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Abstract. This paper is concerned with a Shimizu-Morioka model with constant delays. Its sta-
bility of the equilibrium is investigated and the existence of Hopf bifurcations is demonstrated
by analyzing the associated characteristic equation. Furthermore, the explicit formulae determ-
ining the stability and the direction of periodic solutions bifurcating from Hopf bifurcations are
obtained by applying the center manifold theory and the normal form method. Finally, special
attention is paid to numerical simulations in order to verify the theoretical predictions.
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1. INTRODUCTION

The original Shimizu-Morioka model [16] is described by the following equation:8̂<̂
:
Px � dx

dt D y;

Py � dy
dt D x�ˇy�x´;

Ṕ �
d´
dt D�˛´Cx

2;

(1.1)

where .x;y;´/ 2R3 are the state variables and ˛;ˇ are real positive parameters. This
model has been proposed as a simplified and an alternative model for studying the dy-
namics of the well-known Lorenz system for large Rayleigh numbers (Ra), in which
complex behavior of the trajectories has been discovered by means of computer simu-
lation. As in the Lorenz model, the Shimizu-Morioka model is invariant with respect
to the substitution .x;y;´/! .�x;�y;´/. The model received much attention due
to its stability to describe bifurcation of the associated Lorenz like strange attract-
ors [15], e.g., taking ˛ D 0:45 and ˇ D 0:75 (see Figure 1). In case that from the
dynamical system of equation (1.1) follows that
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@Z

@´
D�.˛Cˇ/ < 0; (1.2)

then the system is known to be a dissipative one. According to the definition of the
dissipative system [19], a volume element V0 is contracted by the flow into a volume
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FIGURE 1. Phase portraits of Shimizu-Morioka model in the x �
y�´ space.

element V0erVt in time t . Hence, each volume containing the system orbit shrinks
to zero as t !1 at an exponential rate.

During the past decades, there are many researchers focus on the study of dynam-
ical behaviour analysis of Shimizu-Morioka model. In particular, they use feedback
control laws and delay feedback control method to study the local and global stabil-
ization and bifurcation of Shimizu-Morioka model[9] [3][18].

Delay differential equations (DDEs) are well-known as differential equations with
time delay term, which exhibit considerably more complex dynamical behavior than
ordinary differential equations (ODEs) since the delays could cause a stable equi-
librium to become unstable and fluctuate. The research of the dynamical behaviors
for DDEs has received much attention in interdisciplinary subjects including natural
science [11][2][7], engineering [1], life sciences [17] and others [20][21]. So, there’s
great significance to study the delayed Shimizu-Morioka model as follows:8̂<̂

:
Px.t/D y.t/;

Py.t/D x.t � �/�ˇy.t/�x.t � �/´.t/;

Ṕ.t/D�˛´.t/Cx2.t � �/;

(1.3)

where � is a non-negative constant delay term.
We define RC � fx 2 R W x � 0g, intRC � fx 2 R W x > 0g. Denoted by

C.Œ��;0�;RC/, the infinite dimensional Banach space of continuous functions from
the interval Œ��;0� into RC, equipped with the uniform norm. We assume initial data
for model .1:3/ is taken fromX DC.Œ��;0�;RC/�C.Œ��;0�;RC/�C.Œ��;0�;RC/:
The variables x.t/, y.t/ and ´.t/ in model (1.3) belong to X for t 2 Œ��;0�:
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In this paper, we will take the delay � as bifurcation parameter and show that when
� passes through the critical values, the equilibrium loses its stability and the Hopf
bifurcation occurs. The rest of this paper is organized as follows. In Sect.2, the sta-
bility and the existence of Hopf bifurcation parameter are determined. In Sect.3, we
give details of the bifurcation values that describe the direction of the Hopf bifurc-
ation and the stability for the bifurcated periodic solution using the center manifold
theory and the normal form method introduced by Hassard et al. [5]. Finally, some
numerical simulations and conclusions are given to illustrate theoretical predictions
in Sect.4.

2. THE EXISTENCE OF LOCAL HOPF BIFURCATION

In this section, we firstly give out the existence and stability of the equilibrium for
system (1.3). It has three equilibrium points E.0;0;0/, EC.

p
˛;0;1/ and

E�.�
p
˛;0;1/. Due to the symmetry of the system, it is sufficient to study the

existence of local Hopf bifurcations occurring at EC.
Let x1.t/D x.t/�

p
˛;x2.t/D y.t/;x3.t/D ´.t/�1, then system (1.3) becomes8̂<̂

:
Px1.t/D x2.t/;

Px2.t/D�ˇx2.t/�
p
˛x3.t/�x1.t � �/x3.t/;

Px3.t/D 2
p
˛x1.t � �/�˛x3.t/Cx

2
1.t � �/;

(2.1)

the linearization of system (2.1) is8̂<̂
:
Px1.t/D x2.t/;

Px2.t/D�ˇx2.t/�
p
˛x3.t/;

Px3.t/D 2
p
˛x1.t � �/�˛x3.t/:

(2.2)

The associated characteristic equation of (2.2) isˇ̌̌̌
ˇ̌ � �1 0

0 �Cˇ
p
˛

�2
p
˛e��� 0 �C˛

ˇ̌̌̌
ˇ̌D 0;

i.e.
�3C .˛Cˇ/�2C˛ˇ�C2˛e��� D 0: (2.3)

When � D 0, Eq.(2.3) becomes

�3C .˛Cˇ/�2C˛ˇ�C2˛ D 0: (2.4)

We give out the assumption .H1/ .˛Cˇ/ˇ > 2.
By Routh-Hurwitz stability criterion, we obtain

Lemma 1. Assume that .H1/ holds, then when � D 0, the equilibrium EC of
system (2.1) is asymptotically stable.
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If i!.! > 0/ is a root of Eq.(2.3), then

� i!3� .˛Cˇ/!2C i!˛ˇC2˛.cos!� � isin!�/D 0: (2.5)

Separating the real and imaginary parts, we obtain(
�.˛Cˇ/!2C2˛cos!� D 0;
˛ˇ!�!3�2˛sin!�;

(2.6)

it follows from (2.6) that (
sin.!�/D !.˛ˇ�!2/

2˛
;

cos.!�/D .˛Cˇ/!2

2˛
:

(2.7)

By sin2.!�/C cos2.!�/D 1, then (2.3) is equivalent to

!6C .˛2Cˇ2/!4C˛2ˇ2!2�4˛2 D 0: (2.8)

Let ´D !2, Eq.(2.8) becomes

´3C .˛2Cˇ2/´2C˛2ˇ2´�4˛2 D 0: (2.9)

From (2.8), we have h.´/D ´3C .˛2Cˇ2/´2C˛2ˇ2´�4˛2. Then, h
0

.´/D 3´2C

2.˛2Cˇ2/´C˛2ˇ2. Denote �D .˛2Cˇ2/2� 3˛2ˇ2, obviously � � ˛2ˇ2 > 0,
the equation 3´2C2.˛2Cˇ2/´C˛2ˇ2 D 0 has two real negative roots:

´�1 D
�.˛2Cˇ2/C

p
�

3
; ´�2 D

�.˛2Cˇ2/�
p
�

3
: (2.10)

Noticing that h.0/< 0, lim
´!C1

h.´/DC1: Eq.(2.9) has one positive real roots ´, and

Eq.(2.8) has two real root !k.k D 1;2/, suppose !1 D�
p
´, !2 D

p
´: Substituting

!k.k D 1;2/ into (2.7), we have

�
j

k
D

1

!k

n
arccos

�.˛Cˇ/!2
k

2˛

�
C2j�

o
; (2.11)

where k D 1;2 and j D 0;1;2; : : :, then i!k.k D 1;2/ is a pair of pure imaginary
roots of Eq.(2.3) with �j

k
. Define

�0 D �
.0/

k
D min
k2f1;2g

f�
.0/

k
g: (2.12)

Lemma 2. When � D �j
k
.k D 1;2 and j D 0;1;2; : : :/, then (2.3) has a pair of

pure imaginary roots i!k , and all other roots of (2.3) have nonzero real parts.

Let �.�/ D ˛.�/˙ i!.�/ be the roots of (2.3) near � D �j satisfying ˛.�j / D
0;!.�j /D !k.j D 0;1;2; � � �/: By the theory of functional differential equation [5],
for 8 �j , 9 " > 0 s.t. �.�/ in j� � �j j< " about � is continuous and differentiable.
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Lemma 3. The transversality conditionhd.Re�.�//
d�

iˇ̌̌
�D�j

> 0:

Proof. Substituting �.�/ into Eq.(2.3) and taking the derivative with respect to � ,
we have

.
d�.�/

d�
/�1 D

Œ3�2C2.˛Cˇ/�C˛ˇ�e��

2˛�
�
�

�
;

by (2.7), we gethd.Re�.�//
d�

iˇ̌̌
�D�j

D Re
h Œ3�2C2.˛Cˇ/�C˛ˇ�e��

2˛�

i
�D�j

(2.13)

D Re
h Œ�3!2C2i.˛Cˇ/!C˛ˇ�.cos!k�

j

k
C isin!k�

j

k
/

2i˛!

i
�D�j

D
˛2ˇ2C3!4C2.˛2Cˇ2/!2

4˛2
> 0:

�

By above Lemmas and the conditions for Hopf bifurcation theorem [6], we have
the following result:

Theorem 1. Assume that (H1) holds.

�
j

k
D

1

!k

n
arccos

�.˛Cˇ/!2
k

2˛

�
C2j�

o
(2.14)

are Hopf bifurcation values at EC, where i!k.k D 1;2/ are the roots of (2.3). And
EC is locally asymptotically stable for � 2 Œ0;�01 / and unstable where � > �01 .

3. THE PROPERTY OF LOCAL HOPF BIFURCATION

In the previous part, it is shown that system (2.1) undergoes Hopf bifurcation under
certain conditions. In the following part, we will derive explicit formulae determining
the direction of Hopf bifurcation and the stability of the periodic solutions bifurcat-
ing from EC at �j .j D 0;1;2 � � �/, by employing center manifold theory and normal
form method. For convenience, denote �j bye� and � De�C�; � 2R, then �D 0 is
the Hopf bifurcation value for system .2:1/.

The discussion will be divided into five steps.
Step 1. Transform system .2:1/ into the abstract ODE.

The system .2:1/ can locally be represented as the following DDE in
C D C.Œ�1;0�;R3/

Pu.t/D L�.ut /CF.�;ut /; (3.1)
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where u.t/ D
�
u1.t/;u2.t/;u3.t/

�T , ut .�/ D u.t C �/, L� W C ! R is a bounded
linear operator and F W R�C ! R is continuous and differentiable with

L�� D .e�C�/
0@0 1 0

0 �ˇ �
p
˛

0 0 �˛

1A0@�1.0/�2.0/

�3.0/

1AC
0@ 0 0 0

0 0 0

2
p
˛ 0 0

1A0@�1.�1/�2.�1/

�3.�1/

1A ;
and

F.�;�/D .e�C�/
0@ 0

��1.�1/�3.0/

�21.�1/

1A ;
where � D .�1.�/;�2.�/;�3.�// 2 C:

By the Riese representation theorem, there exists a 3� 3 matrix whose elements
are bounded variation function �.�;�/ in � 2 Œ�1;0� such that

L�� D

Z 0

�1

d�.�;�/�.�/; � 2 C;

where �.�;�/ can be chosen as

�.�;�/D .e�C�/
0@0 1 0

0 �ˇ �
p
˛

0 0 �˛

1Aı.�/C
0@ 0 0 0

0 0 0

2
p
˛ 0 0

1Aı.�C1/;
where ı.�/ is a Dirac delta function [12] and � 2 Œ�1;0�.

For � 2 C; let

A.�/�.�/D

(
d�.�/=d�; � 2 Œ�1;0/;R 0
�1d�.�;�/�.�/; � D 0;

R.�/�.�/D

(
0; � 2 Œ�1;0/;

F.�;�/; � D 0;

then system (3.1) is equivalent to the following abstract operator equation

Pu.t/D A.�/ut CR.�/ut : (3.2)

Step 2. Calculate the eigenfunctions of ADA.0/ and the adjoint operator A�
corresponding to i!0e� and �i!0e� .

For  2C.Œ0;1�; .C 3/�/, where .C 3/� is the 3-dimensional complex space of row
vectors, we define the adjoint operator A� of A

A� .s/D

(
�d .s/=ds; s 2 .0;1�;R 0
�1d�

T .�; t/ .�t /; s D 0;
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and the bilinear form is given by

h .s/;�.�/i D  .0/�.0/�

Z 0

�e�
Z �

�D0

 
T
.���/d�.�/�.�/d�;

where �.�/D �.�;0/. Then AD A.0/ and A�.0/ are adjoint operators.
By [8], ˙i!0e� are eigenvalues of A.0/, so they are also eigenvalues of A�.0/.

Suppose that q.�/ D .1;ę;ě/T ei!0� is the eigenfunction of A.0/ corresponding to
the eigenvalue i!0e� and q�.s/D G.1;ę�;ě�/ei!0s is the eigenfunction of A� cor-
responding to the eigenvalue �i!0e� , where

ęD i!k; ěD 2
p
˛ei!�

i!kC˛
; ę� D 1

ˇ� i!k
; ě� D p

˛

.!2
k
�˛ˇ/C i!k.˛Cˇ/

;

G D
�
1Cęę�Cěě�C �kęę�e�i!���1;

which assures that hq�.s/;q.�/i D 1, hq�.s/;q.�/i D 0.

Step 3. Obtain the reduced system on the center manifold.

In this part, we will use the same notations as in [6] and compute the coordinates
to describe the center manifold C0 at �D 0 (A local center manifold is in general not
unique). Let ut 2 C be the solution of system (3.2) when �D 0, and define

´.t/D hq�;ut i; W.t;�/D ut .�/�´.t/q.�/�´.t/q.�/; (3.3)

where ´ and ´ are local coordinates for center manifold C0 in the direction of q� and
q�. On the center manifold C0, we have W.t;�/DW.´.t/;´.t/;�/, where

W.´;´;�/DW20.�/´
2=2CW11.�/´´CW02.�/´

2=2C�� � : (3.4)

The existence of center manifold enables us to reduce (3.2) to an ODE on C0. Note
that W is real if ut is real, we consider only real solutions. For solution ut 2 C0 of
system (3.2) at �D 0,

Ṕ.t/D hq�; Put i D hq
�;A.ut /CR.ut /i D hA

�.q�/;ut iChq
�;R.ut /i

D i!0e�´.t/Cq�.0/ �f .0;W.´;´;�/C2Ref´.t/q.�/g/;

D i!0e�´.t/Cq�.0/ �f .0;ut /; (3.5)

with

q�.0/ �f .0;ut /, g.´;´/:

Rewrite (3.5), we obtain the reduced system on C0 is described by

Ṕ.t/D i!0e�´.t/Cg.´;´/; (3.6)

where

g.´;´/D g20.�/´
2=2Cg11.�/´´Cg02.�/´

2=2Cg21.�/´
2´=2C�� � : (3.7)
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We will mainly discuss Eq. (3.6) in the following part.

Step 4. Get the value of g20;g11;g02;g21 in (3.7).

In this part, we will calculate the coefficient W20.�/;W11.�/;W02.�/; � � � ; then
substitute them in (3.5), and get the reduced system (3.6) on C0.

It follows from (3.3) that
ut .�/D u.tC�/DW.t;�/C2Ref´.t/;q.�/g

DW20.�/´
2=2CW11.�/´´CW02.�/´

2=2C .1;ę/T ei!0e��´
C .1;ę/T e�i!0e��´C�� � :

We obtain

�3.0/D ´ěC´ěCW .3/.0/C�� � ;

�1.�1/D ´e
�i!0� C´ei!0� CW .1/.�1/C�� � ;

(3.8)

It follows together with F.�;�/, we get

f .0;ut /De�
0@ 0

��1.�1/�3.0/

�21.�1/

1A : (3.9)

Substituting (3.8) into (3.9) (3.5) and comparing the coefficients with (3.7), we obtain

g20 D 2D�k.�ę�ěe�i!0� Cě�e�2i!0� /;

g11 DD�kŒ�ę�.ěei!0� Cěe�i!0� /C2ě��;
g02 D 2D�k.�ę�ěei!0� Cě�e2i!0� /;

g21 D 2D�kf�ę�e�i!0�W
.3/
11 .0/C

ě�Œ2e�i!0�W
.1/
20 .�1/�g:

(3.10)

Since there are W20.�/ and W11.�/ in g21, we still need to compute them.
From (3.2) and (3.3), we have

PW D Put � Ṕq� Ṕ q D

(
AW �2Refgq.�/g; � 2 Œ�1;0/;

AW �2Refgq.0/gCf0; � D 0;
(3.11)

where
f0 D f´2´2=2Cf´´´´Cf´2´2=2Cf´2´´

2´=2 � � � :

On the other hand, near the origin, on the center manifold C0, according to (3.4) we
obtain

PW DW´ Ṕ CW´ Ṕ D
�
W20.�/´CW11.�/´

�
Ṕ C

�
W11.�/´CW02.�/´

�
Ṕ

D
�
W20.�/´CW11.�/´

��
i!0´Cg.´;´/

�
(3.12)

C
�
W11.�/´CW02.�/´

��
g.´;´/� i!0´

�
C�� � :
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Substituting (3.4) into right side of (3.11), equating terms of ´
2

2
and ´´ of (3.11) with

(3.12), we obtain

.2i!0I �A/W20.�/D

(
�g20q.�/�g02q.�/; � 2 Œ�e�;0/;
�g20q.0/�g02q.0/Cf´2 ; � D 0;

(3.13)

�AW11.�/D

(
�g11q.�/�g11q.�/; � 2 Œ�e�;0/;
�g11q.0/�g11q.0/Cf´´; � D 0:

(3.14)

According to the definition of A and from (3.13)(3.14) for � 2 Œ�e�;0/, we get

PW20.�/D 2i!0W20.�/Cg20q.�/Cg02q.�/;

PW11.�/D g11q.�/Cg11q.�/;

solving for W20.�/ and W11.�/, we obtain

W20.�/D ig20=!0 �q.0/e
i!0� C ig02=3!0 �q.0/e

�i!0� CE1e
2i!0� ; (3.15)

W20.�/D�ig11=!0 �q.0/e
i!0� C ig11=!0 �q.0/e

�i!0� CE2; (3.16)

where E1 D .E
.1/
1 ;E

.2/
1 ;E

.3/
1 /T 2 R3 and E2 D .E

.1/
2 ;E

.2/
2 ;E

.3/
2 /T 2 R3 are con-

stant vectors.
In what follows we shall seek appropriate E1 and E2 in (3.15) and (3.16), respect-

ively. According to the definition of A and (3.13)(3.14) for � D 0, we haveZ 0

�e� d�.�/W20.�/D 2i!0W20.0/Cg20q.0/Cg02q.0/�f´2 ; (3.17)Z 0

�e� d�.�/W11.�/D g11q.0/Cg11q.0/�f´´; (3.18)

where �.�/D �.0;�/ and

f´2 D

0@ 0ěe�i!0�

e�2i!0�

1A ; f´´ D
0@ 0ěei!0� Cěe�i!0�

2

1A :
Substituting (3.15) into (3.17), we obtain�

2i!0I �

Z 0

�e� e2i!0�d�.�/

�
E1 D f´2 ;

that is 0@ 2i!0 1 0

0 2i!0
p
˛

�2
p
˛e�i!0� 0 2i!0C˛

1AE1 D f´2 : (3.19)
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Similarly, substituting (3.16) into (3.18), we getZ 0

�e� d�.�/E2 D f´´;
that is 0@ 0 1 0

0 0
p
˛

2
p
˛e�i!0� 0 ˛

1AE2 D f´´: (3.20)

We have got the value of E1 and E2 as (3.19) and (3.20) shown and the reduced
system (3.6) finally.

Step 5. Obtain the key values �2;ˇ2;T2 to judge the property of the Hopf
bifurcation.

Similar to calculate the Hopf bifurcation parameter of the ODE and as in [6],
according to the analysis above and the expressions of g20, g11, g02 and g21, we can
compute the following values:

c1.0/D i=2!0e��g11g20�2jg11j2�jg02j2=3�Cg21=2;
�2 D�Refc1.0/g=˛

0

.e�/;
ˇ2 D 2Refc1.0/g; (3.21)

T2 D�
h
Imfc1.0/gC�2!

0

.e�/i=!0;
where �.�/D ˛.�/˙ i!.�/ is the characteristic root of (2.3), which is a continuous
differentiable family. ˛

0

.e�/ and !
0

.e�/ can be obtained by taking the derivation of two
sides of (2.3) and taking values ate� .

These formulae give a description of the Hopf bifurcation periodic solution of
system (1.1) at � D �j .j D 0;1;2 � � �/ on the center manifold. Thus,we can obtain
the following results according to the discussion about properties of Hopf bifurcating
periodic solutions of dynamical system in [6]:

Theorem 2. For system (1.3), we assume that the conditions .H1/ holds for the
parameters.
(i) If �2 > 0 .�2 < 0/, then the Hopf bifurcation is supercritical (subcritical);
(ii) If ˇ2 < 0 .ˇ2 > 0/, then bifurcating periodic solution is stable (unstable);
(iii) If T2 > 0 .T2 < 0/, then periods of periodic solutions increase (decrease).

4. NUMERICAL SIMULATIONS AND CONCLUSIONS

In this section, we shall give some numerical simulations to support the theoret-
ical analysis discussed in previous section. In addition, we will give out our actual
conclusions and the shortcomings.
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Firstly, we study the following specific model8̂<̂
:
Px.t/D y.t/;

Py.t/D x.t � �/�y.t/�x.t � �/´.t/;

Ṕ.t/D�2´.t/Cx2.t � �/;

(4.1)

with initial value is .x.t/;y.t/;´.t//D .0:1;0:1;0:1/ which satisfies (H1). By com-
puting, EC D .1:414;0;1/ and h.´/D ´3C5´2C4´�16 has only one positive root
´� 1:307, get !1 � �1:143, !2 � 1:143, �0 � 0:174. By Theorem 1, we get that
EC is asymptotically stable when 0 � � < �0, as Figure 2 illustrated, and EC is un-
stable when � > �0, as shown in Figure 3. Figure 2� 3 are drawn with dde23 [14]
which is a MatLab [10] package that integrates DDEs.

FIGURE 2. The equilibrium EC D .1:414;0;1/ is locally asymptot-
ically for system (2.1) with � D 0:1 < �0.

In addition, the bifurcation diagram is shown by Figure 4, it is drawn using
DDEBifTool [4][13] which is also a MatLab software package. The command win-
dow shows the equilibrium isE0D .1:4140;0;1:0000/, Hopf Point 1 is at � D 0:1744
with ! D 1:1432, Hopf Point 2 is at � D 5:6705 with ! D 1:1432, Hopf Point 3 is at
� D 11:1667 with ! D 1:1432.

We take the � �x space as example to explain the bifurcation meaning. At � D
�0 D 0:1744 (the position of (a) dashed vertical line), the stable equilibrium point
loses stability and becomes unstable, Hopf bifurcation occurs and generated the
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FIGURE 3. Bifurcating stable periodic solution for system (2.1) at
EC D .1:414;0;1/ with �0 < � D 0:2.

stable periodic orbit. After 2� , that is at � D �1 D 5:6705 (the position of (b) dashed
vertical line), a Hopf bifurcation occurs and generates the unstable periodic orbit. At
� D �2 D 11:1667 (the position of (c) dashed vertical line), the Hopf bifurcation oc-
curs and generated the unstable periodic orbit again. The second graph of Figure 4
is chosen the value of delay till 0:6, which makes more clear to study the bifurcation
diagram. In this paper, we study the Shimizu-Morioka system at Hopf bifurcation
occurs and the stability of equilibrium. We also investigate the direction of the Hopf
bifurcation and the stability of the bifurcating periodic solutions, by using the center
manifold theory and normal form method. Our theoretical results and numerical sim-
ulations show that the chaos phenomena of system (1.1) can be controlled by delay.
As the delay increases further, the numerical simulations show that the periodic solu-
tion disappears and the chaos attractor appears again. The obtained results can also
be applied to the control and anticontrol of chaos phenomena of system (1.1). The
other kinds of dynamical behaviors of system (4.1) out of the assumptions on the
parameters have been disregarded. There are still abundant and complex dynamical
behaviors and the topological structure of the new system should be completely and
thoroughly investigated and exploited. We leave these as our future work.

ACKNOWLEDGMENTS

This research received a grant from China Scholarship Council (CSC).



STABILITY AND BIFURCATION ANALYSIS FOR A DELAYED SHIMIZU-MORIOKA MODEL 597

FIGURE 4. The bifurcation diagram for system (4.1). The blue solid
line represents stable equilibrium point, and the red dotted line is
unstable equilibrium point. Filled green circle represents stable peri-
odic orbit, and open blue circles are unstable periodic orbits
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