since $f_h \in C_r^2[0,\infty)$, it follows from Lemma 6 that

$$\begin{split} & \mu_{r}(x) \left| S_{n,q}(f;x;p) - f(x) \right| \leq \|f - f_{h}\|_{r} \left\{ \mu_{r}(x) S_{n,q}^{*} \left(\frac{1}{\mu_{r}};x;p \right) + 1 \right\} \\ & + M_{r}(q,p) \left\| f_{h}^{"} \right\|_{p} \left\{ \left[\left(1 + \frac{1}{q^{2r+1}} \right) \frac{[n+p]^{2}}{[n]^{2}} - 2 \left(1 + \frac{1}{q^{r}} \right) \frac{[n+p]}{[n]} + 2 \right] x^{2} \\ & + \frac{[n+p]x}{[n]^{2}} \right\} + \mu_{r}(x) \left| f \left(\frac{[n+p]x}{[n]} \right) - f(x) \right| \\ & \leq \|f - f_{h}\|_{p} \left\{ \mu_{r}(x) S_{n,q} \left(\frac{1}{\mu_{r}};x \right) + 3 \right\} \\ & + M_{r}(q,p) \|f_{h}^{"}\|_{r} \left\{ \left[\left(1 + \frac{1}{q^{2r+1}} \right) \frac{[n+p]^{2}}{[n]^{2}} - 2 \left(1 + \frac{1}{q^{r}} \right) \frac{[n+p]}{[n]} + 2 \right] x^{2} \\ & + \frac{[n+p]x}{[n]^{2}} \right\} + \mu_{r}(x) \left| f \left(\frac{[n+p]x}{[n]} \right) - f(x) \right|. \end{split}$$

By (4.1) and (4.2), the last inequality yields that

$$\begin{split} & \mu_{r}(x) \left| S_{n,q}(f;x;p) - f(x) \right| \leq M_{r}(q) \omega_{r}^{2}(f;h) \\ & \times \left\{ 1 + \frac{1}{h^{2}} \left\{ \left[\left(1 + \frac{1}{q^{2r+1}} \right) \frac{[n+p]^{2}}{[n]^{2}} - 2 \left(1 + \frac{1}{q^{r}} \right) \frac{[n+p]}{[n]} + 2 \right] x^{2} \right. \\ & \left. + \frac{[n+p]x}{[n]^{2}} \right\} \left\} + \omega_{r}^{1}(f;f\left(\frac{[n+p]x}{[n]} \right) - f(x)). \end{split}$$

Thus, choosing $h = \sqrt{\left[\left(1 + \frac{1}{q^{2r+1}}\right)\frac{[n+p]^2}{[n]^2} - 2\left(1 + \frac{1}{q^r}\right)\frac{[n+p]}{[n]} + 2\right]x^2 + \frac{[n+p]x}{[n]^2}}$, the first part of the proof is completed. The remaining part of the proof can be easily obtained from the definition of the space $Lip_p^2\alpha$.

REFERENCES

- [1] O. Agratini and O. Doğru, "Weighted approximation by *q*-Szász-King type operators," *Taiwanese J. Math.*, vol. 14, no. 4, pp. 1283–1296, 2010.
- [2] F. Altomare and M. Campiti, *Korovkin-type approximation theory and its applications*, ser. de Gruyter Stud. Math. Berlin: Walter de Gruyter & Co., 1994, vol. 17.
- [3] A. Aral, "A generalization of Szász-Mirakyan operators based on *q*-integers," *Math. Comput. Modelling*, vol. 47, no. 9-10, pp. 1052–1062, 2008.
- [4] A. Aral and V. Gupta, "The *q*-derivative and applications to *q*-Szász Mirakyan operators," *Calcolo*, vol. 43, no. 3, pp. 151–170, 2006.
- [5] M. Becker, "Global approximation theorems for Szász-Mirakjan and Baskakov operators in polynomial weight spaces," *Indiana Univ. Math. J.*, vol. 27, no. 1, pp. 127–142, 1978.

- [6] V. Gupta, "Some approximation properties of *q*-Durrmeyer operators," *Appl. Math. Comput.*, vol. 197, no. 1, pp. 172–178, 2008.
- [7] V. Gupta and A. Aral, "Convergence of the *q* analogue of Szász-beta operators," *Appl. Math. Comput.*, vol. 216, no. 2, pp. 374–380, 2010.
- [8] A. Il'inskii and S. Ostrovska, "Convergence of generalized Bernstein polynomials," *J. Approx. Theory*, vol. 116, no. 1, pp. 100–112, 2002.
- [9] A. Lupaş, "A q-analogue of the Bernstein operator," in Seminar on Numerical and Statistical Calculus (Cluj-Napoca, 1987), ser. Preprint, vol. 87-9. Cluj-Napoca: Univ. "Babeş-Bolyai", 1987, pp. 85–92.
- [10] N. I. Mahmudov, "q-Szász-Mirakjan operators which preserve x²," J. Comput. Appl. Math., vol. 235, no. 16, pp. 4621–4628, 2011.
- [11] N. I. Mahmudov, "On *q*-parametric Szász-Mirakjan operators," *Mediterr. J. Math.*, vol. 7, no. 3, pp. 297–311, 2010.
- [12] N. I. Mahmudov and V. Gupta, "On certain *q*-analogue of Szász Kantorovich operators," *J. Appl. Math. Comput.*, vol. 37, no. 1-2, pp. 407–419, 2011.
- [13] N. I. Mahmudov and H. Kaffaoğlu, "On q-Szász-Durrmeyer operators," *Cent. Eur. J. Math.*, vol. 8, no. 2, pp. 399–409, 2010.
- [14] M. Örkcü and O. Doğru, "Weighted statistical approximation by Kantorovich type *q*-Szász-Mirakjan operators," *Appl. Math. Comput.*, vol. 217, no. 20, pp. 7913–7919, 2011.
- [15] S. Ostrovska, "q-Bernstein polynomials and their iterates," J. Approx. Theory, vol. 123, no. 2, pp. 232–255, 2003.
- [16] S. Ostrovska, "On the limit *q*-Bernstein operator," *Math. Balkanica (N.S.)*, vol. 18, no. 1-2, pp. 165–172, 2004.
- [17] M. A. Ózarslan and O. Duman, "Approximation theorems by Meyer-König and Zeller type operators," *Chaos Solitons Fractals*, vol. 41, no. 1, pp. 451–456, 2009.
- [18] M. Özarslan, "*q*-Laguerre type linear positive operators," *Studia Sci. Math. Hungar.*, vol. 44, no. 1, pp. 65–80, 2007.
- [19] G. M. Phillips, "On generalized Bernstein polynomials," in *Numerical analysis*. River Edge, NJ: World Sci. Publ., 1996, pp. 263–269.
- [20] G. M. Phillips, "Bernstein polynomials based on the *q*-integers," *Ann. Numer. Math.*, vol. 4, no. 1-4, pp. 511–518, 1997.
- [21] T. Trif, "Meyer-König and Zeller operators based on the *q*-integers," *Rev. Anal. Numér. Théor. Approx.*, vol. 29, no. 2, pp. 221–229, 2000.

Author's address

Mehmet Ali Özarslan

Eastern Mediterranean University, Faculty of Arts and Sciences, Department of Mathematics, Gazi Magusa, Mersin 10, Turkey.

E-mail address: mehmetali.ozarslan@emu.edu.tr