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Abstract. In this paper, some existence theorems involving generalized contractive conditions
with respect to a measure are proved. By applying our results, we study some coupled fixed point
theorems, and discuss the existence of solutions for a class of the system of integral equations.
Finally, an example is included to show the efficiency of our results.
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1. INTRODUCTION

Integral equations are used naturally in applied problems, such as in a lot of prob-
lems in physics and engineering. Also, especially integral equations have been linked
in many applications in the kinetic theory of gases, the theory of radioactive transfer,
see for example [9, 11, 12]. The existence theorems for nonlinear integral equations
have been studied in many papers with the help of the technique of measures of non-
compactness which was initiated by Kuratowski [10]. The Kuratowski measure of
noncompactness has attracted the interest o f mathematicians working in the study
of functional equations, ordinary and partial differential equations and many other
fields. If fact, since measures of noncompactness are functions suitable for meas-
uring the degree of noncompactness of a given set, they are very useful tools in the
wide area of functional analysis such as the metric fixed point theory and the theory
of operator equations in Banach spaces (see [3, 13, 14]). In this paper, first we recall
some essential concepts and results that will be used later. Then, we give some new
fixed point theorems applying the technique of measure of noncompactness. In the
third section, we apply our results to a coupled fixed point. Finally in order to indic-
ate the applicability of our results, we study the problem of the existence of solutions
for a class of system of integral equations.
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Now we recall some notations, definitions and theorems which will be needed further
on.
Throughout this paper we assume that E is a real Banach space with norm k:k and
zero element � . LetX be a nonempty subset ofE. The closure and the closed convex
hull of X will be denoted by X and Convc(X), respectively. Moreover, let us denote
by ME the family of all nonempty and bounded subsets of E and by NE its subfam-
ily consisting of all relatively compact sets.
The following definition of measure of noncompactness will be used in our results.

Definition 1 ([6]). A mapping � WME �! Œ0;1/ is called a measure of noncom-
pactness if it satisfies the following conditions:

(1) The family Ker�D fX 2ME W �.X/D 0g is nonempty and Ker��NE .
(2) X � Y H) �.X/� �.Y /:

(3) �.X/D �.X/:
(4) �.Conv.X//D �.X/.
(5) �.�XC .1��/Y /� ��.X/C .1��/�.Y / for � 2 Œ0;1�.
(6) If fXng is a sequence of closed sets from ME such that XnC1 � Xn for

nD 1;2; : : : and lim
n!1

�.Xn/D 0, then
T1
nD1Xn is nonempty.

Theorem 1 (Schauder [3]). Let U be a nonempty, bounded, closed and convex
subset of a Banach space E. Then every continuous and compact map F W U �! U

has at leat one fixed point in U .

Theorem 2 (Darbo[8]). Let Q be a nonempty, closed, bounded and convex subset
of a Banach space E and F WQ �!Q be a continuous mapping. Assume that there
exists a constant k 2 Œ0;1/ such that �.FX/� k�.X/ for any nonempty subset X of
Q. Then F has a fixed point in Q.

The following definitions, theorems and examples will be used further on.

Definition 2 ([7]). An element .x;y/ 2X �X is called coupled fixed point of the
mapping F WX �X �!X if F.x;y/D x and F.y;x/D y.

Theorem 3 ([6]). Suppose �1;�2; : : : ;�n are measures of noncompactness in
E1;E2; : : : ;En respectively. Moreover assume that the function F W Œ0;1/n �!
Œ0;1/ is convex and
F.x1;x2; : : : ;xn/D 0 if and only if xi D 0 for i D 1;2; : : : ;n. Then

�.X/D F.�1.X1/;�2.X2/; : : : ;�n.Xn//

defines a measure of noncompactness in E1 �E2 � � � � �En where Xi denote the
natural projection of X into Ei for i D 1;2; : : : ;n.

Example 1 ([2]). Let � be a measure of noncompactness in the Banach space E
and F.x;y/D xCy for .x;y/ 2 Œ0;1/2. Then F has all the properties in Theorem
3. Hence �.X/ D �.X1/C�.X2/ is a measure of noncompactness in the space
E �E where Xi ; i D 1;2 denote the natural projections of X into E.
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Now, inspired by Definition 2:4 of [1], the following definition is introduced which
is basic for our main results.

Definition 3. Let� denote the class of those functions � WR2
C
!RC which satisfy

the following conditions
(ı1) �.t1; t2/D � is increasing in t1 and t2.
(ı2) tnC1 < �.tn; tn/ implies that tnC1 < tn for each positive sequence ftng.
(ı3) �.u;u/� u for each u 2 Œ0;1/.

Example 2. Let � W R2
C
! RC defined by

�.t1; t2/D at1Cbt2

where aCb D 1 and b ¤ 1. Then � 2�

Definition 4 ([4]). Let F W .0;1/!R and � W .0;1/! .0;1/ be two mappings.
Throughout the paper, let � be the set of all pairs .�;F / satisfying the following:

(�1) �.tn/¹ 0 for each strictly decreasing sequence ftng;
(�2) F is strictly increasing function;
(�3) for each sequence f˛ng of positive numbers, lim

n!1
˛n D 0 if and only if

lim
n!1

F.˛n/D�1;

(�4) If ftng be a decreasing sequence such that tn! 0 and �.tn/<F.tn/�F.tnC1/,
then we have

P1
nD1 tn <1.

Example 3 ([4]). LetF.t/D ln.t/ and �.t/D� ln.˛.t// for each t 2 .0;1/, where
˛ W .0;1/! .0;1/ satisfies limsup

s!tC
˛.s/ < 1, for all t 2 .0;1/. Then .�;F / 2�.

2. SOME FIXED POINT RESULTS VIA A NEW GENERALIZED CONTRACTIVE
CONDITION

Now inspired by the existing contractive condition in [1], the main result of this
paper is stated.

Theorem 4. Let C be a nonempty bounded, closed and convex subset of a Banach
space E. Assume T W C �! C is a continuous operator satisfying

�. .�.T .X////Cf . .�.T .X////� f .�. .�.X//; .�..X///// (2.1)

for all nonempty subset X of C , where � is an arbitrary measure of noncompactness
defined in E,  W Œ0;1/ �! Œ0;1/ is nondecreasing such that  .t/D 0 if and only
if t D 0, � 2� and .�;f / 2� . Then T has a fixed point in C .

Proof. Define a sequence fCng by letting C0 D C and Cn D Conv.TCn�1/;n �
1: If there exists an integerN � 0 such that�.CN /D 0, thenCN is relatively compact
and Theorem 1 implies that T has a fixed point. So we assume that �.Cn/ > 0 for
each n 2N . By our assumptions, we get
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�. .�.CnC1///Cf . .�.CnC1/// � f .�. .�.Cn//; .�.Cn////

� f . .�.Cn///:
(2.2)

Consequently, by .�2/, we have

 .�.CnC1// <  .�.Cn//:

Since the sequence f .�.Cn//g is non-increasing sequence, there exists t � 0 such
that lim

n!1
 .�.Cn// D t: Now we show that t D 0. On the contrary, assume that

t > 0. From (2.2) we have

˙1iD1�. .�.CiC2///� f . .�.C2///�f . .�.CnC1///: (2.3)

Keeping in mind our assumptions we have �. .�.Cn/// ¹ 0. So, we infer that
˙ iDn�1iD1 �. .�.CiC2/// D1 and consequently lim

n!1
f . .�.CnC1/// D �1. So,

by �3 we get  .�.Cn//! 0 which is a contradiction. Hence,  .�.Cn// �! 0

as n �!1. Now we prove that �.Cn/! 0. Since f .�.Cn//g is a decreasing
sequence and  is nondecreasing, we obtain that f�.Cn/g is a decreasing sequence
of positive numbers. Consequently there exists r � 0 such that lim

n!1
�.Cn/ D r

C:

Since  is nondecreasing, we arrive that

 .r/�  .�.Cn//: (2.4)

Letting n �!1 in .2:4/, we have  .r/� 0. So r D 0 which implies that �.Cn/!
0. On the other hand, since CnC1 � Cn and �.Cn/! 0, from condition .6/ of
Definition 1 we obtain thatC1D\1nD1Cn is nonempty, closed, convex andC1�C .
Moreover, taking in to account our assumptions we infer that C1 is invariant under
the operator T and C1 2 Ker�. Consequently, from Theorem 1 we deduce that T
has a fixed point. �

Corollary 1. Let C be a nonempty bounded, closed and convex subset of the
Banach space E. Assume T W C �! C is a continuous operator satisfying

�.�.T .X///Cf .�.T .X///� f .�.X// (2.5)

for all nonempty subset X of C , where � is an arbitrary measure of noncompactness
defined in E and .�;f / 2�. Then T has at least one fixed point in C .

Proof. Obviously, (2.5) is a special case of (2.1) with  .t/D t and �.t1; t2/D t1.
Hence, the application of Theorem 4 completes the proof. �

Corollary 2. Let C be a nonempty bounded, closed and convex subset of a Banach
space E. Assume T W C �! C is a continuous operator satisfying

�.T .X//� ˛.�.T .X///�.X/ (2.6)
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for all nonempty subset X of C , where � is an arbitrary measure of noncompactness
defined in E and ˛ W .0;1/�! Œ0;1/ with limsup

t!rC
˛.t/ < 1 for all r � 0. Then T has

a fixed point in C .

Proof. By applying Corollary 1 with f .t/D ln.t/ and �.t/D ln.˛.t//, the proof
will be completed. �

Corollary 3. Let C be a nonempty bounded, closed and convex subset of the
Banach space E. Assume T W C �! C is a continuous operator satisfying

�.T .X//� '.�.T .X///�.X/ (2.7)

for all nonempty subset X of C , where � is an arbitrary measure of noncompactness
defined in E and ' W .0;1/ �! Œ0;1/ is a non-decreasing function. Then T has a
fixed point in C .

Proof. Since ' is non-decreasing function, we have limsup
t!rC

'.t/ < 1 for all r � 0.

Thus, Corollary 2 completes the proof. �

Theorem 5. Let C be a nonempty bounded, closed and convex subset of a Banach
space E. Assume T W C �! C is a continuous operator satisfying

�.�.X//Cf .�.T .X///� f .�.X// (2.8)

for all nonempty subset X of C , where � is an arbitrary measure of noncompactness
defined in E and .�;f / 2� . Then T has a fixed point in C .

Proof. Similar to the proof of Theorem 4, we can construct the sequence fCng
such that

�.�.Cn//Cf .�.CnC1//� f .�.Cn//; (2.9)

which yields that �.CnC1/ < �.Cn/. So there exists r � 0 such that �.Cn/! r . On
the other hand, from (2.9) we have

˙ iDn�1iD1 �. .�.CiC1/// < f .�.C2//�f .�.CnC1/:

Now by using the technique in Theorem 4, we have �.Cn/! 0: Therefore, taking
into account that CnC1 � Cn, from condition .6/ of Definition 1 we conclude that
C1 D\

1
nD1Cn is nonempty, closed, convex and C1 � C . Moreover, the set C1 is

invariant under the operator T and belong to Ker�. Consequently, from Theorem 1
we deduce that T has a fixed point. �

Corollary 4. Let C be a nonempty bounded, closed and convex subset of the
Banach space E. Assume T W C �! C is a continuous operator satisfying

�.T .X///� ˛.�.X//�.X/ (2.10)
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for all nonempty subset X of C , where � is an arbitrary measure of noncompactness
defined in E and ˛ W .0;1/�! Œ0;1/ with limsup

t!rC
˛.t/ < 1 for all r � 0. Then T has

a fixed point in C .

Proof. Taking f .t/D ln.t/ and �.t/D ln.˛.t// in Theorem 5, the result follows.
�

Corollary 5. Let C be a nonempty bounded, closed and convex subset of the
Banach space E. Assume T W C �! C is a continuous operator satisfying

�.T .X///� '.�.X//�.X/ (2.11)

for all nonempty subset X of C , where � is an arbitrary measure of noncompactness
defined in E and ' W Œ0;1/ �! Œ0;1/ is a non-decreasing function. Then T has a
fixed point in C .

Proof. Since ' is non-decreasing, so limsup
t!rC

'.t/ < 1 for all r � 0: Consequently,

applying Corollary 4 with ' D ˛, we have the result. �

3. COUPLED FIXED POINT RESULTS

In this section, as an application of Theorem 4 we study the existence of coupled
fixed point to a special class of operators. Let 	 denote all functions  W Œ0;1/!
Œ0;1/ such that

(1)  is nondecreasing and  .t/D 0 if and only if t D 0,
(2)  .tC s/�  .t/C .s/ for all t; s � 0.

Theorem 6. Let C be a nonempty bounded, closed and convex subset of the
Banach space E. Assume T W C �C �! C is a continuous operator satisfying

�. .�.T .X1�X2//// Cf . .�.T .X1�X2////

�
1
2
f .�. .�.X1/C�.X2//; .�.X1/C�.X2////

(3.1)
for all nonempty subsets X1;X2 � C , where � is an arbitrary measure of noncom-
pactness defined in E,  2 	 , � 2� and .�;f / 2� such that

�.tC s/� �.t/C�.s/ and f .tC s/� f .t/Cf .s/:

Then T has at least a coupled fixed point.

Proof. We consider a mapping NT WC �C!C �C defined by NT .x;y/D .T .x;y/;T .y;x//.
Since T is continuous, the continuity of NT is followed. From example1, we know
that N�.X/ D �.X1/C�.X2/ defines a measure of noncompactness on E �E for
any X1;X2 � C where Xi D 1;2 indicate the natural projection of X into E. Let
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X � C �C be a nonempty subset. Then, due to (3.1) and condition .2/ of Definition
1 we infer that

�. .�.T .X////Cf . .�.T .X////

� �. .�.T .X1�X2/�T .X2�X1////

Cf . .�.T .X1�X2/�T .X2�X1////

D �. .�.T .X1�X2//C�.T .X2�X1///

Cf . .�.T .X1�X2//C�.T .X2�X1////

� �. .�.T .X1�X2////C�. .�.T .X2�X1////

Cf . .�.T .X1�X2////Cf . .�.T .X2�X1////

� f .�. .�.X1/C�.X2//; .�.X1/C�.X2////

D f .�. .�.X//; .�.X////:

(3.2)

So all the conditions of Theorem 4 hold true and T has a fixed point. Hence, T has a
coupled fixed point. �

Corollary 6. Let C be a nonempty bounded, closed and convex subset of a Banach
space E. Assume T W C �C �! C is a continuous operator satisfying

�.�.T .X1�X2///Cf .�.T .X1�X2///� f .�.X1/C�.X2// (3.3)

for all nonempty subsets X1;X2 � C , where � is an arbitrary measure of non-
compactness defined in E and .�;f / 2 � such that �.t C s/ � �.t/C �.s/ and
f .tC s/� f .t/Cf .s/. Then T has at least a coupled fixed point.

Proof. Take �.t1; t2/D t1 and  D I in Theorem 6. �

Corollary 7. Let C be a nonempty bounded, closed and convex subset of the
Banach space E. Assume T W C �C �! C is a continuous operator satisfying

�.T .X1�X2//� ˛.�.T .X1�X2///.�.X1/C�.X2// (3.4)

for all nonempty subsets X1;X2 � C , where � is an arbitrary measure of noncom-
pactness defined in E and ˛ W .0;1/ �! Œ0;1/ with limsup

t!rC
˛.t/ < 1 for all r � 0 .

Then T has at least a coupled fixed point.

Proof. Let �.t/D ln.˛.t// and f .t/D ln.t/. So from (3.4) we have

�.�.T .X1�X2///Cf .�.T .X1�X2///� f .�.X1/C�.X2//

for all nonempty subsets X1;X2 � C . Now, Corollary 6 guarantees that T has a
coupled fixed pont. �
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4. SOLVABILITY OF SYSTEMS OF INTEGRAL EQUATIONS

This section is devoted to the study of the existence of solutions for the systems of
integral equations

x.t/D F
�
t;h.t;x.˛.t//;y.˛.t///;

.T x//.t/

Z �.t/

0

'.t; s/g.t; s;x.
.s//;y.
.s//ds
�

y.t/D F
�
t;h.t;y.˛.t//;x.˛.t///;

.Ty//.t/

Z �.t/

0

'.t; s/g.t; s;y.
.s//;x.
.s//ds
�
;

(4.1)

in the space BC.RC/�BC.RC/ consisting of all bounded and continuous real func-
tions on RC. For x 2 BC.RC/ the norm of x is defined by k x kD supfjx.t/j W
t � 0g. Now, we reacal the definition of measure of noncompactness in the space
BC.RC/ which was introduced by Banas in [5]. Fix a nonempty bounded subset X
of BC.RC/ and a positive number K > 0. For x 2X and " > 0 put

!K.x;"/D supfjx.t/�y.t/jI t; s 2 Œ0;K�; jt � sj � "g;

!K.X;"/D supf!K.x;"/Ix 2Xg;

!K0 .X/D lim
"!0

!K.X;"/;

!0.X/D lim
K!1

!K0 .X/:

Furthermore, for a fixed number t 2RC, let us define the following equation:

X.t/D fx.t/Ix 2Xg;

d iamX.t/D supfjx.t/�y.t/jIx;y 2Xg:

Finally, let
�.X/D !0.X/C limsup

t!1
diamX.t/: (4.2)

Banas [5] proved that the above function is a measure of noncompactness in the
space BC.RC/. Now, the existence of solutions for the integral equations (4.1) is
studied under the following assumptions.

(1) 
;˛;� WRC!RC are continuous functions and ˛.t/!1 as t !1.
(2) The functions F WRC�R�R!R and h WRC�R�R!R are continuous

functions and there exist positive real number � > 0 such that

j F.t;x1;x2/�F.t;y1;y2/ j� e
�� .j x1�y1 j C j x2�y2 j/;

j h.t;x1;x2/�h.t;y1;y2/ j� e
�� .j x1�y1 j C j x2�y2 j/;

for t 2RC and x1;x2;y1;y2 2R.
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(3) The functions t!F.t;0;0/ and t! h.t;0;0/ are bounded onRC i.eM1;M2<

1 where M1 D supfF.t;0;0/I t � 0g, M2 D supfh.t;0;0/I t � 0g:
(4) T W BC.RC/! BC.RC/ is a continuous operator such that

j .T x/.t1/� .T x/.t2/ j�  1.j x.t2/�x.t1/ j/; j .T x/.t/ j� aCb k x k;

j .T x/.t/� .T u/.t/ j�  1.j x.t/�u.t/ j/:

for x 2 BC.RC/ and t2; t1 2RC, where  1 WRC �!RC is continuous and
nondecreasing with  1.0/D 0 and a;b are positive real numbers.

(5) ' WRC�RC �!RC is continuous on RC�RC and the function t �! '.t; s/

is nondecreasing for each s 2 RC:
(6) There exist continuous functions

a;b WRC!RC g W RC�RC�R�R �! R

such that

lim
t!1

a.t/

Z �.t/

0

b.s/ds D 0 j '.t; s/g.t; s;x;y/ j� a.t/b.s/;

for all t; s 2RC and x;y 2R such that s � t .
(7) There exists a positive solution r0 of the inequality

2re�2� CM2e
��
C e�� .aCbr/qCM1 � r (4.3)

where q D supfa.t/
R �.t/
0 b.s/dsI t � 0g:

Theorem 7. Under assumptions .1/� .7/, Eq (4.1) has at least one solution in the
space BC.RC/�BC.RC/.

Proof. Let us consider the operator G on the space BC.RC/�BC.RC/ by

G.x;y/.t/D F
�
t;h.t;x.˛.t//;y.˛.t///;

.T x/.t/

Z �.t/

0

'.t; s/g.t; s;x.
.s//;y.
.s//ds
�
:

(4.4)

We know that the space BC.RC/�BC.RC/ is equipped with the norm

k .x;y/ kDk x k1 C k y k1 :
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On the other hand, obviously G is continuous. Taking into account our assumptions,
we infer that
jG.x;y/.t/ j � e�� .j h.t;x.˛.t//;y.˛.t///�h.t;0;0/ j

C j h.t;0;0/ j C j .T x/.t/

Z �.t/

0

'.t; s/u.t; s;x.
.s//;y.
.s///ds j/

C j F.t;0;0;0;0/ j� e�� .e�� .j x.˛.t// j C j y.˛.t// j/

CM2C .aCb k x k/a.t/

Z �.t/

0

b.s/ds/CM1

� e�2� .k x k C k y k/C e��M2C e
�� .aCb k x k/qCM1:

(4.5)
Consequently, from (4.5) and condition .7/ we infer that G.Br0 �Br0/ � Br0 .

Now, we indicate thatG is a continuous onBr0�Br0 . To do this, let "> 0 be an arbit-
rary fixed number and .x;y/; .u;v/2Br0�Br0 such that k .x;y/�.u;v/ kBr0�Br0

<
"
2

. Then, we have

jG.x;y/.t/�G.u;v/.t/ j

� e�� .j h.t;x.˛.t//;y.˛.t///�h.t;u.˛.t//;v.˛.t/// j/

C e�� .j .T x/.t/

Z �.t/

0

'.t; s/u.t; s;x.
.s//;y.
.s///ds

� .T u/.t/

Z �.t/

0

'.t; s/g.t; s; ;u.
.s//;v.
.s////ds j

� e�2� .j x.˛.t//�u.˛.t// j C j y.˛.t//�v.˛.t// j/

C e�� j .T x/.t/ jj

Z �.t/

0

'.t; s/.g.t; s;x.
.s//;y.
.s///

�g.t; s;u.
.s//;v.
.s////ds j

C e�� j .T x/.t/� .T u/.t/ j �

j

Z �.t/

0

'.t; s/g.t; s;u.
.s//;v.
.s///ds j :

(4.6)
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Thus, from .4:6/ we have

jG.x;y/.t/�G.u;v/.t/ j

� e�2� .k x�u k C k y�v k/

C e�� .aCb k x k/ j

Z �.t/

0

'.t; s/.g.t; s;x.
.s//;y.
.s///

�g.t; s;u.
.s//;v.
.s////ds j

C e�� k T x�T u k a.t/

Z �.t/

0

b.s/ds:

(4.7)

Furthermore, by Condition .6/ there exists T > 0 such that

a.t/

Z �.t/

0

b.s/ds <
"

2
: (4.8)

for all t > T:
Hence, by combining the inequalities .4:7/ and .4:8/, we deduce that

jG.x;y/.t/�G.u;v/.t/ j � e�2�"C2e�� .aCb k x k/"

C k .T x/� .T u/ k e��":
(4.9)

Now we define the equality !T .g;"/ as follows:

!T .g;"/D supfj g.t; s;x;y/�g.t; s;u;v/ jW t 2 Œ0;T �; s 2 Œ0;�T �Ix;y;u

;v 2 Œ�r0; r0�;k .x;y/� .u;v/ kBC.RC/�BC.RC/< "g;

where

�T D supf�.t/I t 2 Œ0;T �g:

On the other hand from (4.6) for an arbitrary fixed t 2 Œ0;T � we have

jG.x;y/.t/�G.u;v/.t/ j � e�2� .k x�u k C k y�v k/

C e�� .aCb k x k/ j

Z �.t/

0

'.t; s/!T .g;"/ds j

C e�� k x�u k a.t/

Z �.t/

0

b.s/ds:

(4.10)

By applying the continuity of g on Œ0;T �� Œ0;�T �� Œ�r0; r0�� Œ�r0; r0�, we have
!T .g;"/! 0 as "! 0. Hence, due to (4.9) and (4.10) we conclude thatG is continu-
ous. Now, let T;" 2 RC and X1;X2 are arbitrary nonempty subsets of Br0 . Assume
t1; t2 2 Œ0;T � such that j t2� t1 j� " and �.t1/ � �.t2/. In view of our assumptions,
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for .x;y/ 2X1�X2 we get
jG.x;y/.t2/�G.x;y/.t1/ j

�jG.t2;h.t2;x.˛.t2//;y.˛.t2//;

.T x/.t2/

Z �.t2/

0

'.t2; s/g.t2; s;x.
.s//;y.
.s///ds/

�G.t1;h.t1;x.˛.t1//;y.˛.t1//; .T x/.t1/�Z �.t1/

0

'.t1; s/g.t1; s;x.
.s//;y.
.s///ds/ j

� e�� .j h.t2;x.˛.t2//;y.˛.t2///�h.t2;x.˛.t1//;y.˛.t1/// j

C j h.t2;x.˛.t1//;y.˛.t1//�h.t1;x.˛.t1//;y.˛.t1/// j

C e�� j .T x/.t2/

Z �.t2/

0

'.t2; s/g.t2; s;x.
.s//;y.
.s///ds

� .T x/.t1/

Z �.t1/

0

'.t1; s/g.t1; s;x.
.s//;y.
.s///ds j/:

(4.11)

Thus, from (4.11) we get
jG.x;y/.t2/�G.x;y/.t1/ j

� e�2� .j x.˛.t2//�x.˛.t1// j C j y.˛.t2//�y.˛.t1// j/C e
��!Tr0.h;"/

C e�� .j .T x/.t2/

Z �.t2/

0

'.t2; s/g.t2; s;x.
.s//;y.
.s///ds

� .T x/.t1/

Z �.t1/

0

'.t1; s/g.t1; s;x.
.s//;y.
.s///ds j/

� e�2� .!T .x;!T .˛;"//C!T .y;!T .˛;"///C e��!Tr0.h;"/

C e�� .j .T x/.t2/

Z �.t2/

0

'.t2; s/g.t2; s;x.
.s//;y.
.s///ds

� .T x/.t1/

Z �.t1/

0

'.t1; s/g.t1; s;x.
.s//;y.
.s///ds j/:

(4.12)



APPLICATIONS OF MEASURE OF NONCOMPACTNESS. . . 549

On the other hand, we have

j .T x/.t2/

Z 
.t2/

0

'.t2; s/g.t2; s;x.
.s//;y.
.s///ds

� .T x/.t1/

Z �.t1/

0

'.t1; s/g.t1; s;x.
.s//;y.
.s///ds j

�j .T x/.t2/

Z �.t2/

0

'.t2; s/g.t2; s;x.
.s//;y.
.s///ds

� .T x/.t1/

Z �.t2/

0

'.t2; s/g.t2; s;x.
.s//;y.
.s///ds j

C j .T x/.t1/

Z �.t2/

0

'.t2; s/g.t2; s;x.
.s//;y.
.s///ds

� .T x/.t1/

Z �.t2/

0

'.t1; s/g.t2; s;x.
.s//;y.
.s///ds j

C j .T x/.t1/

Z �.t2/

0

'.t1; s/g.t2; s;x.
.s//;y.
.s///ds

� .T x/.t1/

Z �.t1/

0

'.t1; s/g.t1; s;x.
.s//;y.
.s///ds j

�j .T x/.t2/� .T x/.t1/ jj

Z �.t2/

0

'.t2; s/g.t2; s;x.
.s//;y
.s///ds j

C j .T x/.t1/ jj

Z �.t2/

0

j '.t2; s/�'.t1; s/ jj g.t2; s;x.
.s//;y.
.s///ds j

C j .T x/.t1/ jj

Z �.t2/

�.t1/

j '.t1; s/ jj g.t2; s;x.
.s//;y.
.s///

�g.t1; s;x.
.s//;y.
.s/ j ds �  1.!.x;"/ k ' k a.t2/

Z �.t2/

0

b.s/ds

C .aCb k x k/!'."; :/a.t2/

Z �.t2/

0

b.s/ds

C .aCb k x k/ k ' k !Tr0.g;"/!
T .�;"/:

(4.13)
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Now, take into consideration .4:12/ and .4:13/ we have

jG.x;y/.t2/�G.x;y/.t1/ j � e
�2� .!T .x;!T .˛;"//C!T .y;!T .˛;"///

C e��!Tr0.h;"/C e
�� . 1.!.x;"//�

k ' k a.t2/

Z �.t2/

0

b.s/ds/C e�� .aCb k x k/�

!'."; :/�a.t2/

Z �.t2/

0

b.s/ds

C e�� .aCb k x k/ k ' k �

!Tr0.g;"/!
T .�;"/:

(4.14)
where

!Tr0.g;"/D supfj g.t1; s;x;y/�g.t2; s;x;y/ jW t1; t2 2 Œ0;T �;

j t1� t2 j< ";s 2 Œ0;�T �;x;y 2 Œ�r0; r0�g;

!T .x;!T .˛;"//D supfj x.t1/�x.t2/ jW t1; t2 2 Œ0;T �; j t1� t2 j� !T .˛;"/g;

!Tr0.h;"/D supfj h.t2;x;y/�h.t1;x;y/ jW t1; t2 2 Œ0;T �; j t1� t2 j� "

;x;y 2 Œ�r0; r0�g;

!'.�; :/D supfj '.t; s/�'.Kt ; s/ W t; Kt 2 Œ0;T �; j t � Kt j� "g;

!T .˛;"/D supfj ˛.t2/�˛.t1/ jI t2; t1 2 Œ0;T �; j t2� t1 j< "g:
(4.15)

Moreover, in the light of the uniform continuity of the functionsg, h and ' on
Œ0;T �� Œ0;�T �� Œ�r0; r0�� Œ�r0; r0�, Œ0;T �� Œ�r0; r0�� Œ�r0; r0� and Œ0;T �� Œ0;T �,
we have !Tr0.g;"/ �! 0, !Tr0.h;"/! 0 and !'.�; :/! 0. Also because of the uni-
form continuity of ˛;� on Œ0;T � we have !T .˛;"/! 0, !T .�;"/! 0. Now, this
remarks and the inequalities in .4:14/ imply that

!T0 .G.X1�X2/;"/� e
�2� .!T0 .X1/C!

T
0 .X2//; (4.16)

and hence

!0.G.X1�X2//� e
�2� .!0.X1/C!0.X2//: (4.17)
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Now, arbitrary elements .x;y/; .u;v/ 2 X1�X2 are chosen so that for t 2 RC, we
have
jG.x;y/.t/�G.u;v/.t/ j � e�� .j x.˛.t//�u.˛.t// j C j y.˛.t//�v.˛.t// j/

C e�� .j .T x/.t/

Z �.t/

0

'.t; s/g.t; s;x.
.s//;y.
.t///ds

� .T u/.t/ j

Z �.t/

0

'.t; s/g.t; s;u.
.s//;v.
.t///ds/ j

� e�� .d iamX1.˛.t//CdiamX2.˛.t///

C e�� ..aCb k x k/C .cCd k u k//a.t/

Z �.t/

0

b.s/ds:

(4.18)
Now, using .4:18/ and the notion of diameter of a set, we have

diamG.X1�X2/.t/� e
�� .d iamX1.˛.t//CdiamX2.˛.t////

C e�� ..aCb k x k/C .cCd k x k//a.t/

Z �.t/

0

b.s/ds;

(4.19)
and hence

limsup
t!1

diamG.X1�X2/.t/� e
�� .limsup

t!1
diamX1.˛.t//

C limsup
t!1

diamX2.˛.t///:
(4.20)

Combining (4.17), (4.20) and (4.2) we get

�.G.X1�X2//� e
�� .�.X1/C�.X2// (4.21)

By passing to logarithms , we earn

ln.�.G.X1�X2//� ln.e�� .�.X1/C�.X2///:

Consequently,

�C ln.�.G.X1�X2//� ln.�.X1/C�.X2///:

Then all conditions of Corollary 6 hold true with F.t/ D ln.t/ and �.t/ D � for
all t 2 RC. Consequently, from Corollary 6 G has a coupled fixed point in the space
BC.RC/�BC.RC//. �

Example 4. Now, we will study the following system of integral equations8<:x.t/ D e
�t�� cos

�
e�t��

.1CjxjCjyj/
C cos. 1

1Cjx.t/j
/
R t
0 e
t arctan. e�3tCs

8CjxjCjyj
/ds

�
y.t/ D e�t�� cos

�
e�t��

.1CjxjCjyj/
C cos. 1

1Cjy.t/j
/
R t
0 e
t arctan. e�3tCs

8CjyjCjxj
/ds

�
:

(4.22)
This system is a special case of the system of integral equations (4.1) with
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F.t;x;y/D e�t�� cos.xCy/; h.t;x;y/D
e�t��

1C j x j C j y j
;

.T x/.t/D cos.
1

1C j x.t/ j
/; g.t; s;x;y/D arctan.

e�3tCs

8C j y j C j x j
//;

'.t; s/D et ; ˛.t/D �.t/D 
.t/D t:

It is easily seen that ˛;�;
 satisfy the assumption .1/. Further, the functionF.t;0;0/D
e���t is bounded withM1D e

�� . Also, the function j h.t;0;0/ jD e�t�� is bounded
with M2 D e

�� . Since F.t;x;y/ D e�t�� cos.xC y/ and h.t;x;y/ D e�t��

1CjxjCjyj
,

then, for all t 2RC and x1;x2;y1;y2 2R, we have

j F.t;x1;y1/�F.t;x2;y2/ j� e
�� .j x1�x2 j C j y1�y2 j/;

j h.t;x1;y1/�h.t;x2;y2/ j� e
�� .j x1�x2 j C j y1�y2 j/:

Consequently, F and h satisfy the assumption .2/. In this example
.T x/.t/ D cos. 1

1Cjx.t/j
/ verifies assumption .4/ with a D 1;b D 0 and  1 D t .

Moreover, assumption .5/ holds with '.t; s/D et . On the other hand, for all t; s 2RC
and x;y 2R with s � t , we get

j '.t; s/g.t; s;x;y/ j� e�2tCs:

Thus, assumption .6/ holds with a.t/D e�2t and b.s/D es . Consequently, the ex-
istent inequality in assumption .7/ has the form

2re�� C e�2� C e�� � r:

It is easily seen that the last inequality have a positive solution. Consequently, all the
conditions of Theorem 7 are satisfied and Theorem 7 guarantees that the system of
integral equation (4.22) has at least on solution in the space BC.RC/�BC.RC/.
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0348-5727-7.

[4] A. Amini-Harandi, “Fixed and coupled fixed points of a new type set-valued contractive mappings
in complete metric spaces,” Fixed Point Theory and Applications, vol. 2012:215, pp. 1–7, 2012,
doi: 10.1186/1687-1812-2012-215.
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