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Abstract. In this paper we obtain some Cheeger-Gromov-Taylor type compactness theorems for
a forward complete and connected Finsler manifold of dimensional n � 2 via weighted Ricci
curvatures. The proofs are based on the index form of a minimal unit speed geodesic segment,
Bochner-Weitzenböck formula and Hessian comparison theorem.
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1. INTRODUCTION AND MAIN THEOREMS

In [8], Myers obtained a compactness theorem in Riemannian manifolds. The
theorem of Myers concludes that if Ric � .n� 1/K > 0, then diam.M/ � �=

p
K.

Later, Cheeger-Gromov-Taylor [3] proved that if there exist p 2 M and r0;� > 0
such that

Ric� .n�1/
.1
4
C�2/

r2
(1.1)

holds for all r.x/� r0 > 0where r is distance function defined with respect to a fixed
point p 2M , i.e., r.x/D d.x;p/, then M is compact and the diameter is bounded
from above by diamp.M/ < r0e

�=� . By using Bakry-Emery Ricci tensor, Ricf D
RicCHessf , Soylu [12] attained a generalization of Cheeger-Gromov-Taylor’s com-
pactness theorem.

Form-Bakry-Emery Ricci tensor, Wang [14] proved that, if the following inequal-
ity

Ricf;m D RicCHessf �
df ˝df
m�n

� �.m�1/
K0

.1C r/2
(1.2)

holds for all x 2M , where K0 < �14 and r is distance function defined with respect
to a fixed point p 2M , then M is compact and the diameter has the upper bound

diam.M/ < 2.e2�=K �1/, where K D
q
�K0�

1
4

.
We can find various kinds of generalizations of the Myers theorem in [4, 6, 7, 13,

15].
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Finsler geometry is a natural generalization of Riemannian geometry. The valid-
ity of the Myers compactness theorem for Finsler manifolds was shown by Shen
[11] without any modification. Later, using the weighted Ricci curvature RicN WD
RicC PS � S2

N�n
� K > 0, N 2 .n;1/, Ohta [9] obtained a compactness theorem

and gave an upper bound for the diameter of n-dimensional Finsler manifolds as
diam.M/ � �

p
.N �1/=K. In [16], Wu establish a generalized Myers theorem un-

der line integral curvature bound for Finsler manifolds. In [2], Anastasiei extended
to Finsler manifolds the compactness theorems of Ambrose and Galloway (see [1]
and [5], respectively). Yin [18] acquired two Myers-type compactness theorems for
a Finsler manifold with a positive weighted Ricci curvature bound and an advisable
condition on the distortion or the S -curvature.

Throughout this paper, .M;F / is a connected forward complete n-dimen-
sional smooth Finsler manifold, r.x/D d.x;p/ is the forward distance function from
p 2M and d� is an arbitrary positive C1-measure on M . Here, there is no canon-
ical measure like the volume measure in Riemannian geometry. Thus we begin with
an arbitrary measure on M .

We are now ready to give our main results.

Theorem 1. Let .M;F;d�/ be a forward complete and connected Finsler man-
ifold of dimension n with arbitrary volume form and let r be the distance function
r.x/D d.x;p/ with respect to a fixed point p 2M . Assume that the weighted Ricci
curvature

Ric1 WD RicC PS � .n�1/
H

r2
; (1.3)

and the distortion j� j � .n� 1/k for all x 2M such that r.x/ � r0 > 0, where the
constants k and H satisfy the inequalities k � 0 and H > 1=4. Then M is compact
and the diameter from the point p 2M satisfies

diamp.M/� r0 exp
�

2

4H �1

q
32k2C .4H �1/�2C16k

p
4k2C .4H �1/H�2

�
: (1.4)

The distortion � is a smooth function on M when M is a Riemannian manifold.
Therefore the diameter estimate (1.4) of Theorem 1 coincides with the diameter es-
timate of Theorem 1.1 in [12].

Theorem 2. Let .M;F;d�/ be a forward complete and connected Finsler man-
ifold of dimension n with arbitrary volume form and let r be the distance function
r.x/D d.x;p/ with respect to a fixed point p 2M . Assume that the weighted Ricci
curvature

RicN WD Ric1�
S2

N �n
� .N �1/

H

r2
(1.5)

for all N 2 .n;1/ and r.x/ � r0 > 0, where H > 1=4. Then M is compact and the
diameter from the point p 2M satisfies

diamp.M/� r0e
2�=
p
4H�1: (1.6)
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The diameter estimate (1.6) obtained in the above theorem coincides with the res-
ult of Cheeger-Gromov-Taylor in [3] obtained for the original Ricci tensor in the
Riemannian manifolds.

Theorem 3. Let .M;F;d�/ be a forward complete and connected Finsler man-
ifold of dimension n with arbitrary volume form and let r be the distance function
r.x/D d.x;p/ with respect to a fixed point p 2M . Suppose that the weighted Ricci
curvature

RicN WD Ric1�
S2

N �n
� .N �1/

H

.1C r/2
(1.7)

for all x 2M andN 2 .n;1/, whereH >1=4. ThenM is compact and the diameter
satisfies

diam.M/� .1C�/.e2�=
p
4H�1

�1/; (1.8)
where � is the reversibility.

We review below some basic informations about the Finsler manifolds to be used
in the proofs of main theorems.

2. A BRIEF REVIEW OF FINSLER GEOMETRY

Let .M;F / be a Finsler n-manifold with Finsler metric F W TM ! Œ0;1/. Let
� W TM !M be the natural projection and .x;y/ be a point of TM such that x 2M
and y 2 TxM . A Finsler metric is a C1-Finsler structure of M with the following
properties:

1. F is C1 on TM n0 (Regularity),
2. F.x;�y/D �F.x;y/ for all � > 0 (Positive homogeneity),
3. The n�n Hessian matrix

gij WD
1

2
ŒF 2�yiyj

is positive-definite at every point of TM n0 (Strong convexity).
The Chern curvature RV for vectors fields X;Y;Z 2 TxM n0 is defined by

RV .X;Y /Z WD rVX r
V
Y Z�r

V
Y r

V
XZ�r

V
ŒX;Y �Z; (2.1)

and the flag curvature is defined as follows:

K.V;W / WD
gV .R

V .V;W /W;V /

gV .V;V /gV .W;W /�gV .V;W /2
; (2.2)

where V;W 2 TxM n0 are linearly independent vectors. Then the Ricci curvature of
V (as the trace of the flag curvature) is defined by

Ric.V / WD
n�1X
iD1

K.V;Ei /; (2.3)
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where fE1;E2; :::;En�1;V=F.V /g is an orthonormal basis of TxM with respect to
gV .

Let d�D �.x/dx1dx2:::dxn be the volume form onM . For a vector V 2 TxM n
0,

�.x;V / WD ln

p
det.gij .x;V //

�.x/
(2.4)

is a scalar function on TxM n0 which is called the distortion of .M;F;d�/. We say
that the distortion � is a C1-function, if M is a Riemannian manifold. Setting

S.x;V / WD
d

dt

�
�..t/; P.t//

�
jtD0; (2.5)

where  is the geodesic with .0/ D x, P.0/ D V . S.x;�V / D �S.x;V / for all
� > 0. S is a scalar function on TxM n0 which is called the S -curvature. From the
definition, it seems that the S -curvature measures the rate of change in the distortion
along geodesics in the direction V 2 TxM .

For all N 2 .n;1/, we define the weighted Ricci curvature of .M;F;d�/ as fol-
lows (see [9]): 8̂̂<̂

:̂
RicN .V / WD Ric.V /C PS.V /� S.V /

2

N�n
;

Ric1.V / WD Ric.V /C PS.V /;

Ricn.V / WD
�

RicC PS.V /; if S.V /D 0
�1 otherwise:

Also RicN .cV / WD c2RicN .V / for c > 0.
We say that .M;F / is forward complete if each geodesic  W Œ0;`�!M is extended

to a geodesic on Œ0;1/, in other words, if exponential map is defined on whole TM .
Then the Hopf-Rinow theorem gives that every pair of points in M can be joined by
a minimal geodesic.

The Legendre transformation L W TM ! T �M is defined by

L.W / WD

�
gW .W; :/; W ¤ 0;

0 W D 0:

For a smooth function h WM ! R, the gradient vector of h at x 2M is defined as
rh.x/ WD L�1.dh/.

Given a smooth vector fieldZDZi@=@xi onM , the divergence ofZ with respect
to an arbitrary volume form d�D e'dx1dx2:::dxn is defined by

divZ WD
nX
iD1

 
@Zi

@xi
CZi

@'

@xi

!
: (2.6)

Then we define the Finsler-Laplacian of h by �h WD div.rh/D div.L�1.dh//.
The following lemma is useful to prove Theorem 3 (see [17]).
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Lemma 1. Let .M;F;d�/ be a Finsler n-manifold, and h W M ! R a smooth
function on M . Then on U D fx 2M W rhjx ¤ 0g we have

�hD
X
i

H.h/.Ei ;Ei /�S.rh/ WD trrhH.h/�S.rh/; (2.7)

where E1;E2; :::;En is a local grh-orthonormal frame on U .

Finally, define reversibility � WD �.M;F / as follows:

� WD sup
x2M;y2TMn0

F.x;�y/

F.x;y/
: (2.8)

Obviously, � 2 Œ1;1�, and �D 1 if and only if .M;F / is reversible.

3. THE PROOFS OF THE THEOREMS

Let .M;F;d�/ be a Finsler manifold of dimensional n and r.x/ D d.x;p/ be a
distance function with respect to a fixed point p 2 M . It is well known that r is
only smooth on M �

�
Cp [fpg

�
where Cp is the cut locus of the point p 2M . We

assume that  is a minimal unit speed geodesic segment. We have rr D P in the
adapted coordinates with respect to the r , and also have F.rr/D 1 (see [11]). On
the other hand, using the Finsler metric we obtain a weighted Riemannian metric
grr . Thus we can apply the Riemannian calculation for grr (on M �

�
Cp[fpg

�
).

In order to prove the Theorem 1 and Theorem 2, we use the index form of a min-
imal unit speed geodesic, and to prove Theorem 3, we use Bochner-Weitzenböck
formula and Hessian comparison theorem in Finsler geometry.

Proof of Theorem 1. Let q 2 M be a point and let � be a minimal unit speed
geodesic segment from p to q of length ` such that �.0/D p, �.`/D q and ` > r0 >
0. Since the inequality ` > r0 holds, ` can be parametrized by � > 0 such that

`D r0e
�� > r0: (3.1)

By virtue of any subsegment of a minimal unit speed geodesic segment is also a
minimal unit speed geodesic segment, we have the minimal unit speed geodesic seg-
ment  defined by .t/D � jŒr0;`�.t/ where  W Œr0;`�!M and .r0/D �.r0/D Qq,
.`/ D �.`/ D q. Let fE1 D P;E2; : : : ;Eng be a parallel grr -orthonormal frame
along  and let f 2 C1.Œr0;`�/ be a real-valued smooth function such that f .r0/D
f .`/D 0. Then we have

I.fEi ;fEi /D
Z `

r0

�
grr. Pf Ei ; Pf Ei /�grr.R

rr.fEi ;rr/rr;fEi /
�
dt: (3.2)
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It is obvious that (3.2) yields, by grr.Rrr.rr;rr/rr;rr/D 0 and the assumption
(1.3) given in Theorem 1,

nX
iD2

I.fEi ;fEi /D
Z `

r0

�
.n�1/ Pf 2�f 2Ric.rr/

�
dt

D

Z `

r0

�
.n�1/ Pf 2�f 2Ric1.rr/Cf 2 PS.rr/

�
dt

�

Z `

r0

�
.n�1/

�
Pf 2�

Hf 2

r2

�
Cf 2 PS.rr/

�
dt: (3.3)

Here, the term f 2 PS.rr/ equals to

f 2 PS.rr/D�2f Pf S.rr/C
d

dt

�
f 2S.rr//

�
D�2f Pf

d�

dt
C
d

dt

�
f 2S.rr//

D 2�
d

dt
.f Pf /�2

d

dt
.�f Pf /C

d

dt

�
f 2S.rr//

�
: (3.4)

Integrating both sides of (3.4) and using the assumption j� j � .n�1/k, we obtainZ `

r0

�
f 2 PS.rr/

�
dt D 2

Z `

r0

�
d

dt
.f Pf /dt � 2.n�1/k

Z `

r0

ˇ̌̌ d
dt
.f Pf /

ˇ̌̌
dt; (3.5)

because of f .r0/D f .`/D 0. By use of (3.5), the inequality (3.3) becomes
nX
iD2

I.fEi ;fEi /�
Z `

r0

.n�1/
�
Pf 2�

Hf 2

r2

�
dtC2.n�1/k

Z `

r0

ˇ̌̌ d
dt
.f Pf /

ˇ̌̌
dt: (3.6)

Set

f .t/D �r0
p
r..t//sin.

1

�
ln
r..t//

r0
/: (3.7)

Therefore we have

1

r20 .n�1/

nX
iD2

I.fEi ;fEi /� �
1

4

Z `

r0

.4H �1/�2

r
sin2.

1

�
ln
r

r0
/dr

C

Z `

r0

1

r

 
cos2.

1

�
ln
r

r0
/C

�

2
sin.

2

�
ln
r

r0
/

!
dr

C2k

Z `

r0

1

r

ˇ̌̌�
2

sin.
2

�
ln
r

r0
/Ccos.

2

�
ln
r

r0
/
ˇ̌̌
dr: (3.8)

In (3.8), considering the change variable uD ln r
r0

, by `D r0e�� , we obtain

1

r20 .n�1/

nX
iD2

I.fEi ;fEi /� �
1

4

Z ��

0

.4H �1/�2 sin2.
1

�
u/du
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C

Z ��

0

 
cos2.

1

�
u/C

�

2
sin.

2

�
u/

!
du

C2k

Z ��

0

ˇ̌̌�
2

sin.
2

�
u/C cos.

2

�
u/
ˇ̌̌
du; (3.9)

from which

1

r20 .n�1/

nX
iD2

I.fEi ;fEi /�
�

8

�
4� � .4H �1/��2C16k

q
�2C4

�
: (3.10)

In the right hand side of (3.10), if the inequality

4� � .4H �1/��2C16k

q
�2C4 < 0 (3.11)

holds, then the index form I is not positive semi-definite. This is a contradiction.
Hence, we must take

4� � .4H �1/��2C16k

q
�2C4� 0: (3.12)

Thus

��
2

.4H �1/�

r
32k2C .4H �1/�2C16k

q
4k2C .4H �1/H�2: (3.13)

Using the parametrization `D r0e�� given in (3.1), we find

`D r0e
��
� r0 exp

�
2

4H �1

q
32k2C .4H �1/�2C16k

p
4k2C .4H �1/H�2

�
:

(3.14)
Thus, M is compact and the diameter of M has the upper bound (1.4).

Proof of Theorem 2. By similar arguments given in the proof of Theorem 1, we
have

nX
iD2

I.fEi ;fEi /D
Z `

r0

�
.n�1/ Pf 2�f 2Ric.rr/

�
dt: (3.15)

Using the assumption (1.5) in the above integral expression, we get
nX
iD2

I.fEi ;fEi /�
Z `

r0

�
.n�1/ Pf 2� .N �1/

Hf 2

r2

�
dt

C

Z `

r0

�
f 2 PS.rr/�f 2

.S.rr//2

N �n

�
dt: (3.16)

In the inequality (3.16), the term f 2 PS.rr/ equals to

f 2 PS.rr/D�2f Pf S.rr/C
d

dt
.f 2S.rr//: (3.17)
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Integrating both sides of (3.17), we obtainZ `

r0

f 2 PS.rr/dt D

Z `

r0

�2f Pf S.rr/dt; (3.18)

by f .r0/ D f .`/ D 0. If we take P D � Pf and T D fS.rr/, then the Cauchy-
Schwarz inequalityZ `

r0

PT dt D

Z `

r0

�f Pf S.rr/dt �
�Z `

r0

Pf 2dt
�1=2�Z `

r0

f 2.S.rr//2dt
�1=2

:

(3.19)
Because of the facts

AD .N �n/

Z `

r0

Pf 2dt � 0 and B D
1

N �n

Z `

r0

f 2.S.rr//2dt � 0; (3.20)

where N 2 .n;1/, we have the inequality
p
AB �

1

2
.ACB/, i.e.,�Z `

r0

Pf 2dt
�1=2�Z `

r0

f 2.S.rr//2dt
�1=2
�

Z `

r0

1

2
.N �n/ Pf 2dt

C

Z `

r0

f 2
.S.rr//2

2.N �n/
dt: (3.21)

Using (3.21) in (3.19), we findZ `

r0

�f Pf S.rr/dt �

Z `

r0

�1
2
.N �n/ Pf 2Cf 2

.S.rr//2

2.N �n/

�
dt: (3.22)

Therefore we haveZ `

r0

f 2 PS.rr/dt D

Z `

r0

�2f Pf S.rr/dt �

Z `

r0

�
.N �n/ Pf 2Cf 2

.S.rr//2

N �n

�
dt:

(3.23)
Inserting (3.23) into (3.16), we obtain

nX
iD2

I.fEi ;fEi /� .N �1/
Z `

r0

�
Pf 2�

Hf 2

r2

�
dt: (3.24)

In the inequality (3.24), let us consider the choice

f .t/D �r0
p
r..t//sin.

1

�
ln
r..t//

r0
/: (3.25)

Thereby the inequality (3.24) yields

1

N �1

nX
iD2

I.fEi ;fEi /�
Z `

r0

r20
r

�
cos2.

1

�
ln
r

r0
/C

�

2
sin.

2

�
ln
r

r0
/

�
dr
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�
1

4

Z `

r0

r20
r
.4H �1/�2 sin2.

1

�
ln
r

r0
/dr: (3.26)

In the above inequality, considering the change variable u D ln r
r0

, , by use of ` D
r0e

�� , we get

1

N �1

nX
iD2

I.fEi ;fEi /�
Z ��

0

r20

�
cos2.

1

�
u/C

�

2
sin.

2

�
u/

�
du

�
1

4

Z ��

0

r20 .4H �1/�
2 sin2.

1

�
u/du; (3.27)

which implies

1

N �1

nX
iD2

I.fEi ;fEi /� r20
��

8

�
4� .4H �1/�2

�
: (3.28)

In the right hand side of (3.28), if the inequality

4� .4H �1/�2 < 0 (3.29)

holds, then we conclude that the index form I is not positive semi-definite. But, since
 is minimal geodesic, this is a contradiction. Hence, we must take

4� .4H �1/�2 � 0: (3.30)

Thus we obtain

��
2

p
4H �1

: (3.31)

Using the parametrization `D r0e�� , we find

`D r0e
��
� r0e

2�=
p
4H�1: (3.32)

Thus, M is compact and the diameter of M has the upper bound (1.6).

Proof of Theorem 3. We know that r.x/ D d.x;p/ is a distance function from a
fixed point p 2M and it is smooth on M �

�
Cp[fpg

�
. Also it satisfies F.rr/D 1.

In Finsler geometry, recall that the Bochner-Weitzenböck formula [10] for a smooth
function u 2 C1.M/

0D�ru
�
F.ru/2

2

�
D Ric1.ru/CD.�u/.ru/Ckr2uk2HS.ru/: (3.33)

From the Bochner formula applied to distance function r and by Lemma 1, we have,
on M �

�
Cp[fpg

�
,

0D Ric1.rr/CD.�r/.rr/Ckr2rk2HS.rr/

� Ric1.rr/Cgrr.rrr�r;rr/C
.�rCS.rr//2

n�1
: (3.34)
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By virtue of the inequality .a�b/2 � 1
ˇC1

a2� 1
ˇ
b2 holding for all real numbers a;b

and positive real number ˇ, we have�
�rCS.rr/

�2
n�1

�
.�r/2

.n�1/.ˇC1/
�
.S.rr//2

.n�1/ˇ
: (3.35)

In the case where N > n, taking ˇ D N�n
n�1

> 0, (3.34) yields

0� Ric1.rr/Cgrr.rrr�r;rr/C
.�r/2

N �1
�
.S.rr//2

N �n
: (3.36)

Applying the assumption (1.7) given in Theorem 3 to (3.36), we find

0� @r.�r/C
.�r/2

N �1
C .N �1/

H

.1C r/2
: (3.37)

The above inequality can be rewritten as

0� @r.
�r

N �1
/C

�
�r

N �1

�2
C

H

.1C r/2
: (3.38)

We know from the Hessian comparison theorem in [17], if there is a local vector
field X on an open set U of p 2 M with grr.X;X/ D 1, grr.rr;X/ D 0, then
H.r/.X;X/� 1

r
as r! 0C. Hence, using the Lemma 1, we have

lim
r!0C

r.
1

N �1
�r/D lim

r!0C
r

 
1

N �1

�
trrrH.r/�S.rr/

�!
D
n�1

N �1
< 1; (3.39)

where N > n. By (3.38) and (3.39), we obtain, on M �
�
Cp[fpg

�
,

1

N �1
�r �

1

2.1C r/

�
1C
p
4H �1cot

�p4H �1
2

ln.1C r/
��
; (3.40)

where H > 1=4. Indeed, the function

Y.r/D
1

2.1C r/

�
1C
p
4H �1cot

�p4H �1
2

ln.1C r/
��

(3.41)

is a solution of the Riccati differential equation

Y 0.r/C .Y.r//2C
H

.1C r/2
D 0: (3.42)

Because of limr!0C rY.r/D 1 and (3.39), we have

lim
r!0C

r.
1

N �1
�r/� lim

r!0C
rY.r/: (3.43)

Thus, for a sufficiently small positive constant " 2 .0;T / the inequality
1

N �1
�r."/� Y."/ (3.44)
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is ensured. In that case, the Riccati comparison theorem gives the inequality
1

N �1
�r.t/� Y.t/ (3.45)

for every t 2 Œ";T /.
Let q 2M be any point, and let � be a minimal unit speed geodesic segment from

p to q. Suppose that the inequality

d.p;q/ > e2�=
p
4H�1

�1 (3.46)

is satisfied. Then, since � is a minimal unit speed geodesic segment from p to q, we
have the fact that the point �.e2�=

p
4H�1�1/ is outside the cut locus of p 2M , i.e.,

�.e2�=
p
4H�1

�1/ 2M �
�
Cp[fpg

�
: (3.47)

Therefore the distance function r is smooth at this point. Namely, at this point, left
hand side of (3.40) is a constant. However, the right side of (3.40) tends to �1 as
r! .e2�=

p
4H�1�1/�, i.e.,

lim
r!.e2�=

p
4H�1�1/�

1

2.1C r/

�
1C
p
4H �1cot

�p4H �1
2

ln.1C r/
��
D�1:

(3.48)
This is a contradiction. Hence, (3.46) does not hold. It must be

d.p;q/� e2�=
p
4H�1

�1: (3.49)

Therefore M is compact. Let � be the reversibility. For any points p0;q0 2M , due
to the triangle inequality and the inequality (3.49), we obtain

d.p0;q0/� d.p0;p/Cd.p;q0/� �d.p;p0/Cd.p;q0/; (3.50)

and so
d.p0;q0/� .1C�/.e2�=

p
4H�1

�1/: (3.51)
This completes the proof of theorem.
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