

Necessary conditions for double summability factor theorem

Ekrem Savaş

NECESSARY CONDITIONS FOR DOUBLE SUMMABILITY FACTOR THEOREM

EKREM SAVAŞ

Received 20 December, 2009

Abstract. We obtain necessary conditions for the series $\sum \sum c_{mn}$, which is absolutely summable of order k by a doubly triangular matrix method A, to be such that $\sum \sum c_{mn} \lambda_{mn}$ is absolutely summable of order k by a doubly triangular matrix B.

2000 Mathematics Subject Classification: 40F05, 40D25

Keywords: absolute summability factors, doubly triangular summability

1. Introduction

A doubly infinite matrix $A = (a_{mnij})$ is said to be doubly triangular if $a_{mnij} = 0$ for i > m and j > n. The mn-th terms of the A-transform of a double sequence $\{s_{mn}\}$ is defined by

$$T_{mn} = \sum_{i=0}^{m} \sum_{j=0}^{n} a_{mnij} s_{ij}.$$

A series $\sum \sum c_{mn}$, with partial sums s_{mn} is said to be absolutely A-summable, of order $k \ge 1$, if

$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} (mn)^{k-1} |\Delta_{11} T_{m-1,n-1}|^k < \infty, \tag{1.1}$$

where for any double sequence $\{u_{mn}\}$, and for any four-fold sequence $\{a_{mnij}\}$, we define

$$\begin{split} &\Delta_{11}u_{mn}=u_{mn}-u_{m+1,n}-u_{m,n+1}+u_{m+1,n+1},\\ &\Delta_{11}a_{mnij}=a_{mnij}-a_{m+1,n,i,j}-a_{m,n+1,i,j}+a_{m+1,n+1,i,j},\\ &\Delta_{ij}a_{mnij}=a_{mnij}-a_{m,n,i+1,j}-a_{m,n,i,j+1}+a_{m,n,i+1,j+1},\\ &\Delta_{i\,0}a_{mnij}=a_{mnij}-a_{m,n,i+1,j},\quad\text{and}\\ &\Delta_{0j}a_{mnij}=a_{mnij}-a_{m,n,i,j+1}. \end{split}$$

The one-dimensional version of (1.1) appears in [1].

© 2010 Miskolc University Press

Associated with A there are two matrices \overline{A} and \hat{A} defined by

$$\bar{a}_{mnij} = \sum_{\mu=i}^{m} \sum_{\nu=j}^{n} a_{mn\mu\nu}, 0 \le i \le m, 0 \le j \le n, m, n = 0, 1, \dots,$$

and

$$\hat{a}_{mnij} = \Delta_{11}\bar{a}_{m-1,n-1,i,j}, 0 \le i \le m, 0 \le j \le n, m, n = 1, 2, \dots$$

It is easily verified that $\hat{a}_{0000} = \bar{a}_{0000} = a_{0000}$. In [3] it is shown that

$$\hat{a}_{mnij} = \sum_{\mu=0}^{i-1} \sum_{\nu=0}^{j-1} \Delta_{11} a_{m-1,n-1,\mu,\nu}.$$

Thus $\hat{a}_{mni0} = \hat{a}_{mn0j} = 0$.

Let x_{mn} denote the mn-th term of the A-transform of the sequence of partial sums $\{s_{mn}\}$ of the series $\sum \sum c_{mn}$.

Then

$$x_{mn} = \sum_{i=0}^{m} \sum_{j=0}^{n} a_{mnij} s_{ij} = \sum_{i=0}^{m} \sum_{j=0}^{n} a_{mnij} \sum_{\mu=0}^{i} \sum_{\nu=0}^{j} c_{\mu\nu} \lambda_{\mu\nu}$$

$$= \sum_{\mu=0}^{m} \sum_{\nu=0}^{n} \sum_{i=\mu}^{m} \sum_{j=\nu}^{n} a_{mnu\nu} c_{\mu\nu} \lambda_{\mu\nu}$$

$$= \sum_{\mu=0}^{m} \sum_{\nu=0}^{n} \bar{a}_{mn\mu\nu} c_{\mu\nu} \lambda_{\mu\nu},$$

and a direct calculation verifies that

$$X_{mn} := \Delta_{11} x_{m-1,n-1} = \sum_{\nu=1}^{m} \sum_{\mu=1}^{n} \hat{a}_{mn\mu\nu} c_{\mu\nu} \lambda_{\mu\nu},$$

since

$$\bar{a}_{m-1,n-1,m,\nu} = a_{m-1,n-1,\mu,n} = \hat{a}_{m,n-1,\mu,n} = \hat{a}_{m-1,n,m,n} = 0.$$

In a recent paper Savas and Rhoades[2] obtained sufficient conditions for the series $\sum \sum c_{mn}$, which is absolutely summable of order k by a doubly triangular matrix method A, to be such that $\sum \sum c_{mn} \lambda_{mn}$ is absolutely summable of order k by a doubly triangular matrix B.

In this paper we obtain necessary conditions for the series $\sum \sum c_{mn}$, which is absolutely summable of order k by a doubly triangular matrix method A, to be such that $\sum \sum c_{mn} \lambda_{mn}$ is absolutely summable of order k by a doubly triangular matrix R

2. Main Theorem

Theorem 1. Let A and B be doubly triangular matrices with A satisfying

$$\sum_{m=u+1}^{\infty} \sum_{n=v+1}^{\infty} (mn)^{k-1} |\Delta_{uv} \hat{a}_{mnuv}|^k = O(M^k(\hat{a}_{uvuv})), \tag{2.1}$$

where

$$M(\hat{a}_{uvuv}) := \max\{|\hat{a}_{uvuv}|, |\Delta_{u0}\hat{a}_{u+1v,u,v}|, |\Delta_{0v}\hat{a}_{uv+1,u,v}|\}.$$

Then the necessary conditions of the fact that the $|A|_k$ summability of $\sum \sum c_{mn}$ implies the $|B|_k$ summability of $\sum \sum c_{mn} \lambda_{mn}$ are the following items:

- (i) $|\hat{b}_{uvuv}\lambda_{uv}| = O(M(\hat{a}_{uvuv})),$
- (ii) $|\Delta_{u0}\hat{b}_{u+1,v,u,v}\lambda_{uv}| = O(M(\hat{a}_{uvuv})),$

(iii)
$$|\Delta_{0v}\hat{b}_{u,v+1,u,v}\lambda_{uv}| = O(M(\hat{a}_{uvuv})),$$

(iv) $\sum_{m=u+1}^{\infty} \sum_{n=v+1}^{\infty} (mn)^{k-1} |\Delta_{uv}\hat{b}_{mnuv}\lambda_{uv}|^k = O((uv)^{k-1}M^k(\hat{a}_{uvuv})),$

(v)
$$\sum_{m=u+1}^{\infty} \sum_{n=v+1}^{\infty} (mn)^{k-1} |\hat{b}_{m,n,u+1,v+1} \lambda_{u+1,v+1}|^k = O\left(\sum_{m=u+1}^{\infty} \sum_{n=v+1}^{\infty} (mn)^{k-1} |\hat{a}_{m,n,u+1,v+1}|^k\right).$$

Proof. For $k \ge 1$ define

$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} (mn)^{k-1} |Y_{mn}|^k < \infty, \tag{2.2}$$

whenever

$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} (mn)^{k-1} |X_{mn}|^k < \infty, \tag{2.3}$$

where

$$Y_{mn} = \Delta_{11} y_{m-1,n-1},$$

$$y_{mn} = \sum_{i=0}^{m} \sum_{j=0}^{n} \bar{b}_{mnij} c_{ij} \lambda_{ij}.$$

The space of sequences satisfying (2.3) is a Banach space if it is normed by

$$||X|| = \left(|X_{00}|^k + |X_{01}|^k + |X_{10}|^k + \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} (mn)^{k-1} |X_{mn}|^k\right)^{1/k}.$$
 (2.4)

We shall also consider the space of sequences $\{Y_{mn}\}$ that satisfy (2.2). This space is also a BK-space with respect to the norm

$$||Y|| = \left(|Y_{00}|^k + |Y_{01}|^k + |Y_{10}|^k + \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} (mn)^{k-1} |Y_{mn}|^k\right)^{1/k}.$$
 (2.5)

The transformation $\sum_{i=0}^{m} \sum_{j=0}^{n} \bar{b}_{mnij} c_{ij} \lambda_{ij}$ maps sequences satisfying (2.3) into sequences satisfying (2.2). By the Banach-Steinhaus Theorem there exists a constant K > 0 such that

$$||Y|| \le K||X||. \tag{2.6}$$

For fixed u, v, the sequence $\{c_{ij}\}$ is defined by $c_{uv} = c_{u+1,v+1} = 1, c_{u+1,v} = c_{u,v+1} = -1, c_{ij} = 0$, otherwise,

$$X_{mn} = \begin{cases} 0, & m \le u, n < v, \\ 0, & m < u, n \le v, \\ \hat{a}_{mnuv}, & m = u, n = v, \\ \Delta_{u0} \hat{a}_{mnuv}, & m = u + 1, n = v, \\ \Delta_{0v} \hat{a}_{mnuv}, & m = u, n = v + 1, \\ \Delta_{uv} \hat{a}_{mnuv}, & m > u, n > v, \end{cases}$$

and

$$Y_{mn} = \begin{cases} 0, & m \le u, n < v, \\ 0, & m < u, n \le v, \\ \hat{b}_{mnuv} \lambda_{uv}, m = u, n = v, \\ \Delta_{u0} \hat{b}_{mnuv} \lambda_{uv}, m = u + 1, n = v, \\ \Delta_{0v} \hat{b}_{mnuv} \lambda_{uv}, m = u, n = v + 1, \\ \Delta_{uv} \hat{b}_{mnuv} \lambda_{uv}, m > u, n > v. \end{cases}$$

From (2.4) and (2.5) it follows that

$$||X|| = \left\{ (uv)^{k-1} |\hat{a}_{uvuv}|^k + ((u+1)v)^{k-1} |\Delta_{u0}a_{u+1,v,u,v}|^k + (u(v+1))^{k-1} |\Delta_{0v}a_{u,v+1u,v}|^k + \sum_{m=u+1}^{\infty} \sum_{n=v+1}^{\infty} (mn)^{k-1} |\Delta_{uv}\hat{a}_{mnuv}|^k \right\}^{1/k},$$
(2.7)

and

$$||Y|| = \left\{ (uv)^{k-1} \hat{b}_{uvuv} \lambda_{uv}|^k + ((u+1)v)^{k-1} |\Delta_{u0} \hat{b}_{u+1,v,u,v} \lambda_{uv}|^k + (u(v+1))^{k-1} |\Delta_{0v} \hat{b}_{u,v+1,u,v} \lambda_{uv}|^k \right\}$$
(2.8)

$$+\sum_{m=u+1}^{\infty}\sum_{n=v+1}^{\infty}(mn)^{k-1}|\Delta_{uv}\hat{a}_{mnuv}\lambda_{uv}|^k\Big\}^{1/k}.$$

Substituting (2.7) and (2.8) into (2.6), along with (2.1), gives

$$\begin{split} (uv)^{k-1}|\hat{b}_{uvuv}\lambda_{uv}|^k + &((u+1)v)^{k-1}|\Delta_{u0}\hat{b}_{u+1v,u,v}\lambda_{uv}|^k \\ &+ (u(v+1))^{k-1}|\Delta_{0v}\hat{b}_{u,v+1u,v}\lambda_{uv}|^k \\ &+ \sum_{m=u+1}^{\infty}\sum_{n=v+1}^{\infty}(mn)^{k-1}|\Delta_{uv}\hat{b}_{mnuv}\lambda_{uv}|^k \leq K^k \Big\{ (uv)^{k-1}|\hat{a}_{uvuv}|^k \\ &((u+1)v)^{k-1}|\Delta_{u0}\hat{a}_{u+1v,u,v}|^k + (u(v+1))^{k-1}\Delta_{u0}\hat{a}_{u,v+1u,v}|^k \\ &+ \sum_{m=u+1}^{\infty}\sum_{n=v+1}^{\infty}(mn)^{k-1}|\Delta_{uv}\hat{a}_{mnuv}|^k \Big\} \\ &= K^k \{ O(1)(uv)^{k-1}M^k(\hat{a}_{uvuv}) \}. \end{split}$$

The above inequality implies that each term of the left hand side is $O(\{(uv)^{k-1}M^k(\hat{a}_{uvuv})\}).$ Using the first term one obtains

$$(uv)^{k-1}|\hat{b}_{uvuv}\lambda_{uv}|^k = O(\{(uv)^{k-1}M^k(\hat{a}_{uvuv})\}).$$

Thus

$$|\hat{b}_{uvuv}\lambda_{uv}| = O(M(\hat{a}_{uvuv})),$$

which is condition (i).

In a similar manner one obtains conditions (ii) - (iv).

Using the sequence, defined by $c_{u+1,v+1} = 1$, and $c_{ij} = 0$ otherwise, yields

$$X_{mn} = \begin{cases} 0, & m \le u + 1, n \le v, \\ 0, & m \le u, n \le v + 1, \\ \hat{a}_{m,n,u+1,v+1}, & m \ge u + 1, n \ge v + 1 \end{cases}$$

and

$$Y_{mn} = \begin{cases} 0, & m \le u+1, n \le v, \\ 0, & m \le u, n \le v+1, \\ \hat{b}_{m,n,u+1,v+1} \lambda_{u+1,v+1}, m \ge u+1, n \ge v+1. \end{cases}$$

The corresponding norms are

$$||X|| = \left\{ \sum_{m=u+1}^{\infty} \sum_{n=v+1}^{\infty} (mn)^{k-1} |\hat{a}_{m,n,u+1,v+1}|^k \right\}^{1/k}$$

and

$$||Y|| = \left\{ \sum_{m=u+1}^{\infty} \sum_{n=v+1}^{\infty} (mn)^{k-1} |\hat{b}_{m,n,u+1,v+1} \lambda_{u+1,v+1}|^k \right\}^{1/k}.$$

Applying (2.6), we have

$$\sum_{m=u+1}^{\infty} \sum_{n=v+1}^{\infty} (mn)^{k-1} |\hat{b}_{m,n,u+1,v+1} \lambda_{u+1,v+1}|^{k}$$

$$\leq K^{k} \Big\{ \sum_{m=u+1}^{\infty} \sum_{n=v+1}^{\infty} (mn)^{k-1} |\hat{a}_{m,n,u+1,v+1}|^{k} \Big\},$$

which implies (v).

Every summability factor theorem becomes an inclusion theorem by setting each $\lambda_{mn} = 1$.

Corollary 1. Let A and B two doubly triangular matrices, A satisfying (2.1). Then necessary conditions of the fact that the $|A|_k$ summability of $\sum \sum c_{mn}$ implies the $|B|_k$ summability of $\sum \sum c_{mn}$ are the following items:

- (i) $|\hat{b}_{uvuv}| = O(M(\hat{a}_{uvuv})),$
- (ii) $|\Delta_{u0}\hat{b}_{u+1,v,u,v}| = O(M(\hat{a}_{uvuv})),$
- (iii) $|\Delta_{0v}\hat{b}_{u,v+1,u,v}| = O(M(\hat{a}_{uvuv})),$

(iv)
$$\sum_{m=u+1}^{\infty} \sum_{n=v+1}^{\infty} (mn)^{k-1} |\Delta_{uv} \hat{b}_{mnuv}|^k = O((uv)^{k-1} M^k (\hat{a}_{uvuv})), \text{ and}$$

(v)
$$\sum_{m=u+1}^{\infty} \sum_{n=v+1}^{\infty} (mn)^{k-1} |\hat{b}_{m,n,u+1,v+1}|^k$$
$$= O\Big(\Big\{\sum_{m=u+1}^{\infty} \sum_{n=v+1}^{\infty} (mn)^{k-1} |\hat{a}_{m,n,u+1,v+1}|^k\Big\}^{1/k}\Big).$$

Proof. To prove Corollary 1 simply put $\lambda_{mn} = 1$ in Theorem 1.

We shall call a doubly infinite matrix a product matrix if it can be written as the termwise product of two singly infinite matrices F and G; i.e., $a_{mnij} = f_{mi}g_{nj}$ for each i, j, m, n.

A doubly infinite weighted mean matrix P has nonzero entries p_{ij}/P_{mn} , where p_{00} is positive and all of the other p_{ij} are nonnegative, and $P_{mn} := \sum_{i=0}^{m} \sum_{j=0}^{n} p_{ij}$. If P is a product matrix then the nonzero entries are $p_i q_j/P_m Q_n$, where $p_0 > 0$, $p_i > 0$ for i > 0, $q_0 > 0$, $q_i \ge 0$ for j > 0 and $P_m := \sum_{i=0}^{m} p_i$, $Q_n := \sum_{j=0}^{n} q_j$. Now we have the following corollary

Corollary 2. Let B be a doubly triangular matrix, P a product weighted mean matrix satisfying

$$\sum_{m=u+1}^{\infty} \sum_{n=v+1}^{\infty} (mn)^{k-1} \left| \Delta_{uv} \left(\frac{p_m q_n P_{u-1} Q_{v-1}}{P_m P_{m-1} Q_n Q_{n-1}} \right) \right|^k = O\left(\frac{p_u q_v}{P_u Q_v} \right).$$

Then necessary conditions for $\sum \sum c_{mn}$ summable $|P|_k$ to imply that $\sum \sum c_{mn} \lambda_{mn}$ is summable $|B|_k$ are

(i)
$$|\hat{b}_{uvuv}\lambda_{uv}| = O\left(\frac{p_uq_v}{P_uQ_v}\right)$$
,

(ii)
$$|\Delta_{u0}\hat{b}_{u+1,v,u,v}\lambda_{uv}| = O\left(\frac{p_uq_v}{P_uO_v}\right),$$

(iii)
$$|\Delta_{0v}\hat{b}_{u,v+1,u,v}\lambda_{uv}| = O\left(\frac{p_u\tilde{q}_v}{P_uO_v}\right),$$

(iv)
$$\sum_{m=u+1}^{\infty} \sum_{n=v+1}^{\infty} (mn)^{k-1} |\Delta_{uv} \hat{b}_{uvuv} \lambda_{uv}|^k = O\left((uv)^{k-1} \left(\frac{p_u q_v}{PuQ_v}\right)^k\right), \text{ and}$$

(v)
$$\sum_{m=u+1}^{\infty} \sum_{n=v+1}^{\infty} (mn)^{k-1} |\hat{b}_{m,n,u+1,v+1} \lambda_{u+1,v+1}|^k = O(1).$$

3. ACKNOWLEDGEMENTS

I wish to thank the referee for his careful reading of the manuscript and for his helpful suggestions.

REFERENCES

- [1] B. E. Rhoades and E. Savaş, "General summability factor theorems and applications," *Sarajevo J. Math.*, vol. 1(13), no. 1, pp. 59–73, 2005.
- [2] E. Savaş and B. E. Rhoades, "Double summability factor theorems and applications," *Math. Inequal. Appl.*, vol. 10, no. 1, pp. 125–149, 2007.
- [3] E. Savaş and B. E. Rhoades, "Double absolute summability factor theorems and applications," *Nonlinear Anal.*, vol. 69, no. 1, pp. 189–200, 2008.

Author's address

Ekrem Savaş

Current address: Istanbul Ticaret University Department of Mathematics, Selman-i Pak Cad. 34672, Üsküdar-Istanbul/Turkey

E-mail address: ekremsavas@yahoo.com