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Abstract. How many n-orthants can be intersected in the n-dimensional Euclidean space
simultaneously by a single straight line? In this sense of collinearity, how can we partition
the entire space into collinear sets of n-orthants? How could it happen that a nice and
innocent-looking conjecture is false in high dimensions? How are these questions related to
the dominating sets in graph theory? What is the relationship to the illumination theory in
intuitive geometry? We study such questions in this interdisciplinary paper.
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1. Introduction

We consider the n-dimensional Euclidean space, denoted Rn, for n = 2, 3, . . . . The
elements of such a space are the n-dimensional columns vectors x with real number
components x1, . . . , xn ∈ R. Another name of such a vector is point. By a sign
vector we mean such a vector s ∈ Rn for which each |si| = 1. In other words, the set
of the sign vectors is {−1,+1}n. Obviously, the number of different sign vectors is
2n. If s is a sign vector, we associate with s the following set, called open n-orthant :
{x ∈ Rn : x1s1 > 0, . . . , xnsn > 0}. Note that the 2-orthants are known as quadrants,
and the 2-quadrant associated to (+1+1) was named the first quadrant by Monge when he
invented descriptive geometry and pioneered the development of analytical geometry
two centuries ago. Obviously, the open n-orthants are pairwise disjoint open convex
sets in n dimensions, and their number is 2n. Each such open n-orthant contains
exactly one sign vector, the one that the open n-orthant is associated with.

By a straight line in general position we mean a set of vectors x ∈ Rn in the
equation form x = a + tv where t runs in R and a, v ∈ Rn are given fixed vectors
such that each ai 6= 0 and each vi 6= 0, furthermore for i = 1, 2, . . . , n the unique
solutions ti ∈ R of the equations 0 = ai + tivi are all distinct. Geometrically speak-
ing, a straight line in general position is such a line which is neither parallel to the



120 Mihály Hujter

coordinate hyperplanes (these are the n hyperplanes with equations xi = 0, where i
is one of 1, 2, ..., n), nor goes through two coordinate hyperplanes at the same point.
For example, in 2 dimensions the straight lines in general position are those whose
equations are α1x1 + α2x2 = β for α1, α2, β ∈ R, α1α2β 6= 0.

Obviously, in n dimensions almost all straight lines are in general position. If a
straight line is given in the equation form x = a+ tv where t runs in R and a, v ∈ Rn

are fixed, then obviously, at least one component of v is nonzero. We can change all
components ai and vi a little bit for i = 1, ..., n such a way that the new values all
become nonzeros and the ti numbers determined by the equations 0 = ai + tivi all
become distinct. In this sense any straight line is a “point of accumulation” to the set
of the straight lines in general position. It is also obvious, that if an arbitrary straight
line meets (i.e., intersects) an arbitrary open n-orthant, then by changing the ai and
vi components just a little bit we gain a straight line in general position that meets
the same open n-orthant. In other words, for any fixed n-orthant any straight line
(not necessarily in general position) which meets the n-orthant in question is a “point
of accumulation” to the set of straight lines which are in general position and meet
the n-orthant in question. As a corollary, if each open n-orthant in a subset of the
set of all open n-orthants is met simultaneously by an arbitrary straight line, then a
straight line in general position can also be found to meet each element of the subset.

A straightforward question is this: Given a straight line in general position, how
many open n-orthants can it intersect? Equivalently, how many n-orthants can be
shot down with one shot from a point a into direction v? “How many birds can be
killed with one stone?” In 2 dimensions the answer is easy because any straight line
in general position meets all but one open quadrants. If, for example, a is in the
first open quadrant, and v is, for example, in the second open quadrant (the open
quadrant associated with (+1−1)), then the straight line in the form x = a+tv is going to
intersect the first, the second and the fourth open quadrants (these are the 2-orthants
associated with (+1+1), (

+1
−1), and (

−1
+1)).

In the next section we will answer the above question in n dimensions. Our
Proposition 1 will state that any straight line in general position meets the same
number of open n-orthants, and this number is exactly n+1. From the above argument
and from the proof of this proposition it easily follows that in case of a straight line
not in general position this number must be smaller, moreover the set of those open
n-orthants which are met by a straight line not in general position is always a proper
subset of a straight line in general position.

In the above discussed sense we can talk about collinear sets of open n-orthants.
Such a set of open n-orthants is collinear whose elements can be met simultaneously
in a single straight line in general position. It is clear that one or two open n-orthants
are always collinear. (The empty set is also collinear.) If a subset of the 2n open
n-orthants is not collinear, we say that the subset is noncollinear.

The collinear sets of n-orthants have a simple structure if n = 2. Namely, any set
of at most 3 open quadrants is collinear, but the set of all 4 open quadrants is not. In
3 dimensions the situation is a little bit more complicated. By inspection one can see
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that the set of all 8 open 3-orthants can be partitioned into 2 collinear subsets, and
there are 12 such partitions. This way we gain 12 pairs of collinear 4-element subsets,
and all collinear 4-element subsets are among them. However, the total number of 4-
element subsets is (84) = 70, and so the number of the noncollinear 4-element subsets is
46. Even a 3-element subset is not necessarily collinear; the number of the 3-element
subsets is (83) = 56, and there are 8 noncollinear 3-element subsets. An example of
such a noncollinear 3-element subset is the one whose elements are associated to those
sign vectors in 3 dimensions which have exactly one −1 component. Those subsets
which have more than 4 elements are all noncollinear. It is worth mentioning that
in 2 dimensions the collinear subsets of the n-orthants form a matroid but in higher
dimensions they do not.

2. The maximum number of collinear n-orthants

In this section we study the structure of the inclusion-maximal collinear sets of open
n-orthants.

Proposition 1. A straight line in general position in Rn intersects exactly n+1 open
n-orthants.

Proof. We prove by induction on n. The case n = 2 is obvious by inspection.
Assume that n ≥ 3, and that for smaller dimensions the statement has already been
proved. Consider, in n dimensions, a straight line in general position given in the
form of the equation x = a+ tv. Consider the largest ti among the ti numbers which
were used in the definition of the straight lines in general position. Without loss of
generality we may assume that the largest one among the distinct ti values is tn.
Let εn > 0 be chosen such that all ti < tn − εn, i = 1, . . . , n − 1. Now observe
that for x0 = (x1, ..., xn−1)T , a0 = (a1, ..., an−1)T , v0 = (v1, ..., vn−1)T the equation
x0 = a0 + tv0 defines a straight line in general position in n − 1 dimensions. By the
induction assumption, this line intersects exactly n open (n − 1)-orthants in n − 1
dimensions. Since tn was the largest among the distinct ti values, in n dimensions
the straight line with equation x = a+ tv also intersects n open n-orthants for t < tn.
Note that the last components all have the same sign in these open n-orthants. For
t = tn the point x = a+ tv is on the nth coordinate hyperplane. However, for t > tn,
there is only one open n-orthant in which all a+tv points are, and this open n-orthant
is associated with the sign vector (s1, ..., sn−1,−sn)T where the sign vector associated
with the point a+(tn−εn)v is (s1, ..., sn−1, sn)T . So the entire straight line x = a+tv
intersects exactly n+ 1 open n-orthants. ¤

3. Hypercubes and the associated graphs

By the n-dimensional hypercube in standard position we mean the convex hull of the
set {−1,+1}n ⊆ Rn. The vertices of the cube are the sign vectors, i.e. the elements
of {−1,+1}n. Given two such vertices, their Hamming distance is the number of
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components where the two vertices, as sign vectors, are different. So the famous
Manhattan distance is exactly 2n times larger that the Hamming distance. The graph
of the hypercube has the same vertex set as the hypercube, and the graph edges are
those pairs of vertices whose Hamming distance is exactly one. So the geometrical
vertices and the graph theoretical vertices coincide. Similarly, the geometrical hyper-
cube edges and the graph edges also coincide. So the number of vertices in the graph
is 2n, and the number of edges is n2n−1. We color the edges of the graph with colors
1, 2, . . . , n as follows: an edge gets color i if the vertices of the edge are different in the
ith component and only in that one. So for each color there are exactly 2n−1 edges.
Two edges, as line segments with endpoints at the vertices of the edge, are parallel
(in the usual geometrical sense) if and only if they have the same color; otherwise the
two edges are geometrically perpendicular to each other.

In Figure 1 we show the hypercube graph for n = 5. The black dots represent the
32 vertices. The 16 horizontal lines represent the edges of color 1. The 16 vertical lines
represent the edges of color 2. The edges represented by the lines on the diagonals of
the big square are all of color 3. There are 8 such edges. However, there are 8 more
edges of color 3. Those are all among the sides of the central 20-gon. The tangents
of these 8 lines are +2, −2, +1/2, or −1/2. The remaining 32 edges form 8 deltoids.
There are 2 such deltoids in each corner of the figure. The edges of these deltoids are
alternatively of color 4 and color 5 in such a way that the almost vertical edges are all
of color 4. (The expression “almost vertical” is understood to mean that the tangent
of such a line is at least 2 in absolute value. Similarly, the “almost horizontal” lines
are those, whose tangents are between 0 and 1/2.
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Figure 1. The graph of the 5-dimensional hypercube

We will use some usual notions of graph theory such as a star or a tree. By a super
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tree we mean such a tree, as an induced subgraph in the n-dimensional hypercube
graph, that has exactly n edges with n different colors. Such a super tree has n + 1
vertices. By a super star we mean such a super tree which is a star itself. In other
words, a super star contains a vertex, called central vertex, and all those vertices, that
are neighbors of the central vertex in the graph.

For example, for n = 2 there are four super trees in the 4 vertex hypercube
graph. The vertex sets of these trees can be listed as follows: {(−1+1), (+1+1), (+1−1)},
{(+1+1), (+1−1), (−1−1)}, {(+1−1), (−1−1), (−1+1)}, {(−1−1), (−1+1), (+1+1)}. All these super trees are super
stars.

For n ≥ 3, not all super trees are super stars. For example, for n = 3 we have 8
super stars and 12 super trees that are path graphs in the graph theoretical sense. (A
super tree is a path if exactly n − 1 vertices have 2 neighbors.) The larger the value
of n the smaller the percentage the super stars represent among the super trees.

4. The main result

Our main theorem can be formulated as follows:

Theorem 2. Consider an arbitrary path, with edges of different colors, in the n-
dimensional hypercube graph. There exists such a straight line in general position
that intersects all n-orthants that are associated to the vertices of the path.

Proof. We prove by induction on n. Without loss of generality we may assume that
the given path has n edges (or equivalently, it has n+1 vertices) because in any other
case we can add extra vertices and edges. Actually we will prove a stronger theorem.
Given a straight line in general position in Rn in the form x = a + tv, consider the
distinct real numbers ti, i = 1, 2, ..., n, as above. Let tmin and tmax denote the smallest
and largest ti, respectively. We claim that the straight line in general position may
have such parameters for which a + (tmin − 1)v and a + (tmax + 1)v are in the open
n-orthants associated with the endvertices of the path. Moreover, we can prescribe
that which endvertex should corresponds tmax.

The case n = 2 is easy by inspection. We may assume that n ≥ 3 and that the
statement has already been proved in smaller dimensions. Consider one endvertex of
the given path. Let it be denoted as Pn. Let Pn−1 denote its neighbor in the path.
Without loss of generality we may assume that the edge {Pn, Pn−1} is of color n.
Also, without loss of generality we may assume that Pn = (+1,+1, ...,+1)T as a sign
vector. In other words, Pn is the vertex which in the first open n-orthant. Now the
other vertices of the graph all have −1 in their last coordinate because color n can
never occur among the colors of the path edges. Similarly to the proof of Proposition
1 we can decrease the dimension number by one by cutting off the nth coordinates. By
the induction hypothesis we gain that there exists at least one straight line in general
position in Rn−1 which line intersects all open (n − 1)-orthants that are associated
with the first n vertices of our path. Consider such a straight line in the equation
form x0 = a0+tv0 where x0 = (x1, ..., xn−1)T , a0 = (a1, ..., an−1)T , v0 = (v1, ..., vn−1)T .
By the induction hypothesis we may assume that Pn−1 is in the same (n−1)-orthant
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as a0 + (tmax + 1)v0. Now let us fix τn ∈ R arbitrarily such that τn > tmax + 2 and
let vn = 1, an = −τn, a = (a1, ..., an−1, an)T , v = (v1, ..., vn−1, vn)T . We can choose
such a value of tn for which the n-dimensional straight line with equation x = a+ tv
will be in general position, and for this straight line all requirements are fulfilled.
Here tn will be τn, and thus for t > tn the points x + tv all will be in the open
n-orthant associated with Pn. At the same time for t < tn, t 6= ti, i = 1, 2, ..., n− 1,
the points x+ tv will be in the open n-orthants associated with the vertex P 6= Pn of
the n-dimensional path in question. ¤

5. Killing all birds with as few stones as possible

Consider the open n-orthants in n dimensions to be birds in the air. We have to kill
all birds. A straight line can be considered to be the orbit of a stone. We have shown
that one stone can kill n+ 1 birds. How many stones are needed to kill all birds?

Problem 3. How many straight lines in general position can together meet all open
n-orthants.

Let κ(n) denote the minimum number of straight lines in general position that
can together meet all open n-orthants. In a more general form and by using different
terminology Gy. Kiss conjectured the following in [2].

Conjecture 4. (Gy. Kiss [2]) The vertex set of the n-dimensional hypercube graph
can be covered by using the vertex sets of κ(n) super stars.

Here we tell some reasons to convince the reader that this conjecture is a reasonable
one. From the results of Kiss [2] it easily follows that there is bijection from the vertex
set of the n-dimensional hypercube to the set of all open n-orthant with the following
property: The image of the vertex set of a super star is an (n+ 1)-element collinear
set of open n-orthants. On the other hand, from the proofs of our Proposition 1 and
Theorem 2 we can see that there is a natural correspondence between the superstars
and the paths formed by the sign vectors of the (n + 1)-element collinear sets of
open n-orthants. Namely, let P an endvertex of the path, and consider such the
uniquely determined superstar whose 2 vertices are P and its neighbor in the path
in question. So the central vertex of the super star is the only neighbor of P in
the path. Furthermore, for any fixed pair of such a path and such a super star, the
bijection of Kiss can be chosen such that the image of this super star is exactly the set
of those open n-orthants who are associated to the vertices of the path in question.
Interestingly enough, those pairs of edges which corresponds to each other, always
have the same color in the hypercube graph.

Another fact to convince the reader is this: We can easily check that the conjecture
of Kiss is valid for n = 2, 3. In both cases the entire set of all open n-orthants can
easily be partitioned into 2 collinear subsets. On the other hand, the two super stars
with central vertices s and −s, where each component of s is +1, obviously cover the
entire vertex set of the hypercube graph.

The conjecture is also valid for n = 4. One can easily see that the minumum
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number of super stars is the required covering which is nothing else but the famous
dominating number of the n-dimensional hypercube graph. (Cf. [1] for the impor-
tance of the dominating number). It is an easy exercise to check that the dominating
number of the 4-dimensional hypercube graph is 4. The total number of the ver-
tices is 16, and each super star has 5 vertices. So we need at least 4 super stars.
Here are the 4 central vertices of a feasible super star covering: (+1,+1,+1,−1)T ,
(−1,−1,−1,−1)T , (+1,+1,+1,+1)T , (−1,−1,−1,+1)T . On the other hand, the fol-
lowing tables show the column vectors of three sets of collinear open 4-orthants (more
precisely, the associated sign vectors):
+1 +1 +1 +1 −1
+1 +1 +1 −1 −1
+1 +1 −1 −1 −1
+1 −1 −1 −1 −1

−1 −1 −1 −1 +1
+1 +1 +1 −1 −1
+1 +1 −1 −1 −1
−1 +1 +1 +1 +1

−1 −1 −1 −1
−1 −1 −1 −1
−1 −1 −1 −1
−1 −1 −1 −1

Only 2 sign vectors are missing, but we know that a 2-element set of open n-
orthants is always collinear. This completes the proof of Conjecture 4 for n = 4.

Interestingly enough, Conjecture 4 is not valid for n = 5.

Theorem 5. We have κ(5) = 6, and the vertices of the 5-dimensional hypercube
cannot be covered by the vertex sets of 6 superstars.

Proof. Here are the vertices of 6 paths in the 5-dimensional hypercube (only the signs
are showed):

−1 +1 +1 +1 +1 +1
+1 +1 +1 −1 −1 −1
+1 +1 −1 −1 −1 −1
+1 +1 +1 +1 +1 −1
−1 −1 −1 −1 +1 +1

+1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 +1
+1 +1 +1 −1 −1 −1
+1 +1 −1 −1 −1 −1
−1 −1 −1 −1 +1 +1

−1 −1 −1 +1 +1 +1
+1 +1 +1 +1 −1 −1
−1 −1 +1 +1 +1 +1
+1 +1 +1 +1 +1 −1
−1 +1 +1 +1 +1 +1

−1 −1 −1 −1 −1 +1
−1 −1 −1 −1 +1 +1
−1 −1 +1 +1 +1 +1
+1 +1 +1 −1 −1 −1
−1 +1 +1 +1 +1 +1

+1 +1 +1 +1 +1
−1 +1 +1 +1 +1
+1 +1 −1 −1 −1
−1 −1 −1 −1 +1
−1 −1 −1 +1 +1

+1 −1 −1 −1
−1 −1 +1 +1
−1 −1 −1 +1
−1 −1 −1 −1
−1 −1 −1 −1

On the other hand, it is well-known in graph theory that the so-called dominat-
ing number of the 5-dimension hypercube graph is larger than 6. This fact can be
formulated simply as follows: One cannot take 6 vertices from the graph of Figure 1
such that any other vertex is the neighbor of at least one chosen vertex. By using the
symmetry of Figure 1 we can easily check that this statement is true. ¤
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6. Concluding remarks

We have proved Conjecture 4 for n = 2, 3, 4, and we have disproved it for n = 5.
We have not studied the conjecture in the cases n = 6, 7, .... Kiss [2] proved such a
result which implies that Conjecture 4 is valid for infinite different values of n.
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