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Received 06 March, 2018

Abstract. This paper concerns existence and stability of solutions to periodic linear evolution
equations with noninstantaneous impulses via the theory of operator semigroup. A series of
fundamental results including compactness, semigroup property, exponential estimate and peri-
odicity are established for a new introduced impulsive evolution operator. Moreover, triple suffi-
cient conditions are given to guarantee this impulsive evolution operator is exponentially stable.
In addition, a relationship between existence of periodic solutions and fixed point of impuls-
ive evolution operator is determined, and the alternative results on periodic solutions and their
asymptotical stability are obtained by using the well known Fredholm alternative theorem. Fi-
nally, an example of periodic impulsive parabolic linear partial differential equation is given for
illustration of the theoretically results.
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1. INTRODUCTION

Differential equations with instantaneous impulses [5,6,12] have been widely used
to characterize the mathematical modeling in the real world life that undergo rapid
changes in their state. The duration of these rapid changes is relatively short com-
pared to the overall duration of the whole process. However, there exists another
impulsive action in many real world processes, i.e., the evolution process involving
abrupt state changes as well as keeping active on a finite time interval.
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Differential equations with non-instantaneous impulses can be used to describe
the dynamic of periodic evolution processes in hemodynamic equilibrium of a per-
son. This new class impulsive equation was introduced in [7], which is an extension
of standard impulsive differential equations. Owing to the widely application of this
new type impulsive equations, there are some generalized, improved, and extended
work on this fields, one can see [1–4, 8, 10, 13–17] and the reference therein. In fact,
Wang and Fečkan [14, p.917] mentioned that the algebraic equation xD g.t;x/ in [7]
has the only solution depending on t , if g satisfied a contraction condition. To over-
come this shortcoming, a general class of impulsive evolution equations [14, (1.6)]
was established. These systems can be related to differential algebraic equations [11].

In this paper, we consider the following periodic linear non-instantaneous impuls-
ive evolution equations8̂̂<̂

:̂
u0.t/D Au.t/; t 2 Œsi ; tiC1�; i 2N0 WD f0;1;2; � � � g;

u.tCi /D .ECBi /u.t
�
i /C ci ; i 2N WD f1;2; � � � g;

u.t/D .ECBi /u.t�i /C ci ; t 2 .ti ; si �; i 2N;
u.sCi /D u.s

�
i /; i 2N;

(1.1)

where A W D.A/ � X ! X is the generator of a C0-semigroup fT .t/ W t � 0g on a
Banach space X with a norm k � k, Bi W X ! X;i 2N are bounded linear operators
with BiCp DBi and ci 2X with ciCp D ci , the !-periodic time sequences ftigi2N0
and fsigi2N0 satisfying ti < si < tiC1; i 2N with tiCp D ti C! and siCp D si C!
where p 2 N denotes the number of impulsive points and connection points of a
periodic interval Œ0;!� and set s0 D 0, so sp D !. Moreover, E denotes the standard
identity operator. We remark that the second equation in (1.1) follows from the third
one, but we write it for emphasizing impulses.

Denote r.t;0/ by the number of impulsive points existing in .0; t/ and ´C D
maxf0;´g for ´ 2 R. Throughout this paper, we suppose that T .t/Bk D BkT .t/
for t > 0.

Consider UT .�; �/ W Œ0;1/� Œ0;1/!X given by

UT .t; s/ (1.2)

D T

0@.t � sr.t;0//C� .s� sr.s;0//CC r.t;0/�1X
kDr.s;0/

.tkC1� sk/

1A r.t;0/Y
kDr.s;0/

.ECBk/;

where we set
r.t;0/�1Q
kDr.s;0/

.ECBk/D E if r.s;0/D r.t;0/. Obviously,

UT .t;0/

D T

0@.t � sr.t;0//C� .0� sr.0;0//CC r.t;0/�1X
kDr.0;0/

.tkC1� sk/

1A r.t;0/Y
kDr.0;0/

.ECBk/
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D T

0@.t � sr.t;0//CC r.t;0/�1X
kD0

.tkC1� sk/

1A r.t;0/Y
kD0

.ECBk/;

and

UT .!;0/

D T

0@.!� sr.!;0//C� .0� sr.0;0//CC r.!;0/�1X
kDr.0;0/

.tkC1� sk/

1A r.!;0/Y
kDr.0;0/

.ECBk/

D T

0@.!� sp/C� .0� s0/CC r.!;0/�1X
kD0

.tkC1� sk/

1A pY
kD0

.ECBk/

D T

 
p�1X
kD0

.tkC1� sk/

!
pY
kD0

.ECBk/:

Introducing

PC!.Œ0;C1/;X/D
˚
u 2 PC.Œ0;1/;X/ W u.t/D u.tC!/; t � 0

	
;

where

PC.Œ0;1/;X/D
˚
u W Œ0;1/!X W ujJi

2 C.Ji ;X/;Ji D .ti ; tiC1�; i 2N0

and u.tCi / and u.t�i / exist for each i 2N
	
;

where ujJi denotes the domain of u restricted to the subinterval Ji � Œ0;1/.
The following result is clear.

Theorem 1. The mild solution u.�;u0/ 2 PC.Œ0;1/;X/ of (1.1) with the initial
condition u.0/D u0 has the form

u.t;u0/D UT .t;0/u0C

r.t;0/X
kD1

UT .t; sk/ck; 8 t � 0: (1.3)

Definition 1. We say the mild solution u.�;u0/ 2 PC.Œ0;1/;X/ of (1.1) is !-
periodic if u.t;u0/D u.tC!;u0/; t � 0.

Definition 2. We say the mild solution u.�;u0/ 2 PC!.Œ0;C1/;X/ of (1.1) is
locally asymptotically stable if there exists a ı > 0 such that for any y0 2 X with
ku0�y0k< ı such that

lim
t!1

ku.t;u0/�u.t;y0/k D 0:

If ı can be arbitrary then u.�;u0/ 2 PC!.Œ0;C1/;X/ is globally asymptotically
stable.
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Clearly, local asymptotic stability for !-periodic mild solution of (1.1) coincides
with global asymptotic stability.

This paper is organized as follows. Section 2 presents the fundamental proper-
ties for the new introduced impulsive evolution operator UT .�; �/. The compactness,
semigroup property, exponential estimate and periodicity of UT .�; �/ as well as expo-
nential stability are obtained for general impulses. Section 3 establishes a relationship
between periodic mild solutions of (1.1) and fixed point of UT .�; �/ and presents al-
ternative results on periodic solutions of (1.1) and their asymptotical stability. An
example is given for illustration of the theoretically results in final section.

2. BASIC PROPERTIES FOR UT .�; �/

In this section, we study basic properties including compactness, periodicity and
exponential stability for (1.2).

We impose the following assumptions:
.H0/ Let A be the infinitesimal generator of a C0-semigroup fT .t/ W t � 0g in X .

.H0C/ fT .t/ W t � 0g is compact.
.H1/ For each i 2N, tiCp D ti C! and siCp D si C!.
.H2/ For each i 2N, Bi W X ! X are bounded linear operators with BiCp D Bi

and ciCp D ci .
By .H1/ and .H2/, for each N 2N,

tiCNp D ti CN!; siCNp D si CN!; BiCNp D Bi ; ciCNp D ci :

Theorem 2. Assumptions .H0/, .H0C/ hold and supposeBi WX!X be bounded
linear operators for each i 2 N. Then, UT .t; s/ is linear and compact for any
! � t > s � 0.

Proof. The proof directly follows from (1.2), .H0/, .H0C/ and thatBi are bounded
linear operators. �

Theorem 3. The property of semigroup holds for UT .�; �/ in Œ0;!�, i.e.,

UT .t; s/D UT .t; �/UT .�;s/; 0� s < � < t � !

Proof. Note that the form of (1.2) and the semigroup property of T .t/, one can
derive that

UT .t; �/UT .�;s/

D T

0@.t � sr.t;0//C� .� � sr.�;0//CC r.t;0/�1X
kDr.�;0/

.tkC1� sk/

1A r.t;0/Y
kDr.�;0/

.ECBk/

�

r.�;0/Y
kDr.s;0/

.ECBk/T

0@.� � sr.�;0//C� .s� sr.s;0//CC r.�;0/�1X
kDr.s;0/

.tkC1� sk/

1A
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D UT .t; s/:

The proof is completed. �

Theorem 4. Assumptions .H0/, .H1/ and .H2/ hold. Then,UT .�; �/ is!-periodic,
i.e.,

UT .tCN!;sCN!/D UT .t; s/; N 2N:

Proof. Note that the form of (1.2) and the facts r.vCN!;0/D r.v;0/CNp, one
can derive that

UT .tCN!;sCN!/D T

�
.tCN!� sr.tCN!;0//C� .sCN!� sr.sCN!;0//C

C

r.tCN!;0/�1X
kDr.sCN!;0/

.tkCNpC1� skCNp/

� r.tCN!;0/Y
kDr.sCN!;0/

.ECBkCNp/

D T

�
.tCN!� .sr.t;0/CN!//C� .sCN!� .sr.s;0/CN!//C

C

r.t;0/CNp�1X
kDr.s;0/CNp

.tkCNpC1� skCNp/

� r.t;0/CNpY
kDr.s;0/CNp

.ECBkCNp/D UT .t; s/:

The proof is completed. �

Theorem 5. Assumptions .H0/, .H1/ and .H2/ hold. Then, we have

UT .tCN!;0/D UT .t;0/ŒUT .!;0/�
N ; N 2N:

Proof. We give two proofs as follows:
Method 1. Note that the form of (1.2) and the facts r.vCN!;0/D r.v;0/CNp,

one can derive that

UT .t;0/ŒUT .!;0/�
N
D T

0@.t � sr.t;0//CC r.t;0/�1X
kD0

.tkC1� sk/

1A r.t;0/Y
kD0

.ECBk/

�

24T
0@.!� sp/CC r.!;0/�1X

kD0

.tkC1� sk/

1A pY
kD0

.ECBk/

35N

D T

0@.tCN!� .sr.t;0/CN!//CC r.t;0/CNp�1X
kD0

.tkCNpC1� skCNp/

1A
�

r.t;0/CNpY
kD0

.ECBkCNp/D UT .tCN!;0/:
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Method 2. By Theorem 3 and Theorem 4,

UT .tCN!;0/D UT .tCN!;N!/UT .N!;0/

D UT .t;0/UT .N!;.N �1/!/UT ..N �1/!;0/

D UT .t;0/UT .!;0/UT ..N �1/!;0/

:::

D UT .t;0/ŒUT .!;0/�
N ; N 2N:

The proof is completed. �

By .H0/, 9 � 2 R and L� 1 such that

kT .t/k � Le�t ; 8 t � 0:

Theorem 6. For any 0� s < t ,

kUT .t; s/k

� Lexp
�
�

0@.t � sr.t;0//C� .s� sr.s;0//CC r.t;0/�1X
kDr.s;0/

.tkC1� sk/

1A�

� exp
� r.t;0/X
kDr.s;0/

lnkECBkk
�
: (2.1)

Proof. Taking the norm for (1.2), one can obtain the desired result after some
simple calculation. �

In the sequel, for general impulses, we suppose

�D sup
k�1

kECBkk<1; �1 D inf
k�1

.tkC1� sk/ > 0; �2 D sup
k�1

.tkC1� sk/ <1

and set

�D

�
�1; � < 0;

�2; � � 0:
(2.2)

By (2.1), one can derive the following result.

Theorem 7. Assumptions .H0/ and .H1/ hold. Then it holds

kUT .t; s/k � L�expfr.t; s/.��C ln�/g: (2.3)

Proof. The proof is straightway, so we omit it here. �

.H3/ Suppose that

lim
t�s!1

r.t; s/

t � s
D � <1:
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Theorem 8. Assumptions .H0/, .H1/ and .H3/ hold. Then, UT .t; s/ is exponen-
tially stable provided that ��C ln� < 0.

Proof. By .H3/, for any 1 > � > 0 there exits a t� > 0 such thatˇ̌̌̌
r.t; s/

t � s
��

ˇ̌̌̌
< ��; t � s � t�;

that is,

.1� �/.t � s/ <
r.t; s/

�
< .1C �/.t � s/; t � s � t� (2.4)

Linking (2.3) and (2.4), we derive

kUT .t; s/k � L�expf�.1� �/.��C ln�/.t � s/g

for t � s � t�. This completes the proof. �

.H4/ There exists an ˛ > 0 such that

�C
1

�
ln� � �˛ < 0;

where �D
�
�1, ˛C� < 0;
�2, ˛C� � 0:

Theorem 9. Assumptions .H0/, .H1/ and .H4/ hold. Then, UT .t; s/ satisfies the
following estimate:

kUT .t; s/k � Lexpf�j˛C�jC�1˛gexpf�˛�1r.s; t/g: (2.5)

Moreover, UT .t; s/ is exponentially stable when .H3/ holds.

Proof. Obviously,

.t � sr.t;0//C� .s� sr.s;0//CC

r.t;0/�1X
kDr.s;0/

.tkC1� sk/� .r.t; s/�1/�1; (2.6)

.t � sr.t;0//C� .s� sr.s;0//CC

r.t;0/�1X
kDr.s;0/

.tkC1� sk/� .r.t; s/C1/�2: (2.7)

Linking (2.6) and (2.7), we obtain

�1.r.t; s/�1/� .t � sr.t;0//C� .s� sr.s;0//CC

r.t;0/�1X
kDr.s;0/

.tkC1� sk/

� �2.r.t; s/C1/;
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which implies that

1

�2
..t � sr.t;0//C� .s� sr.s;0//CC

r.t;0/�1X
kDr.s;0/

.tkC1� sk//�1 (2.8)

� r.t; s/�
1

�1

0@.t � sr.t;0//C� .s� sr.s;0//CC r.t;0/�1X
kDr.s;0/

.tkC1� sk/

1AC1:
Then

��.˛C�/r.t; s/ (2.9)

� �.˛C�/

0@.t � sr.t;0//C� .s� sr.s;0//CC r.t;0/�1X
kDr.s;0/

.tkC1� sk/

1AC�j˛C�j:
Note that .H4/ implies that

��.˛C�/r.t; s/D�

r.t;0/X
kDr.s;0/

�.˛C�/�

r.t;0/X
kDr.s;0/

ln� �
r.t;0/X

kDr.s;0/

lnkECBkk:

(2.10)

Linking (2.8), (2.9) and (2.10), we obtain

�

0@.t � sr.t;0//C� .s� sr.s;0//CC r.t;0/�1X
kDr.s;0/

.tkC1� sk/

1AC r.t;0/X
kDr.s;0/

lnkECBkk

� �˛

0@.t � sr.t;0//C� .s� sr.s;0//CC r.t;0/�1X
kDr.s;0/

.tkC1� sk/

1AC�j˛C�j (2.11)

� �˛�1r.t; s/C�1˛C�j˛C�j:

Finally, substituting (2.11) to (2.1), one can derive (2.5).
Linking (2.4) and (2.5), one can verify the exponential stability of UT .t; s/ given

by
kUT .t; s/k � Lexpf�j˛C�jC�1˛gexpf�˛�.1� �/�1.t � s/g

for t � s � t�. The proof is completed. �

Theorem 10. Assume .H0/ and .H3/ hold. Suppose that there is a p 2 Œ1;1/
such that Z 1

0

kT .t/xkpdt <1; 8x 2X; (2.12)

and
1Y
kD0

kECBkk WDMB <1: (2.13)
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Then, UT .t; s/ is exponentially stable.

Proof. By (2.12) and [9, Theorem 4.1], there are constantsMT � 1 and � > 0 such
that kT .t/k �MT e

��t . Taking the norm for both sides of (1.2) and noticing (2.13),
one has

kUT .t; s/k

�MTMB exp

8<:��
24.t � sr.t;0//C� .s� sr.s;0//CC r.t;0/�1X

kDr.s;0/

.tkC1� sk/

359=;
�MTMB expf�1˛gexpf�˛�.1� �/�1.t � s/g

for t � s � t�, which is exponentially stable. �

3. PERIODIC SOLUTIONS AND ASYMPTOTICAL STABILITY

In this section, we give a sufficient and necessary condition to guarantee that (1.1)
has an an !-periodic mild solution.

Theorem 11. Assumptions .H0/, .H1/ and .H2/ hold. Then (1.3) is an !-
periodic mild solution of (1.1) if and only if u0 satisfies

.E�UT .!;0//u0 D
pX
kD1

UT .!;sk/ck : (3.1)

Proof. Suppose (1.3) is an !-periodic mild solution of (1.1), thus, u.tC!;u0/D
u.t;u0/; t � 0 due to Definition 1. Of course, u0 D u.!;u0/, which implies (3.1),
since r.!;0/D p. Now, suppose u0 2X solves (3.1). Then (1.3) implies

u.tC!;u0/D UT .tC!;0/u0C

r.tC!;0/X
kD1

UT .tC!;sk/ck

D UT .tC!;!/

 
UT .!;0/u0C

pX
kD1

UT .!;sk/ck

!
C

r.t;0/CpX
kDpC1

UT .tC!;sk/ck

D UT .t;0/u0C

r.t;0/X
kD1

UT .tC!;skCp/ckCp

D UT .t;0/u0C

r.t;0/X
kD1

UT .tC!;skC!/ck

D UT .t;0/u0C

r.t;0/X
kD1

UT .t; sk/ck D u.t;u0/;
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where we use Theorems 3, 4 and properties r.tC!;0/D r.t;0/Cp, skCp D skC!,
ckCp D ck . The proof is completed. �

Next, we give an alternative result.

Theorem 12. Let .H0/, .H0C/, .H1/ and .H2/ be satisfied. Then one of the
following facts is fulfilled:

(i) For any ci 2X with ciCpD ci , (1.1) has the unique !-periodic mild solution.
Then ŒE�UT .!;0/��1 exists and it is bounded.

(ii) For any ci 2 X with ciCp D ci , either (1.1) has no !-periodic mild solu-
tion or it has a finite dimensional set of !-periodic mild solutions. Then
ŒE�UT .!;0/��1 does not exist.

Proof. Under .H0/ and .H0C/, one can see UT .!;0/ is linear and compact op-
erator via Theorem 2. The result follows from Theorem 11 by Fredholm Alternative
Theorem. �

To end this section, we show that !-periodic mild solution is asymptotically stable.

Theorem 13. Assumptions .H0/, .H1/, .H2/ and .H4/ hold. Then for any
ci 2 X with ciCp D ci , (1.1) has the unique !-periodic mild solution which is also
asymptotically stable.

Proof. Theorem 9 implies that UT .t;0/ is exponentially stable. This gives that
the spectral radius of UT .!;0/ is less than 1. Then Neumann lemma leads that
ŒE�UT .!;0/��1 exists and it is bounded. Thus Theorem 11 gives the existence
and uniqueness result. Next, by Definition 2, it remains to verify that

lim
t!1

ku.t;u0/�u.t;y0/k D lim
t!1

kUT .t;0/kku0�y0k D 0;

which is satisfied again via Theorem 9. The proof is completed. �

4. APPLICATION TO LINEAR HEAT EQUATIONS

In this section, we use an example of periodic impulsive parabolic linear partial
differential equation to illustrate the above theoretical results.

SetX DL2.0;1/ and s0D 0, ti D .2i�1/� , si D 2i� , i 2N, pD 1 and ! D 2� .
Obviously, tiCp D ti C! and siCp D si C!.
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Consider a parabolic type periodic linear heat equations with non-instantaneous
impulses:8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

@
@t
u.t;y/D �2 @

2

@y2
u.t;y/;

y 2 .0;1/; t 2 Œ0;��[ Œ2i�;.2iC1/��; i 2N; � > 0;
u.t;0/D u.t;1/D 0; t > 0;

u..2i �1/�C;y/D u..2i �1/��;y/Cbiu..2i �1/�
�;y/C ci .y/; i 2N;

u.t;y/D u..2i �1/��;y/Cbiu..2i �1/�
�;y/C ci .y/;

t 2 ..2i �1/�;2i��; i 2N;
u.2iC;y/D u.2i�;y/; i 2N;

(4.1)
for bi 2 Rn f0g and ci 2X . Define AuD @2

@y2
u for u 2D.A/ with

D.A/D

�
u 2X W

@u

@y
;
@2u

@y2
2X; u.0/D u.1/D 0

�
:

Then, A is the infinitesimal generator of a C0-semigroup fT .t/; t � 0g in X .
Let un.y/D

p
2sin.�ny/, nD 1;2; � � � be the orthonormal set of eigenfunctions

of A. For any u 2D.A/, AuD
P1
nD1.��

2n2/hu;uniun: Thus,

T .t/u WD

1X
nD1

expf��2n2tghu;uniun;

with T .�/ is dissipative and compact with kT .t/k � e��
2t for all t � 0. Obviously,

LD 1 and � D��2. Let Bi D biE and ci D ci .y/. Then,

T .�/Bi D BiT .�/D

1X
nD1

bie
��2n2�

hu;uniun:

In addition, .H0/, .H0C/ and .H1/ are satisfied. Denoting u.�/.y/D u.�;y/, (4.1)
can be abstracted into (1.1). Clearly .H3/ holds with � D 1 and �D supi2N j1Cbi j,
�D � in (2.2). By (1.2),

UT .t; s/D

r.t;0/Y
kDr.s;0/

.1Cbk/ (4.2)

�

1X
nD1

exp
˚
��2n2

�
.t � sr.t;0//C� .s� sr.s;0//CC .r.t;0/� r.s;0//�

�	
;

is exponentially stable provided that

0 > ��C ln�” sup
i2N0

j1Cbi j< e
��2 (4.3)
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via Theorem 8. Next, (2.13) holds either if
1X
iD1

jbi j<1; for example, bi D
1

i2

or
1X
iD1

ln j1Cbi j<1; for example, bi D˙e
1

i2 �1:

Then by Theorem 10, (4.2) is exponentially stable.
Now we consider the simplest periodic case, so b1 D b and c1 D c for any i 2N.

Then obviously,

UT .!;0/uD .1Cb/

1X
nD1

e��
2n2�
hu;uniun

and

u.!;u0/D .1Cb/

1X
nD1

e��
2n2�
hu0;uniunC c.y/:

So (3.1) becomes

.1� .1Cb/e��
2n2�/ Nun D Ncn; n 2N; (4.4)

where u0 D
P1
nD1 Nunun and c D

P1
nD1 Ncnun. From (4.4), we deduce: If

e�
2n2�

¤ 1Cb; 8n 2N; (4.5)

then the alternative (i) of Theorem 12 holds for (4.1): There is a unique 2�-periodic
mild solution of (4.1) given by

u.t;u0/D

8̂<̂
:
P1
nD1

e��2n2t Ncn

1�.1Cb/e��2n2�
un t 2 Œ0;��P1

nD1

�
.1Cb/e��2n2�

1�.1Cb/e��2n2�
C1

�
Ncnun t 2 .�;2��:

If
e�
2 Qn2�

D 1Cb

for some Qn 2 N, then the alternative (ii) of Theorem 12 holds for (4.1): If NcQn ¤ 0
then there is no a 2�-periodic mild solution of (4.1), but if NcQn D 0 then there is a
1-dimensional space ŒuQn� of 2�-periodic mild solutions of (4.1).

Next, (4.3) becomes
j1Cbj< e��

2

;

which implies (4.5). For example, we choose b D 0:05 satisfying j1C 0:05j <
e0:02� � 1:0648.

Hence then there is a unique 2�-periodic mild solution of (4.1), which is in addi-
tion asymptotically stable (see Figures 1-3).
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FIGURE 1. The periodic solution of (4.1) with �2 D 0:02, u0.y/D y.1�
y/; y 2 Œ0;1�, bi D 0:05.
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FIGURE 2. The periodic solution of (4.1) with �2 D 0:02, u0.y/ D
1:01y.1�y/; y 2 Œ0;1�, bi D 0:05.

Note that for bi D b, (4.4) gives

ci .y/D c.y/D

1X
nD1

.1� .1Cb/e��
2n2�/ Nunun.y/

knowing u0.y/. For instance, if u0.y/D y.1�y/, then using the Fourier series of
the function y.1�y/ with respect to the orthogonal basis sin�ny, we have

u0.y/D
8

�3

1X
nD1

sin.2nC1/�y
.2nC1/3

D

1X
nD1

4
p
2

.2nC1/3�3
u2nC1.y/;

so

Nu2nC1 D
4
p
2

.2nC1/3�3
; Nu2n D 0;
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FIGURE 3. The difference between the Figures 1 and 2.

and

c.y/D

1X
nD1

4
p
2.1� .1Cb/e��

2n2�/

.2nC1/3�3
u2nC1.y/

D
8

�3

1X
nD1

.1� .1Cb/e��
2n2�/sin.2nC1/�y

.2nC1/3
:

For numerical computation, it is useful to use also another formula

c D u0� .1Cb/u.�;u0/:
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