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Abstract. In the paper, the authors present some integral inequalities of the Hermite-Hadamard
type for s-geometrically convex functions and for the product of two s-geometrically convex
functions.

2010 Mathematics Subject Classification: 26D15; 26A51; 26D20; 41A55

Keywords: integral inequality, Hermite-Hadamard type, s-geometrically convex function, product

1. INTRODUCTION

We recall the definitions of classical convex functions and geometrically convex
functions.

Definition 1. Let f : I € R = (—o0,00) — R. If the inequality
fAx+A=2)y) SAf(x)+1A=2)f(y) (LD

is valid for all x,y € I and A € [0, 1], then f is called the convex function on [; if
the inequality (1.1) reverses, then f is called the concave function on /.

Definition 2. Let f : I € R+ = (0,00) — Ry. If the inequality
fE) = Ao (1.2)

is sound for any x,y € I and A € [0, 1], then f is called the geometrically convex
function; if the inequality of (1.2) reverses, then f is called the geometrically concave
function.

The concept of classical convex functions has been generalized or extended widely
in recent decades. Some of them can be reformulated as follows.

Definition 3 ([3,5]). Let f : I CR — Ry =[0,00) and s € (0, 1]. If the inequality
fOx+1=2)y) =27 f(x)+A=2)° f(y)
holds for all x,y € I and A € [0, 1], then f is called the s-convex function on /.
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Definition 4 ([14, 15]). Lets € (0,1] and f : I € Ry — R. If the inequality
S = @)

validates for any x,y € I and A € [0, 1], then f is called the s-geometrically convex
function on /.

For classical convex functions, we have the famous Hermite-Hadamard integral
inequality below.

Theorem 1. Let f : [a,b] C R — R be a convex function on [a,b). Then

ath fia@)+ 1®)
(0) = [ o< 29T (13)

If f is a concave function on I, then the inequality (1.3) reverses.

In the literature, there have existed some integral inequalities of the Hermite—
Hadamard type on classical convex functions and s-convex functions. Some of them
can be reformulated as follows.

Theorem 2 ([4, Theorem 2.2]). Let f : I° C R — R be a differentiable mapping
and a,b € I° witha < b. If | f'| is convex on [a,b], then

) b b—
SO0 L rgad = CS0 o)

Theorem 3 ([7, Theorems 2.3 and 2.4]). Let f : I C Ryo — R be differentiable
onI1°anda,b € I witha <b. If | f'|P is s-convex on [a,b] for some s € (0, 1] and
p > 1, then

) L o

and
a+b 1 b b—a 4 l/p , /( _)
g o]

31/ PO) T L) @) D | P D],

Theorem 4 ([0, Theorem 3]). Let f : I € Rg — R be differentiable on [°, a,b € I
with a < b, and ' € Lla,b). If | f'|? is s-convex on [a,b] for some s € (0,1] and

b—a
16

=

4 1/17
(ﬁ) (If' @] +1f'®)])

q > 1, then
fla)+ f(b) 1 b <b_a g—1 VP 1 \Va
‘ - —a/a Jx)dx) == |:2(2C[—1):| (s+1)
b\ 9714 b (47174
i@ (2] +[rorr(50) ]
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In recent decades, many new integral inequalities of the Hermite—Hadamrd type
for diverse new kinds of convex functions have been created and established. For de-
tailed information, please refer to [ -4, 6—15] and closely related references therein.

In this paper, we will establish some new integral inequalities of the Hermite—
Hadamard type for s-geometrically convex functions.

2. SOME NEW INTEGRAL INEQUALITIES

We now start out to establish some integral inequalities of the Hermite—Hadamard
type for s-geometrically convex functions.

Theorem 5. Let f: I C Ry — Ry be an integrable function, a,b € I witha < b,
and s € (0,1]. If f is an s-geometrically convex function, then

] b
FOR' (Vab) = — /fix)dxs[f(a)ﬂb)]l—%(ﬁ(axfS(b>)»

~ Inb—Ina
where the logarithmic mean L(u,v) is defined by
L A
L(u,v) =4 Inv—Inu 2.1
u, U =u.

Proof. By changing the variable x = a’b!~* for t € [0, 1] and by the s-geometric
convexity, we have

1 b ! 1 s
/ ACI =/ f (@b ) de 5/ @) A= (b)ds.
Inb—Ina a X 0 0
In [2], it was obtained that the inequality
T’l’s < nSt+1—S (22)
is valid for n > 1,0 <¢ <1,and 0 <s < 1. When s € (0, 1), the s-geometrically

convex function satisfies f(x) > 1. Consequently, since f(a), f(b) > 1, we arrive at

/1 fts(a)f(l—t)s(b)dt < /1 fSt+1_S(a)fs(1_t)+l_s(b)dl
0 0

=[f(@) SO L(f* (), f* (b))

Due to v/ab = va'b'=tht'al~! for all ¢ € [0, 1], by the s-geometric convexity, we
find

PO (Vi) = [ 1) f () 2 < LD )

Integrating with respect to ¢ € [0, 1] on both sides of the above inequality gains

1—s 1! f1— _ 1 b
A («/LE) = 5/ [/ (a 4 ) +f(bta1 )]de = Inb —1Ina /a ffCX) dx.

0
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The proof of Theorem 5 is complete. g

Theorem 6. Let f: I C Ry — Ry be an integrable function, a,b € I witha < b,
and s € (0,1]. If f isan s-geometrically convex function on [a,b), then

Vab fO2' (Vab) < / FO)dx = @S BN' T L(af* @), b)),
where L(u,v) is the logarlthmlc mean defined by (2.1).

Proof. Taking x = a’b'~" for ¢ € [0, 1], using Definition 4, and employing the
inequality (2.2) lead to

1 1
_ typ1—t typ1—t tpl1—t otS (1—1)3
mb_ma/.ﬂmdx A‘lb fla'b )dnaLab ffaf (b)dt

< /1atbl_tfSt+1_s(Cl)fs(l_t)+1_s(b)df
0
= [f@ fB)]' " L(af*(a).bf* (b))

and

Jab Y27 (Jab) = / Vb D (Ve b di
0
1
5/ Jathl-thtgl—t [f(atbl—t)f(btal—t)]l/zdt
0
1
Séf[fﬁf@%kﬂ+ﬁwﬁfwwkﬂht
0

/ f(x)dx.

The proof of Theorem 6 is complete. U

lnb—lna

Theorem 7. Let f,g : I C Ry — Ry be integrable functions, a,b € I with a <
b, and 51,52 € (0,1]. If f is an sy-geometrically convex function and g is an s;-
geometrically convex function on [a,b], then

f(l/z)l—ﬂ(@)g(l/z)l—sz(@) - / f(x)g(x)

- lnb —Ina
<[f@f D] 1 [g(@)g®)] 2 L(f* (a)gs2 (@), f°1(b)g* (D)),
where L(u,v) is the logarithmic mean defined by (2.1).

Proof. Letting x = a’b'~" for ¢t € [0, 1], using the s-geometric convexity, and util-
izing the inequality (2.2) result in

1
lnb_lna/ f(x)g(x) :/0 f(atbl—t)g(atbl—t)d[
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< / 1 @) O (b)g" (@)g 7 (b) de
0

1
< / fslt-I—l—S] (a)fs2(1—1)+1—s2 (b)gslt+1—sl (a)gSZ(l—l)-i-l—Sz (b)dt
0

= [f@ fB)]' " [g(@eg®)]' T2L(f* (@)g* (@), [ (b)g" ().
For ¢ € [0, 1], we have
PO (a9 (V)
_ Jf(1/2)1_"l («/atbl—tbtal—t)g(l/z)l_sz (Va'b'="blal ")
< [f(atbl—t)f(btal—t)g(atbl—t)g(btal—t)]1/2
tp1—t tp1—t t,1—t t,1—t

- f(a b )g(a b )—;—f(ba )g(ba )

Integrating on both sides with respect to ¢ € [0, 1] leads to

FUPT (Vab)g WP (Vab)
< %[01 [f(@'b' g (') + f(b'a' ) g(b'a' )] ds
/ f(x)g(x)

- lnb —Ina
The proof of Theorem 7 is complete. U

Theorem 8. Ler f,g : I C Ry — Ry be integrable functions, a,b € I with a <
b, and s1,s2 € (0,1]. If f is an sy-geometrically convex function and g is an -
geometrically convex function on [a,b), then

Jab fA2' (@)g(l/z)lﬂ?(\/@) < lnb / f(x)g(x)dx

<[f@f D] [g@)g®)]'~ ”L(af“(61)3‘S2(61),17fs1 (b)g™ (b)),
where L(u,v) is the logarithmic mean defined by (2.1).

Proof. Setting x = a’b'~ for t € [0,1] and making use of Definition 4 arrive at

1
e / Fgmdx = [ Lab= @b st ar

< f a' b 7 (@) fOT (b)g" (@)g T (b) de
0
<[f@fD] 1 [g(@)gB)]' 2 L(af* (@)g**(a),bf*' (b)g*2 (b))
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and

Jab £ () g1/ (Jab)
< /1(atbl—tbtal—t)l/z[f(atbl—t)f(btal—t)g(atbl—t)g(btal—t)]1/2dt
0

1
< %/ [atbl_tf(atbl_t)g(atbl_t)—I—btal_tf(btal_t)g(btal_t)]dt
0

b
- | regax.

The proof of Theorem 8§ is thus complete. O
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