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Abstract. In this paper, we introduce g—Szasz Schurer operators and calculate their moments.
The transformation properties, Korovkin type approximation theorem and rate of convergence of
the operators are studied. We further obtain global estimates for g—Szdsz Schurer operators in
terms of some Lipschitz classes.
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1. INTRODUCTION

Korovkin type approximation theory has been constructed on linear positive oper-
ators and has been an active research field during the last century because of its simple
applicability [2]. After the works of A. Lupas [9] and G.M. Phillips [19], where
they introduced different analogues of the g-Bernstein polynomials By 4 (f;x),n =
1,2,..,0 < g < o0, intensive research has been conducted on linear positive operators
based on g-integers (see [4, 0, 8, 15-18,20,21]).

In [4], [3] g-Szdsz Mirakjan operators were defined and their approximation prop-

erties were investigated. For 0 <x < —, f € C[0,00), and {b,} is a se-

(1- )[]

quence of positive numbers such that lim,—oc b, = 00, in [4], g-Szasz Mirakjan
operators were defined by
bn)[ﬂkxk
[k]!b,’f '

o~ (K]
Sna (/) () 1= Eq (=l)- ) 3 f
=t () 3
k] = a—kva—m vn¢1,wpz{[mamm if k=1

ifqg=1 1 if k=0 "~

where
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nn—1)

q 2
[n]!

E;(x) = X =(-(1-@)x:q):x €R, gl <1,  (1.1)

(@:q)o = (1-aq’) (a € ©).

o0
n=0
o
Jj=0
As it was pointed out in [11], it is better to refer to these operators as g-parametric

Szasz-Mirakjan-Chlodowsky operators because of their structures. In [11], Mah-
mudov introduced the following g-Szasz-Mirakjan operators

, N R APV (G R WSS ) o
$1a (D) = 5 g 2 (m) T

where x € [0,00), 0 < g < 1, f € C[0,00) and studied convergence properties of
these operators. We note that these operators do not preserve linear functions. In [11],
Mahmudov obtained inequalities for the weighted approximation error, and also for
the rate of convergence in terms of weighted moduli of continuity, and a Voronoskaja-
type formula for g-Szasz-Mirakjan operators was derived, too.

Now let E4 (x) be defined by (1.1). In the present paper we introduce g—Szdsz
Schurer operators which is defined for fixed p € Ng by

o 1 . ]\ xeon [+ plxk
Snq(fix;p) = mkz;)f (m)q TR (1.2)

where x € [0,00),0<¢g <1, f € C[0,00). Itis clear from (1.1) that

Snq(lix;p)=1, (1.3)

for each fixed p € Ng. Note that in the case p = 0, g—Szédsz Schurer operators re-
duces to the slightly modified form of the Mahmudov’s g-Szasz-Mirakjan operators.
Furthermore, letting ¢ — 1 in (1.2), one can get Schurer-Sz4dsz-Mirakjan operators
(see p.p. 338,[2]).

There are some recent papers related to the g—Szdsz operators. For instance, in
[1] and in [10] different variants of King type ¢—Szdsz operators (preserving x2 and
providing better error estimation) has been considered. On the other hand, integral
type g—Szész operators were recently investigated in [13],[14],[12] and [7]. These
types of modifications of the g —Szdsz Schurer operators will be the subject of future
studies.

In this paper we compute the moments of the g—Szédsz Schurer operators and
investigate their transformation properties. Korovkin type approximation result and
rate of convergence of the operators are obtained in Section 3. Section 4 is devoted to
global estimates for g—Szdsz Schurer operators in terms of some Lipschitz classes.
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2. AUXILIARY LEMMAS

In this section we calculate the moments of the g—Széasz Schurer operators and
investigate their transformation properties. We start with the following lemma:

Lemma 1. For m € Ng and fixed p € Ng, we have
[+ plx <~ [ m 1 ;
Sn,q(thrl;?C;P) = Z . WSn,q(tj;x;p). 2.1)

A=A

Using (1.3) and the above lemma, we get the following results immediately.

Corollary 1. For fixed p € Ng, we have

2
Snaq(t;x;p) = %, Sn,q(tz;x;p)=$([n4[;1f]x) +[n[:]§]x,
5. L In+plx\’  2g+1[n+pPx®  [n+plx
Sng(t733:p) = q_3( ] )* PERE Tk

Note that the operators Sp 4 (7; x;0) preserve the linear functions while S,; , (f) (x)
does not preserve them. Now, using linearity of the operators, we have the following:

Corollary 2. For the second central moment, we have

X.
q[n] [n] [n]?
Lemma 2. For every x > 0, we have
1 i [k] _x‘qk(kzn [n+ plkxk
E(n+ plv) = | ¢=1[n] ]

< ([(trpa) e o)

From (2.1), it is not difficult to obtain the following result by induction.

Lemma 3. For the m'"* moment (m = 1,2, ...) we have the following:

Sug™ixip)=q "5 (M)m
[n]
bm,1(4) ([n + p]X)'"_1 o beme1(@) [+ p)
[n] [] o [t [n]
where the coefficients by, i (q) (i = 1,2,...,m —1) are constants depending on m and
q. Furthermore, by m—1(q) =1 (m =1,2,...).

+

(2.2)
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Now let Cg[0,00) denote the space of all real valued continuous bounded func-
tions on [0, c0) endowed with the norm

IfIl="sup [f(x)], f € CB[0,00).

x€[0,00)

It is obvious by (1.3) that S, ;, maps Cg[0, 00) into itself.

Letr € Ng := {0, 1,...} and define the weight function p, as follows: po(x) :=1
and ur(x):=(1 +x™)7! forx > 0and r € Ng. Also for r € N, let C,[0,00) be the
space of functions f € C[0,00), such that u, f is uniformly continuous and bounded
on [0, 00), endowed with the norm

1Al = sup pr(x)|f(x)| for f e Cr[0,00).

x€[0,00)

Using (2.2), we easily obtain the following transformation property.

Lemma 4. For the operators Sy, 4, there exists a constant K(q) > 0 depending
onr and q, such that

1
tr (X)Sn.q (M—;x;p) = K (9). (2.3)
r
Furthermore, for all f € C,[0,00), we have

|Sna(H)], <= K@l £, (2.4)

which guarantees that Sy 4 maps Cr[0,00) into C,[0,00).

3. KOROVKIN TYPE THEOREM

In this section we consider the space

o 9 e SOOI
E = feCz[O,oo).Elxll)n;ol+x2<oo

endowed with the norm

Ifll2:="sup p2(x)[f(x)] .
x€[0,00)
Now let b > 0. The usual modulus of continuity of f on the closed interval [0, 5] is
defined by
wp(f.8) = SUP8|f(f)—f(X)|- (3.1)

lt—x|<
x,t€[0,b]

It is well known that, for a function f € E, we have limg_, . wp (f,8) = 0.
We start by obtaining the rate of convergence of the operators S, 4(f;x;p) to
f(x), forall f €E.
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Theorem 1. Let f € E and let wp1(f,8) (b > 0) be its modulus of continuity on
the finite interval [0,b + 1] C [0,00). Then for fixed g € (0, 1), we have

[Sna(f35:) = £ e o5y < 2011(£:5@)

+Ny (1+57) % [([an[;f] —2) [n[:]p] + 1]b2+ [n{};zp]b}

1/2
where § = 8(q) = [[([';J[:ﬁ] —2) % + 1]1)2 + ['E;Ef]b] and Ny is a positive

constant depending on f.

Proof. Letq € (0,1) be fixed. For x € [0,h] and t < b + 1, we can write from (3.1)
that
|t —x|

0= <o (fle-x) < (1475 )opa(9) 32)

where § > 0. On the other hand, for x € [0,b0] and ¢ > b + 1, using the fact that
t—x > 1, we have

()= f)] < My (14 x> +1%) < Mp(2+3x% +2(1 = x)?)
<Ny (1+b2)(t—x)? (3.3)
where Ny = 6 M. Combining (3.2) and (3.3), we get for all x € [0,b] and ¢ > O that
|f()— f(X)| < Ny (1+52) (t —x)%+ (1 + i _xl)wb+1(f,8) and therefore

|Sng(fix:p)— f(X)] = Nyp(1+5%)Snq(t—x)*x:p)
+(1+S"’q(lt_x|;X;p))a)b+1(f,5).

§

By Lemma 2 and Corollary 2, we obtain

Sn.q(f:x:p)— f(x)]

2 112
SNf(1+b2)Sn,q((t—X)2§x;P)+(1+[Sn’q((t 2] )wb+1(ﬂ8)

5
<N (1412 {[([ner]_z)[ner] 1} 2, [n+p] }
P+ o) T R
[n+p] [n+p] n+p] 112
+ 1+[[( il _2)%;1]x2+%x] wp11(£.5)

- 2 [n+p] ) [n+p] 2, 47l
<y (o) | (o) oty e B s,
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1/2
where § = 6(q) = [[([';J[;I]’] —2) [n[:]p] + l]b2 + ['E:]f]b] . Whence the result

follows. O
Corollary 3. Let g := gy, € (0,1) and fix p € No. Then forall f € E, {Sn 4(f:x:p)}

converges uniformly to f on [0,b] if and only iflim, 00 gn = 1.

4. GLOBAL RESULT

In this section we consider the following Lipschitz classes:

Aif(x) D= f(x+2h)=2f(x+h)+ f(x),

wf (f8) + = sup [A;f],.

he(0,8]
o, (£,8) © =sup{pr ()| f(0) = f(x)]: ]t —x| <Sand ,x > 0}
Lip?a : ={f € C0,00):0(f:8) = 0(8% as§ — 0"},

where h >0and 0 <« < 2.

Lemma 5. Fixr € N, p € Ng,q € (0, 1). For the sequence of operators {Sn,q (f:x; p)} ,
there exists a constant My (q, p) such that

2
tr (X)Sn.q (&ixip)
I

r

SMr(q,p){[(q[an] 3) [n+p]+1}xz+[n+p]x%

20t 1[n] g7 ) [n] [n]2

where w)%(t) = (t—x)2.

Proof. Now let r = 1. Since, for each fixed p € Ng,q € (0,1) and foralln € N, we
Jntrl o _[ntpl

=— — —, then we can write using Corollary 1 and Corollary
qln] ’lnl ¢

2
m1(x)Sn.q (&l)ﬁp)
M1

= p1(xX){Snq (VE:x:P) + Snq (t%:x:p) —2xSnq (t%:x: p) + x2S q (t:x: p) }

= mo | [((Spr ) "o )2 ()
[n+p] [2g+1[n+ p] 1
P x[ 2 H”m““

e (g =) "™+ )2+
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Finally, assume that r > 2. Since, for each fixed p € Ng,q € (0,1) and for alln € N,

2
[+ Pl -2< M — —, then, we get from Lemma 3 that

wehave Tol TP e g

wZ
Sn.q (/,Lx ;x5 ) = Snyg (W)%;XQP) + Sn.q(er+2:x:p) —2xSy g(er+1:X: p)
r

+x28Sp.q(er;x; ) = Sn.q (VZ:x; p)

—r=1e+2) [n+p]x)r+2 br_,.z,l(q)([n%—p]x)”rl 1 [n+plx

4 ( ] ] ] Tt I

—retn ([n 4 plx " beii(q) ([ plx 1 [n+ plx
_2x{q (") ) e

S [n+p1x)’ br,l(q>([n+p]x)"1 1 [n+plx
I ( W) T Ul Tt )

_[(In+pl \In+p] n+pl.
‘[( aln] 2) il “] MR

)

ntp ]x[(br+2<q>—2br+1(q>+br(q))( ) [1] }

+x?

bl

+

[]?
which implies that

2
r(X)Sn.q (wx X3 p)
m

r

< Mr(q,p){[(m—i)[nﬂul] +[n+p] }

qg**n] q") [n] [n]?
whence the result holds. O

Now, for fixed p € Ny, consider the space
C0,00) :={ f € Cp[0,00) : [ € Cp[0,00)}.
Then we have the following result.

Lemma 6. Let g € C;[0,00). For the operators S, ,(f:x:p) = Snq(f:x:p)—
f( ["'[tﬁ]x) + f(x), there exists a positive constant M,(q, p) such that, for all x €

[0,00) and n € N, we have
1r(X) Sy 4 (g:x:p)—g(x)| < My (q.p) | £”],

AL ) () )
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Proof. Let ¥, (y) = y — x. Using Taylor formula, we may write that
y
£0) =) = ¥ 0Ig )+ [ Vg Odr. y € 0.0),
X

Since Sy , (¥x(¥);x; p) = 0, we get
|Smq(g:x:p) =] =[Sy 4 (€(¥) —g(x); x5 p)|

y
=S g (/ Wz(y)g”(t)dt;x;p)

[n+plx
[n]

Yy
= [Shg (/ %(y)g”(t)dt;x;p) - / "z (%) g (t)dt|.

X

Using the fact that

||g"||r%%(y)( L )
2 pr(x)  pr(y)

y
/ V()" (dt| <

and
[n+plx
[n]

PN o | 8"l (In+plx )2
/ w’( ] )g(”d’—zur(x)( )

X

it follows from Lemma 5 that

" 2
@157 gteixip) 2] = 002 410500 (V)|

Ig”l, (In+plx  \?
M ( ] _x)

< M;(q.p)|g"|,

1 \[n+p)? 1 [n+ p] ,  In+plx
X{[(qur“) TE _2(1+q_r) ] H}x* P }

The Lemma is proved. U

The main result of the section is the following.
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Theorem 2. For each fixed r € N, p € Ng and for alln € N, f € C,[0,00) and
x € [0,00) and fixed q € (0,1), there exists an absolute constant M, (q, p) > 0 such
that

[+ plx
[n]

) 1 [n+ p]? 1\ [n+ p] [n+ plx
o f’\/[(”qzm) P2 _2(1+q_r) in] +2]x2+ nz )

where iy is the same as in Section 2. Particularly, if f € Lip?a for some a € (0,2],
then

[y (X)|Snqg(fix:p) = F(X)| 0} (f: —x)+ M, (q.p)

‘“uﬂ&”U*“m—f@NSwﬂfﬂmafx

e O L )

We first consider the modified Steklov means (see [5]) of a function f € C,[0,00)
as follows:

_x)+Mr(q’p)

holds.

h/2h/2

)= g5 [ [ 2r0+s+0- 10+ 26+ 0)pdsd,
0 0

where & > 0 and y > 0. In this case, it is clear that
h/2h/2

FO) =) = 15 / f A2, f(v)dsd.
0 O

which guarantees that
I/ = fully < @7 (f:h). .1
Furthermore, we have f,'(y) = 75 (SA%/zf(y) - A%f(y)) , which implies

9
|51 = 5zer (). 4.2)

Then, combining (4.1) with (4.2) we conclude that the Steklov means fj, correspond-
ing to f € C,[0,00) belongs to C2[0,00).

Proof. Letr € N, f € Cr[0,00) and x € [0,00) be fixed. Assume that, for & > 0,
fn denotes the Steklov means of f. For any n € N, the following inequality holds:

Snq(fr:p)= )] = Sy (D)= frixip) + () = fu(x)]
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+ 1Sy (nsxsp) = fh(x)|—|-‘ (”+p )_f(x)‘.

Since fj, € C2[0,00), it follows from Lemma 6 that

1r (X)|Snqg(fix:p)— FO)| < I f — fhllr{Hr(X) (/% ) }

i, |30, (1+ JH)[”;’]S i) A

+—[”;;]§]x} iy (6 )'f(”“’ )—f(X)‘

17 = fily {r)ng (i) +3]

L \[n+pP 1\ [n+p] 5
it ap L[ (14 s ) Pt =2 (14 ) A o]
e R f(—[”“’]x)—f(x)‘.

[]? [n]
By (4.1) and (4.2), the last inequality yields that

1 () [Sug (F35:p) — (0| < My ()2 (f:h)
1 1 [n+ pl? 1 [n+p] 2
{”hz{[(”qzrﬂ) TE _2(”?) ] ”}x

[n + plx Wl (m+p])_
A B ol (BE) = oo,

Thus, choosing & = \/[(1 + q2}+1) [”[:]1;]2 -2 (1 + ql,) ["[Jg]p] + 2] x2+ [”[Jr]g]x,the

first part of the proof is completed. The remaining part of the proof can be easily ob-
tained from the definition of the space Li pga. U

A

_l’_
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