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1. INTRODUCTION

For most of the differential and integral equations with deviating arguments that
appear in recent literature, the deviation of the argument usually involves only the
time itself, see for example the very recent papers [1, 2, 6, 18, 19, 22, 23]. However,
another case, in which the deviating arguments depend on both the state variable x
and the time t , is of importance in theory and practice. Several papers have appeared
recently that are devoted to such kind of differential equations, see for example [4,8–
12, 16, 17, 29, 31–33] and references therein.

One of the first papers studying this class of functional equations is the one by
Eder [8] who considered the functional differential equation

x0.t/D x.x.t//; t 2 A� R;

while Fečkan [12] studied a functional differential equation of the more general form

x0.t/D f .x.x.t///

with f 2 C 1.R/. For other developments on this topic, see the very recent papers
[4, 8–11, 16, 17, 29, 33] and references therein. The term to designate this class of
differential equations is that of iterative differential equations. As mentioned in [33]
and the papers cited there, iterative differential equations arise in relation to infection
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models and are also important in the study of the motion of charged particles with
retarded interaction.

In this paper, we are interested in the study of the existence of solutions of iterative
differential equations of the general form

x0.t/D f .t;x.x.t///;

and, in addition to other related papers, we illustrate how one can approximate the
non-unique solution of such kind of iterative differential equations by means of iter-
ative techniques.

The main idea is to use the powerful and more reliable technique of non-expansive
operators and to adapt and use several convergence theorems from the theory of iter-
ative approximation of fixed points of non-expansive mappings (see the very recent
monographs [3, 5]).

As most of the papers in literature devoted to functional differential equations with
deviating argument are based on fixed point techniques and are essentially tributary
to the contraction mapping principle or method of successive approximations, our
approach here appears to be new not only for the study of existence of solutions but
especially with regard to the approximation of solutions of these equations.

The paper is organized as follows: in Section 2 we present some basic results
from the fixed point theory of non-expansive operators; in Section 3 we present the
main results of the paper regarding the existence and approximation of solutions of
some iterative differential equations. The paper ends with Section 4 that gives some
illustrative examples. Note that our results are established under weaker assumptions
than the ones obtained in [4].

2. FIXED POINT THEORY OF NON-EXPANSIVE MAPPINGS

Let .X;d/ be a metric space. A mapping T WX!X is said to be an ˛-contraction
if there exists ˛ 2 Œ0;1/ such that

d.T x;Ty/� ˛d.x;y/; 8x;y 2X: (2.1)

A point x 2 X is called a fixed point of T if T x D x. It is well known [26] that,
under the strict contraction condition (2.1) in a complete metric space X , there exists
a unique fixed point of T and, moreover, the Picard iteration determined by an x0 2X
and the relation

xnC1 D T xn; nD 0;1;2; : : : ; (2.2)

converges to that fixed point. In the case where ˛ D 1 in (2.1), the mapping T is said
to be non-expansive.

As the technique of non-expansive mappings applied to functional differential
equations appears to be less frequently used in literature, in the present section we
present some basic concepts and results of the fixed point theory of non-expansive
operators.
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Let K be a non-empty subset of a real normed linear space E and let T WK! K

be a mapping. In this setting, T is non-expansive if

kT x�Tyk � kx�yk ; 8x;y 2K: (2.3)

Although the non-expansive mappings are generalizations of ˛-contractions, they of
contractive mappings. More precisely, ifK is a non-empty closed subset of a Banach
space E and T WK! K is a non-expansive mapping which is not an ˛-contraction,
then, as is shown by the following example, T may not have fixed points.

Example 1 ([13, Example 3.3, pp. 30]). In the space c0.N/, the isometry T defined
by the relation

T .x1;x2; : : : /D .1;x1;x2; : : : /

maps the unit ball into its boundary but has no fixed points.

Moreover, as is shown by the next example, even in the cases where T has a fixed
point, the Picard iteration associated to T (i. e., the sequence fxng defined by (2.2)
for an x0 2K), may fail to converge to the fixed point.

Example 2. Let us consider the unit interval Œ0;1� with the usual norm. The func-
tion T W Œ0;1�! Œ0;1� given by the formula T x D 1�x for all x 2 Œ0;1� has a unique
fixed point, x�D 1

2
but, except for the trivial case x0D 1

2
, the Picard iteration starting

from x0 yields an oscillatory sequence.

For this many other reasons, some richer geometrical properties of the ambient
space E are needed in order to ensure the existence of a fixed point or/and the con-
vergence of an iterative method (generally a more complex iterative method than the
Picard iteration) to a fixed point of T . In the present paper, we mainly consider
Banach spaces which are uniformly convex or strictly convex (for more general set-
tings, see [5]). For the sake of completeness, let us recall some concepts and results.

One of the most important fixed point theorems for non-expansive mappings, due
to Browder, Göhde, and Kirk (see, e. g., [3]), is stated as follows.

Theorem 2.1. If K is a non-empty closed convex and bounded subset of a uni-
formly convex Banach space E then any non-expansive mapping T WK ! K has
a fixed point.

Remark 1. Theorem 2.1 provides no information on the approximation of a fixed
point of T . From Example 2, we see that the Picard iteration does not resolve this
situation, in general. Due to this fact, several other fixed point iteration procedures
have been considered (see [3, 5]). The most usual ones will be defined in the sequel
in view of their use.

Let K be a convex subset of a normed linear space E and let T WK!K be a self-
mapping. Given an x0 2 K and a real number � 2 Œ0;1�, the sequence fxng defined
by the formula

xnC1 D .1��/xnC�T xn; nD 0;1;2; : : : ; (2.4)
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is usually called the Krasnoselskij iteration, or Krasnoselskij–Mann iteration. Clearly,
(2.4) reduces to the Picard iteration (2.2) for �D 1.

For an x0 2K, the sequence fxng defined by the formula

xnC1 D .1��n/xnC�nT xn; nD 0;1;2; : : : ; (2.5)

where f�ng � Œ0;1� is a sequence of real numbers satisfying some appropriate condi-
tions, is called a Mann iteration.

It was shown by Krasnoselskij [15] in the case where �D 1=2, and later by Schae-
fer [30] for an arbitrary � 2 .0;1/, that if E is a uniformly convex Banach space and
K is a convex and compact subset of E (and therefore, by Theorem 2.1, containing
fixed points of T ), then the Krasnoselskij iteration converges to a fixed point of T .

Moreover, Edelstein [7] proved that strict convexity of E suffices for the same
conclusion. The question of whether the strict convexity assumption can be removed
was answered in the affirmative by Ishikawa [14] by the following result.

Theorem 2.2. LetK be a subset of a Banach spaceE and let T WK!K be a non-
expansive mapping. For an arbitrary x0 2 K, consider the Mann iteration process
fxng given by (2.5) under the following assumptions:

(a) xn 2K for all positive integers n;
(b) 0� �n � b < 1 for all positive integers n;
(c)

P1
nD0�n D1.

If fxng is bounded, then xn�T xn! 0 as n!1.

The following corollaries of Theorem 2.2 will be particularly important for the
application part of our paper.

Corollary 2.1. Let K be a convex and compact subset of a Banach space E and
let T WK!K be a non-expansive mapping. If the Mann iteration process fxng given
by (2.5) satisfies assumptions (a)–(c) of Theorem 2.2, then fxng converges strongly to
a fixed point of T .

Proof. See Theorem 6.17 in Chidume [5]. �

Corollary 2.2. Let E be a real normed space, K a closed bounded convex subset
of E and let T WK!K be a non-expansive mapping. If I �T maps closed bounded
subsets of E into closed subsets of E and fxng is the Mann iteration defined by
(2.5) with f�ng satisfying assumptions (a)–(c) of Theorem 2.2, then fxng converges
strongly to a fixed point of T in K.

Proof. See Corollary 6.19 in Chidume [5]. �
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3. EXISTENCE THEOREMS AND APPROXIMATION OF SOLUTIONS OF SOME
ITERATIVE DIFFERENTIAL EQUATIONS

Consider the following initial value problem(
y0.x/D f .x;y.y.x///; x 2 Œa;b�;

y.x0/D y0;
(3.1)

where x0;y0 2 Œa;b� and f 2 C.Œa;b�� Œa;b�/ are given. Let us put Cx Dmaxfx�
a;b�xg, x 2 Œa;b�, and

CL D
˚
y 2 C.Œa;b�; Œa;b�/ W jy.t1/�y.t2/j � L jt1� t2j;8 t1; t2 2 Œa;b�

	
; (3.2)

where L > 0 is given. For problem (3.1), Buică [4] established existence theorems
[4, Theorems 1 and 4] as well as existence and uniqueness theorems [4, Theorems 2
and 5]. We formulate the first two of them here for the sake of completeness.

Theorem 3.1 ([4]). Assume that the following conditions are satisfied for the ini-
tial value problem (3.1):

(1) f 2 C.Œa;b�� Œa;b�/;
(2) 9 L1 > 0 W jf .s;u/�f .s;v/j � L1 ju�v/j for all s;u;v 2 Œa;b�;
(3) If L is the Lipschitz constant involved in (3.2), then

M Dmaxfjf .s;u/j W .s;u/ 2 Œa;b�� Œa;b�g � LI

(4) One of the following conditions holds:
(a) MCx0 � Cy0;
(b) x0 D a, M.b�a/� b�y0, f .s;u/� 0 for all s;u 2 Œa;b�;
(c) x0 D b, M.b�a/� y0�a, f .s;u/� 0 for all s;u 2 Œa;b�.

Then there exists at least one solution y� 2 CL of problem (3.1).

Basically, Theorem 3.1 shows that, for any given L > 0, if (1)–(4) are satisfied,
then the initial value problem (3.1) has a (possibly, non-unique) solution in CL.

Theorem 3.2 ([4]). Assume that all conditions of Theorem 3.1 are satisfied and,
in addition, we also have

L1Cx0.LC1/ < 1: (3.3)

Then there exists a unique solution y� of problem (3.1) in CL.

Under the assumptions of Theorem 3.2, it is known that the unique solution y� of
the initial value problem (3.1) can be approximated by means of the Picard iteration
fyng defined by y1 2 CL arbitrary and

ynC1.t/D y0C

Z t

x0

f .s;yn.yn.s///ds; 8 t 2 Œa;b�; n� 1: (3.4)
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In view of the considerations presented in Section 2, it is clear that if condition (3.3)
is weakened to

L1Cx0.LC1/� 1; (3.5)
then, firstly, the assertion on the existence of a unique solution of problem (3.1) is not
true any more and, secondly, the Picard iteration (3.4) does not generally converge to
the solution.

It is therefore the aim of this paper to show that if (3.3) is replaced by (3.5), then
we are still able to approximate a (non-unique) solution of the initial value problem
(3.1) by means of a Krasnoselski–Mann iteration procedure. The next theorem states
the main result of this paper.

Theorem 3.3. Assume that all conditions of Theorem 3:1 are satisfied and, in
addition, we have

L1Cx0.LC1/� 1:

Then the initial value problem (3.1) has at least one solution y� in CL which can be
approximated by the Krasnoselskij iteration

ynC1.t/D .1��/yn.t/C�y0C�

Z t

x0

f .s;yn.yn.s///ds; t 2 Œa;b�; n� 1; (3.6)

where � 2 .0;1/ and y1 2 CL is arbitrary.

Proof. If L1Cx0.LC1/ < 1, then the conclusion follows similarly to [4]. There-
fore, we limit ourselves to the case where L1Cx0.LC1/D 1.

It follows from [4, Lemma 1] that CL is a non-empty convex and compact subset of
the Banach space .C.Œa;b�/;k � k/, where k � k is the usual supremum norm. Consider
the integral operator T WCL! C.Œa;b�/,

Ty.t/D y0C

Z t

x0

f .s;y.y.s///ds; t 2 Œa;b�; y 2 CL: (3.7)

It is clear that y 2 CL is a solution of the initial value problem (3.1) if and only if y
is a fixed point of T , i. e.,

y D Ty:

We first prove that CL is an invariant set with respect to T , i. e., we have T .CL/�CL.
If condition (4a) holds, then for any y 2 CL and t 2 Œa;b� we have

j.Ty/.t/j � jy0jC

ˇ̌̌̌Z t

x0

f .s;y.y.s///ds

ˇ̌̌̌
� jy0jCM jt �x0j � b

and

j.Ty/.t/j � jy0j�

ˇ̌̌̌Z t

x0

f .s;y.y.s///ds

ˇ̌̌̌
� jy0j�M jt �x0j

� jy0j�MCx0 � y0�Cy0 � a;
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which shows that, for any y 2 CL, one has .Ty/.t/ 2 Œa;b�, t 2 Œa;b�. Now, for any
t1; t2 2 Œa;b�, we have

j.Ty/.t1/� .Ty/.t2/j D

ˇ̌̌̌Z t2

t1

f .s;y.y.s///ds

ˇ̌̌̌
�M jt1� t2j � Ljt1� t2j:

Thus, Ty 2 CL for all y 2 CL. In a similar way we treat the cases (4b) and (4c).
Therefore, T W CL! CL (i. e., T is a self-mapping of CL).

Let y;´ 2 CL and t 2 Œa;b�. Then

j.Ty/.t/�.T ´/.t/j �

ˇ̌̌̌Z t

x0

jf .s;y.y.s///�f .s;´.´.s///jds

ˇ̌̌̌
�

ˇ̌̌̌Z t

x0

L1jy.y.s//�´.´.s//jds

ˇ̌̌̌
� L1

ˇ̌̌̌Z t

x0

�
jy.y.s//�y.´.s//jC jy.´.s//�´.´.s//j

�
ds

ˇ̌̌̌
� L1

ˇ̌̌̌Z t

x0

�
Ljy.s/�´.s/jC max

�2Œa;b�
jy.�/�´.�/j

�
ds

ˇ̌̌̌
D L1

ˇ̌̌̌Z t

x0

�
Ljy.s/�´.s/jCky�´k

�
ds

ˇ̌̌̌
� L1

ˇ̌̌̌Z t

x0

.LC1/ky�´k

ˇ̌̌̌
ds

D L1.LC1/ky�´kjt �x0j

� L1Cx0.LC1/ky�´k:

(3.8)

Now, by taking the maximum in (3.8), we get

kTy�T ´k � L1Cx0.LC1/ky�´k

which, in view of condition (3.5), proves that T is non-expansive and, hence, con-
tinuous.

It now remains to apply the Schauder fixed point theorem to obtain the first part of
the conclusion, and Corollary 2.1 or 2.2 to get the second one. �

Remark 2. In practise, one can consider �D 1
2

in (3.6).

Now we state and prove the results corresponding to Theorems 4 and 5 of [4]. To
this end, for a � 2 .0;1� fixed, we put

CL;� D
˚
y 2 CL W y.x/� �x;8x 2 Œa;b�

	
:

Theorem 3.4. Assume that the following conditions are satisfied:
(i) y0 � �x0;

(ii) 9L1 > 0 W jf .s;u/�f .s;v/j � L1ju�vj for all s;u;v 2 Œa;b�;
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(iii) M �minf�;Lg;
(iv) One of the following conditions holds:

(a) MCx0 � Cy0;
(b) x0 D a, M.b�a/� b�y0, and f .s;u/� 0 for all s;u 2 Œa;b�;
(c) x0 D b, M.b�a/� y0�a, and f .s;u/� 0 for all s;u 2 Œa;b�;

(v) M.x0�a/� y0��a;
(vi) There exists a x� > 0 such that x� > � ln.1��/

�.b�x0/
(if x0 ¤ b and �¤ 1) and

L1

x�

�
LC

1

�

�
max

n
ex�.x0�a/�1;1� ex�.x0�b/

o
� 1:

Then:
(1) The initial value problem .3:1/ has at least one solution in CL;�;
(2) For any y1 2 CL;� the Krasnoselskij iteration

ynC1.t/D .1��/yn.t/C�y0C�

Z t

x0

f .s;yn.yn.s///ds; t 2 Œa;b�; n� 1;

where � 2 .0;1/, converges to a solution of problem (3.1) as n!1.

Proof. In view of [4, Lemma 1], the set CL;� is a convex and compact subset of
the Banach space C Œa;b� endowed with Bielecki’s norm given by the formula

kykB D max
x2Œa;b�

jy.x/je��.x�x0/

for all y 2 C Œa;b�, where x0 2 Œa;b� and � > 0 are fixed. Let T be defined as in the
proof of Theorem 3.3. By assumptions (ii), (iii), and (iv), it follows that

T .CL;�/� CL:

Let us prove that CL;� is an invariant set with respect to the operator T . Indeed, if
y 2 CL;� and x 2 Œa;b�, we have

.Ty/.x/� y0CM.x�x0/

D y0CM.x�a/�M.x0�a/

� y0C�.x�a/� .y0��a/D �x;

that is, Ty 2 CL;�, where we have used (iii) and (v).
For y;´ 2 CL;� and x 2 Œa;b�, we have

j.Ty/.x/�.T ´/.x/j � L1

ˇ̌̌̌Z x

x0

�
Ljy.s/�´.s/jC jy.´.s//�´.´.s//j

�
ds

ˇ̌̌̌
� L1

�ˇ̌̌̌Z x

x0

Le�.s�x0/ds

ˇ̌̌̌
C

ˇ̌̌̌Z x

x0

e�.�s�x0/ds

ˇ̌̌̌�
ky�´kB

D L1

�
L

�

ˇ̌̌
e�.x�x0/�1

ˇ̌̌
C
1

��

ˇ̌̌
e�.�x�x0/� e�.�x0�x0/

ˇ̌̌�
ky�´kB :
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This shows that

j.Ty/.x/� .T ´/.x/je��.x�x0/

� L1

�
L

�

ˇ̌̌
1� e��.x�x0/

ˇ̌̌
C
1

��

ˇ̌̌
e�.�x�x/� e�.�x0�x/

ˇ̌̌�
ky�´kB

D
L1

�

�
L
ˇ̌̌
1� e��.x�x0/

ˇ̌̌
C
1

�

ˇ̌̌
e�.��1/x � e�.�x0�x/

ˇ̌̌�
ky�´kB

D LT .x/ky�´kB ;

(3.9)

where LT W Œa;b�! R is a continuous function. Then there exists a constant zLT > 0
such that

max
x2Œa;b�

LT .x/� zLT :

Thus, by (3.9) we get
kTy�T ´kB �

zLT ky�´kB

which shows that T is Lipschitzian, hence continuous. By Schauder’s fixed point
theorem it follows that T has at least one fixed point y� 2 CL, which is actually
a solution of the initial value problem (3.1).

To prove the second part of the theorem, we evaluate the maximum of LT .x/. It is
easy to prove that g.x/D 1�e��.x�x0/ is strictly increasing on Œa;b� and g.x0/D 0,
so

max
x2Œa;b�

jg.x/j Dmax
n
e�.x0�a/�1;1� e�.x0�b/

o
:

Similarly, if we set h.x/D e�.��1/x � e�.�x0�x/, then

h0.x/D �e�.��1/x
�
��1C e���.x�x0/

�
:

It is clear that the function h1.x/D ��1Ce���.x�x0/ is strictly decreasing on Œa;b�
and, hence, h1.x/� h1.b/D ��1C e���.b�x0/.

If x0 D b, then h1.b/D �� 1 � 0, which shows that h is decreasing on Œa;b�. If
�D 1, then h1.b/ > 0 and so h is strictly increasing on Œa;b�. Finally, if �¤ 1 and
x0 ¤ b, then, by assumption (vi), we can choose x� > 0 such that

x� > �
ln.1��/
�.b�x0/

which implies that h1.b/ > 0 and hence h is strictly increasing on Œa;b�. We put
� D x� . Then, in each of the three cases,

max
x2Œa;b�

jh.x/j Dmax
nˇ̌̌
e�.��1/a� e�.�x0�a/

ˇ̌̌
;
ˇ̌̌
e�.��1/b � e�.�x0�b/

ˇ̌̌o
:

Using the fact that �� 1, we haveˇ̌̌
e�.��1/a� e�.�x0�a/

ˇ̌̌
D e�.��1/a

ˇ̌̌
1� e��.x0�a/

ˇ̌̌
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D e�.��1/a
�
e��.x0�a/�1

�
� e��.x0�a/�1:

Similarly, ˇ̌̌
e�.��1/b � e�.�x0�b/

ˇ̌̌
D e�.��1/b

ˇ̌̌
1� e��.x0�b/

ˇ̌̌
D e�.��1/b

�
1� e��.x0�b/

�
� 1� e��.x0�b/:

As a consequence of the results above, we have

LT .x/�max
n
e�.x0�a/�1;1� e�.x0�b/

o L1
�

�
LC

1

�

�
for all x 2 Œa;b�, which, by (3.9), shows that T is non-expansive. Now one can use
Corollaries 2.1 and 2.2 to get the second part of the theorem. �

4. CONCLUDING REMARKS AND EXAMPLES

Remark 3. Note that if one can find a � > 0 such that

max
n
e�.x0�a/�1;1� e�.x0�b/

o L1
�

�
LC

1

�

�
< 1;

then, instead of considering the non-expansive mapping principle in Theorem 3.4, we
can use the contraction mapping principle similarly to [4, Theorem 5].

Note also that condition (vi) of our Theorem 3.4 is slightly simpler and weaker
than the corresponding one appearing in [4]:

max
�
.��1/b;.��1/a;

x0�a

ln2
;
�.x0�a/

ln2

�
L1

�
LC

e

�

�
< 1:

We conclude the paper by presenting two examples which illustrate the generality
and efficiency of our results.

Example 3. Consider the following initial value problem associated to an iterative
differential equation similar to the ones studied in [8, 31],(

y0.x/D�1
2
Cy.y.x//; x 2 Œ0;1�;

y
�
1
2

�
D

1
2
;

(4.1)

where y 2 C 1.Œ0;1�; Œ0;1�/.
We are interested in the solutions y 2 C 1.Œ0;1�; Œ0;1�/ belonging to the set

C1 D
˚
y 2 C.Œ0;1�; Œ0;1�/ W jy.t1/�y.t2/j � jt1� t2j; 8 t1; t2 2 Œ0;1�

	
;

which, in view of our notation, means that LD 1. We also have a D 0, b D 1, and
x0 D

1
2

, hence Cx0 Dmaxfx0�a;b�x0g D 1
2

.
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The function f .x;u/D�1
2
Cu is Lipschitzian with the Lipschitz constantL1D 1

(i. e., f is non-expansive). This shows that

L1Cx0.LC1/D 1

so condition (3.5) is satisfied but condition (3.3) is not. Therefore, by Theorem 3.3
(but not by Theorem 3.2!) we obtain information on the existence and approximation
of the solutions of the initial value problem (4.1).

Note also that the function y.x/ D 1
2

, x 2 Œ0;1�, is a solution of the initial value
problem (4.1).

Example 4. For the iterative differential equation

y0.x/D
1

10
y.y.t//; x 2 Œ�1;1� (4.2)

that has been studied in [33] with respect to equivariance solutions, consider the
Cauchy problem with the initial condition

y.0/D 1: (4.3)

We are interested here in the solutions y 2 C 1.Œ�1;1�; Œ�1;1�/ belonging to the class

C4 D
˚
y 2 C.Œ0;1�; Œ0;1�/ W jy.t1/�y.t2/j � 4jt1� t2j; 8 t1; t2 2 Œ0;1�

	
:

In this case, we have L D 4, a D �1, b D 1, x0 D 0, and hence Cx0 D maxfx0�
a;b�x0g D 1.

The function
f .x;u/D

1

10
u2

is Lipschitzian with the Lipschitz constant L1 D 1
5

. Therefore, we have

L1Cx0.LC1/D 1;

so condition (3.5) is satisfied but condition (3.3) is not. Therefore, by Theorem 3.3,
it follows that the initial value problem (4.2), (4.3) has at least one solution in C4 that
can be approximated by means of the iterative method

ynC1.t/D .1��/yn.t/C�y0C
�

10

Z t

x0

.yn.yn.s///
2ds; t 2 Œ�1;1�; n� 1;

where � 2 .0;1/ and y1 2 C4 is arbitrary.

Example 5. Consider the initial value problem defined by the iterative differential
equation in Example 3 on the interval Œ1=2;1� and the initial condition

y

�
1

2

�
D
1

2
: (4.4)

We are interested here to study the solutions y 2 C 1.Œ1=2;1�; Œ1=2;1�/ belonging to
the class C1;1. In this case, we have LD 1, aD 1=2; b D 1, x0 D 1=2, y0 D 1=2 and
L1 D 1.
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In order to have (i) satisfied, we need �D 1 and hence, by (iii),M D 1. Conditions
(iv) and (v) are also satisfied, while the two conditions in (vi) reduce to x� > 0 and,

respectively, to 1�e
�x�
2

x�
�
1
2

, which always have solutions. This becomes obvious if
we rewrite the second inequality equivalently as

2e�
x�
2 Cx� � 2:

Thus, all conditions in Theorem 3.4 are satisfied. A solution of the initial problem
in C1;1 is y.x/ D 1

2
, x 2 Œ1

2
;1�. Note that the conditions in Theorem 3.4 are not

satisfied on the whole interval Œ0;1�, as C1;1 is a proper subclass of C1.

Remark 4. In a similar way, by exploiting the technique of non-expansive op-
erators presented in this paper, we can study the iterative differential equations in
[9–11,17,25,29,33], or the functional differential equations with modified argument
like those in [20,21], for which the technique of Picard operators, described in detail
in [24, 26–28], is basically used. For example, in the very recent paper [17], a Pi-
card type existence and uniqueness theorem it is obtained for iterative differential
equations of the form

y0.x/D f .x;y.h.x/Cg.y.x////;

a special case of which is the differential equation involved in the initial value prob-
lem (3.1) studied in the present paper. As such iterative differential equations are
used to model infective disease processes, pattern formation in the plane, and are im-
portant in investigations of dynamical systems, future works will be also devoted to
them.
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[12] M. Fečkan, “On a certain type of functional-differential equations,” Math. Slovaca, vol. 43, no. 1,
pp. 39–43, 1993.

[13] K. Goebel and W. A. Kirk, Topics in metric fixed point theory, ser. Cambridge Studies in
Advanced Mathematics. Cambridge: Cambridge University Press, 1990, vol. 28. [Online].
Available: http://dx.doi.org/10.1017/CBO9780511526152

[14] S. Ishikawa, “Fixed points and iteration of a nonexpansive mapping in a Banach space,” Proc.
Amer. Math. Soc., vol. 59, no. 1, pp. 65–71, 1976.

[15] M. A. Krasnoselskii, “Two remarks on the method of successive approximations,” Uspehi Mat.
Nauk (N.S.), vol. 10, no. 1(63), pp. 123–127, 1955.

[16] W.-T. Li and S. Zhang, “Classifications and existence of positive solutions of higher order
nonlinear iterative functional differential equations,” J. Comput. Appl. Math., vol. 139, no. 2, pp.
351–367, 2002. [Online]. Available: http://dx.doi.org/10.1016/S0377-0427(01)00414-9

[17] W.-r. Li and S. S. Cheng, “A Picard theorem for iterative differential equations,” Demonstratio
Math., vol. 42, no. 2, pp. 371–380, 2009.
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