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Abstract. The aim of this paper is to obtain the spectrum, fine spectrum, approximate point
spectrum, defect spectrum and compression spectrum of the operator

U.aI0Ib/D

26666666664

a0 0 b0 0 0 0 0 0 0 � � �

0 a1 0 b1 0 0 0 0 0 � � �

0 0 a2 0 b2 0 0 0 0 � � �

0 0 0 a0 0 b0 0 0 0 � � �

0 0 0 0 a1 0 b1 0 0 � � �

0 0 0 0 0 a2 0 b2 0 � � �

:::
:::

:::
:::

:::
:::

: : :
: : :

: : : � � �

37777777775
.b0;b1 ;b2 ¤ 0/

on the sequence space c0 where the non-zero diagonals are the entries of an oscillatory sequence.
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1. INTRODUCTION

We can band matrices which occur finite element or finite difference problems in
numerical analysis. We define the relationship between the problem variables helping
these matrices. The bandedness is confirmed with variables which are not conjugate
in arbitrarily large distances. We can furthermore divide these matrices. For example
there are banded matrices with every element in the band is nonzero. We generally
encounter to these matrices separating one-dimensional problems.

Also, there are band matrices in problems with higher dimensions. Herein the
bands are more thin. For example, the matrix which its bandwidth is the square
root of the matrix dimension, correspond to partial differential equation defined in
a square domain where the five diagonals are not zero in band. If we apply to this
matrix Gaussian elimination, we obtain matrix which has band with many non-zero
elements. Therefore the resolvent set of the band operators is important for solving
such problems.

c
 2019 Miskolc University Press
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Spectral theory is the one of the most useful tools in science. There are many
applications in mathematics and physics which contain matrix theory, control theory,
function theory, differential and integral equations, complex analysis and quantum
physics. For example, atomic energy levels are determined and therefore the fre-
quency of a laser or the spectral signature of a star are obtained by it in quantum
mechanics.

1.1. The spectrum

Let L W X ! Y be a bounded linear operator where X and Y are Banach spaces.
Denote the range of L, R.L/ and the set of all bounded linear operators on X into
itself B .X/.

Assume that X be a Banach space and L 2 B.X/. The adjoint operator L� 2
B.X�/ of L is defined by .L�f /.x/D f .Lx/ for all f 2X� and x 2X where X�

is the dual space X .
Let X is a complex normed linear space and D.L/ � X be domain of L where

L WD.L/!X be a linear operator. For L 2 B.X/ we determine a complex number
� by the operator .�I �L/ denoted by L� which has the same domain D.L/, such
that I is the identity operator. Recall that the resolvent operator of L� is L�1

�
WD

.�I �L/�1.
Let � 2C. If L�1

�
exists, is bounded and, is defined on a set which is dense in X

then � is called a regular value of L.
The set �.L;X/ of all regular values of L is called the resolvent set of L.

�.L;X/ WD Cn�.LIX/ is called the spectrum of L where C is the complex plane.
Hence those values �2C for whichL� is not invertible are contained in the spectrum
�.L;X/.

The spectrum �.L;X/ is union of three disjoint sets as follows: The point spec-
trum �p.L;X/ is the set such that L�1

�
does not exist. Further � 2 �p.L;X/ is called

the eigenvalue of L. We say that � 2C belongs to the continuous spectrum �c.L;X/

of L if the resolvent operator L�1
�

is defined on a dense subspace of X and is un-
bounded. Furthermore, we say that � 2C belongs to the residual spectrum �r.L;X/

of L if the resolvent operator L�1
�

exists, but its domain of definition (i.e. the range
R.�I �L/ of .�I �L) is not dense in X ; in this case L�1

�
may be bounded or un-

bounded. Together with the point spectrum, these two subspectra form a disjoint
subdivision

�.L;X/D �p.L;X/[�c.L;X/[�r.L;X/ (1.1)
of the spectrum of L:

1.2. Goldberg’s classification of spectrum

If T 2 B.X/, then there are three possibilities for R.T /:
(I) R.T /DX; (II) R.T /DX , but R.T /¤X , (III) R.T /¤X

and three possibilities for T �1:
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(1) T �1 exists and continuous, (2) T �1 exists but discontinuous, (3) T �1 does not
exist.

If these possibilities are combined in all possible ways, nine different states are
created. These are labelled by: I1, I2, I3, II1, II2, II3, III1, III2, III3. If
an operator is in state III2 for example, then R.T / ¤ X and T �1 exists but is
discontinuous (see [7]).

If � is a complex number such that T D �I �L 2 I1 or T D �I �L 2 II1, then
� 2 �.L;X/. All scalar values of � not in �.L;X/ comprise the spectrum of L.
The further classification of �.L;X/ gives rise to the fine spectrum of L. That is,
�.L;X/ can be divided into the subsets I2�.L;X/ D ¿, I3�.L;X/, II2�.L;X/,
II3�.L;X/, III1�.L;X/, III2�.L;X/, III3�.L;X/. For example, if
T D �I �L is in a given state, III2 (say), then we write � 2 III2�.L;X/.

Throughoutw denote the space of all real or complex valued sequences. The space
of all bounded, convergent, null and bounded variation sequences are denoted by `1,
c, c0 and bv, respectively. Also by `1, p̀, bvp we denote the spaces of all absolutely
summable sequences, p�absolutely summable sequences and p�bounded variation
sequences, respectively.

Many researchers have investigated the spectrum and the fine spectrum of linear
operators defined by some matrices over certain sequence spaces. There are a lot
of studies about spectrum and fine spectrum. For instance, the fine spectrum of the
Cesàro operator on the sequence space p̀ for (1 < p <1) has been examined by
Gonzalez [8]. Also, Wenger [17] has studied the fine spectrum of the Hölder sum-
mability operator over c, and Rhoades [12] generalized this result to the weighted
mean methods. Reade [11] has investigated the spectrum of the Cesàro operator on
the sequence space c0. The spectrum of the Rhaly operators on the sequence spaces
c0 and c has examined by Yildirim [19]. The spectrum and some subdivisions of the
spectrum of discrete generalized Cesàro operators on p̀, (1 < p <1) has examined
by Yildirim and Durna [20]. In [14], Tripathy and Das determined the spectrum and
fine spectrum of the upper triangular matrix U.r;s) on the sequence space

cs D

(
x D .xn/ 2 w W lim

n!1

nX
iD0

xi exists

)
,

which is a Banach space with respect to the norm kxkcs D supn
ˇ̌Pn

iD0xi
ˇ̌
. Also they

determined the approximate point spectrum, the defect spectrum and the compression
spectrum of the operator U.r;s/ on the same space. In [16], Tripathy and Saikia
determined the norm and spectrum of the Cesàro matrix considered as a bounded
operator on bv0\`1. In [15], Tripathy and Paul examined the spectra of the operator
D.r;0;0;s/ on sequence spaces c0 and c. In [9], Paul and Tripathy investigated
the spectrum of the operator D.r;0;0;s/ over the sequence spaces p̀ and bvp. In
[13], Tripathy and Das determined the spectra of the Rhaly operator on the class
of bounded statistically null bounded variation sequence space. In [10], Paul and



212 NUH DURNA

Tripathy investigated the so-called fine spectrum of the operator D.r;0;0;s/ over
a sequence space bv0: In [3], Das and Tripathy determined the spectrum and fine
spectrum of the lower triangular matrix B .r;s; t/ on the sequence space cs.

2. FINE SPECTRUM

The upper triangular matrix U.aI0Ib/ is an infinite matrix with the non-zero diag-
onals are the entries of an oscillatory sequence of the form

U.aI0Ib/D

2666666664

a0 0 b0 0 0 0 0 0 0 � � �

0 a1 0 b1 0 0 0 0 0 � � �

0 0 a2 0 b2 0 0 0 0 � � �

0 0 0 a0 0 b0 0 0 0 � � �

0 0 0 0 a1 0 b1 0 0 � � �

0 0 0 0 0 a2 0 b2 0 � � �

:::
:::

:::
:::

:::
:::

: : :
: : :

: : : � � �

3777777775
(2.1)

where b0;b1;b2 ¤ 0.

Lemma 1 (Wilansky [18], Example 8.4.5 A, Page 129). The matrix A D .ank/
gives rise to a bounded linear operator T 2 B.c0/ from c0 to itself if and only if
(i) the rows of A in `1 and their `1 norms are bounded,
(ii) the columns of A are in c0.

The operator norm of T is the supremum of `1 norm values of the rows.

Corollary 1. U.aI0Ib/ W c0! c0 is a bounded linear operator and

kU.aI0Ib/k.c0Wc0/ Dmaxfja0jC jb0j ; ja1jC jb1j ; ja2jC jb2jg :

Lemma 2 (Golberg [7, p.59]). T has a dense range if and only if T � is 1-1.

Lemma 3 (Golberg [7, p.60]). T has a bounded inverse if and only if T � is onto.

Theorem 1. �p.U.aI0Ib/;c0/Df˛ 2C W j��a0j j��a1j j��a2j< jb0j jb1j jb2jg.

Proof. Let � be an eigenvalue of the operator U.aI0Ib/. Then there exists x ¤
� D .0;0;0; :::/ in c0 such that U.aI0Ib/x D �x: Then

a0x0Cb0x2 D �x0

a1x1Cb1x3 D �x1

a2x2Cb2x4 D �x2

a0x3Cb0x5 D �x3

a1x4Cb1x6 D �x4

:::
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From above, we have

x6n D q
nx0;

x6nC1 D q
nx1;

x6nC2 D
��a0

b0
qnx0;

x6nC3 D
��a1

b1
qnx1;

x6nC4 D
.��a0/.��a2/

b0b2
qnx0;

x6nC5 D
.��a0/.��a1/

b0b1
qnx1

where n � 0 and q D .��a0/.��a1/.��a2/
b0b1b2

. Clearly, the subsequences .x6nCr/; r D
0;5 of x D .xn/ are in c0 if and only if j��a0j j��a1j j��a2j < jb0j jb1j jb2j and
hence, x D .xn/ 2 c0 if and only if j��a0j j��a1j j��a2j < jb0j jb1j jb2j. There-
fore, �p.U.aI0Ib/;c0/D f˛ 2C W j��a0j j��a1j j��a2j< jb0j jb1j jb2jg. �

We will use the following Lemma to find the adjoint of a linear transform on the
sequence space c0.

Lemma 4 (p.266 [17]). Let T W c0 7�! c0 be a linear map and define T � W `1 7�!
`1, by T �g D g ıT; g 2 c�0 Š `1, then T must be given with the matrix A, moreover,
T � must be given with the matrix At .

Theorem 2. �p.U.aI0Ib/�; c�0eD`1/D¿.

Proof. From Lemma 4, it is clear that the matrix of U.aI0Ib/� is transpose of the
matrix of U.aI0Ib/. Let � be an eigenvalue of the operator U.aI0Ib/�. Then there
exists x ¤ � D .0;0;0; :::/ in `1 such that U.aI0Ib/�x D �x.
Then, we have

a0x0 D �x0 (2.2)
a1x1 D �x1 (2.3)

b0x0Ca2x2 D �x2 (2.4)
b1x1Ca0x3 D �x3 (2.5)
b2x2Ca1x4 D �x4 (2.6)
b0x3Ca2x5 D �x5 (2.7)
b1x4Ca0x6 D �x6 (2.8)
b2x5Ca1x7 D �x7 (2.9)
b0x6Ca2x8 D �x8 (2.10)

:::
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Then we have
nD 3k; b0xnCa2xnC2 D �xnC2 (2.11)

nD 3kC1; b1xnCa0xnC2 D �xnC2 (2.12)
nD 3kC2; b2xnCa1xnC2 D �xnC2 (2.13)

Let x0 ¤ 0 then we get � D a0 from (2.2), x1 D 0 from (2.5), x4 D 0 from (2.8),
x2 D 0 from (2.6) and x0 D 0 from (2.4). But this contradicts with our assumption.

Now let x0 D 0 and x1 ¤ 0 then we get � D a1 from (2.3), x2 D 0 from (2.6),
x5 D 0 from (2.9), x3 D 0 from ( 2.7), x1 D 0 from (2.5). But this contradicts with
our assumption.

Similarly let x0 D 0, x1 D 0 and x2 ¤ 0 then we get � D a1 from (2.4), x6 D 0
from (2.10), x4 D 0 from ( 2.8), x2 D 0 from (2.6). But this contradicts with our
assumption.

Finally, let x3kC1 be the first non-zero of the sequence .xn/. If n D 3k, then
from (2.11) we have �D a2. Again from (2.11) for nD 3kC3 we have b0x3kC3C
a2x3kC5 D a2x3kC5, then we get x3kC3 D 0. But from (2.12) for n D 3kC 1 we
have b1x3kC1Ca0x3kC3 D a2x3kC3, we have x3kC1 D 0, a contradiction.

Similarly, if x3k or x3k C 2 be the first non-zero of the sequence .xn/ we get a
contradiction.
Hence, �p.U.aI0Ib/�; c�0eD`1/D¿. �

Theorem 3. �r.U.aI0Ib/;c0/D¿.

Proof. Since, �r.A/D �p.A�;`1/n�p.A;c0/, Theorems 1 and 2 give us required
result. �

Lemma 5.
1X
nD1

 
n�1X
kD0

akbnk

!
D

1X
kD0

ak

0@ 1X
nDkC1

bnk

1A
where .ak/ and .bnk/ are nonnegative real numbers.

Proof.
1X
nD1

 
n�1X
kD0

akbnk

!
D

0X
kD0

akb1kC

1X
kD0

akb2kC

2X
kD0

akb3kC

3X
kD0

akb4kC�� �

D a0b10C .a0b20Ca1b21/C .a0b30Ca1b31Ca2b32/

C .a0b40Ca1b41Ca2b42Ca3b43/C�� �

D a0

1X
nD1

bn0Ca1

1X
nD2

bn1Ca2

1X
nD3

bn2C�� �

D

1X
kD0

ak

0@ 1X
nDkC1

bnk

1A :
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�

Theorem 4. �c.U.aI0Ib/;c0/Df� 2C W j��a0j j��a1j j��a2j D jb0j jb1j jb2jg
and �.U.aI0Ib/;c0/D f� 2C W j��a0j j��a1j j��a2j � jb0j jb1j jb2jg.

Proof. Let yD .yn/ 2 `1 be such that .U.aI0Ib/��I/�xD y for some xD .xn/.
Then we get system of linear equations:

.a0��/x0 D y0

.a1��/x1 D y1

b0x0C .a2��/x2 D y2

b1x1C .a0��/x3 D y3

b2x2C .a1��/x4 D y4

b0x3C .a2��/x5 D y5

:::

b0x3nC .a2��/x3nC2 D y3nC2

b1x3nC1C .a0��/x3nC3 D y3nC3

b2x3nC2C .a1��/x3nC4 D y3nC4

:::

where n� 0. Solving these equations, we have

x0 D
1

a0��
y0

x1 D
1

a1��
y1

x2 D
1

a2��
y2�

b0

.a0��/.a2��/
y0

x3 D
1

a0��
y3�

b1

.a0��/.a1��/
y1

x4 D
1

a1��
y4�

b2

.a1��/.a2��/
y2C

b0b2

.a0��/.a1��/.a2��/
y0

x5 D
1

a2��
y5�

b0

.a0��/.a2��/
y3C

b0b1

.a0��/.a1��/.a2��/
y1

x6 D
1

a0��
y6�

b1

.a0��/.a1��/
y4C

b1b2

.a0��/.a1��/.a2��/
y2

�
b0b1b2

.a0��/2.a1��/.a2��/
y0
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x7 D
1

a1��
y7�

b2

.a1��/.a2��/
y5C

b0b2

.a0��/.a1��/.a2��/
y3

�
b0b1b2

.a0��/.a1��/2.a2��/
y1

:::

Thus we get

x2nCt D
1

a2nCt ��

24y2nCt C n�1X
kD0

.�1/nCky2kCt

n�kY
�D1

b2n�2�Ct

a2n�2�Ct ��

35 ;
t D 0;1I nD 1;2; : : :. Herein ax D ay , bx D by for x � y.mod3/. Therefore we get

1X
vD0

jxvj D jx0jC jx1jC jx2jC jx3jC � � �

D jx0jC jx1jC

1X
nD1

jx2nCt j

D

ˇ̌̌̌
y0

a0��

ˇ̌̌̌
C

ˇ̌̌̌
y1

a1��

ˇ̌̌̌

C

1X
nD1

ˇ̌̌̌
ˇ̌ 1

a2nCt ��

24y2nCt C n�1X
kD0

.�1/nCky2kCt

n�kY
�D1

b2n�2�Ct

a2n�2�Ct ��

35ˇ̌̌̌ˇ̌

�

ˇ̌̌̌
y0

a0��

ˇ̌̌̌
C

ˇ̌̌̌
y1

a1��

ˇ̌̌̌

C
1

ja2nCt ��j

1X
nD1

24jy2nCt jC n�1X
kD0

jy2kCt j

n�kY
�D1

ˇ̌̌̌
b2n�2�Ct

a2n�2�Ct ��

ˇ̌̌̌35
D

ˇ̌̌̌
y0

a0��

ˇ̌̌̌
C

ˇ̌̌̌
y1

a1��

ˇ̌̌̌
C

1

ja2nCt ��j

1X
nD1

jy2nCt j

C
1

ja2nCt ��j

1X
nD1

24n�1X
kD0

jy2kCt j

n�kY
�D1

ˇ̌̌̌
b2n�2�Ct

a2n�2�Ct ��

ˇ̌̌̌35 :
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Suppose t D 0 and consider the series
1P
nD1

"
n�1P
kD0

jy2kj
n�kQ
�D1

ˇ̌̌
b2n�2�

a2n�2���

ˇ̌̌#
. In Lemma 5

if we take ak D jy2kj and bnk D
n�kQ
�D1

ˇ̌̌
b2n�2�

a2n�2���

ˇ̌̌
then we have

1X
nD1

24n�1X
kD0

jy2kj

n�kY
�D1

ˇ̌̌̌
b2n�2�

a2n�2� ��

ˇ̌̌̌35D 1X
kD0

24 1X
nDkC1

jy2kj

n�kY
�D1

ˇ̌̌̌
b2n�2�

a2n�2� ��

ˇ̌̌̌35
D

1X
kD0

24jy2kj 1X
nDkC1

n�kY
�D1

ˇ̌̌̌
b2n�2�

a2n�2� ��

ˇ̌̌̌35
Also since

n�kQ
�D1

ˇ̌̌
b2n�2�

a2n�2���

ˇ̌̌
�M

h
b2b1b0

.a2��/.a1��/.a0��/

i.n�k�1/=3
(M constant) as n!

1, the last equation turns into the series
1X
kD0

"
jy2kj

1X
nD0

�
b2b1b0

.a2��/.a1��/.a0��/

�n=3#
: (2.14)

Since y D .yn/ 2 `1, the series
1P
kD0

jy2kj is convergent. Hence the series (2.14) is

convergent if and only if
ˇ̌̌

b2b1b0
.a2��/.a1��/.a0��/

ˇ̌̌
< 1. Consequently, if � 2 C,

ja2��j ja1��j ja0��j > jb2j jb1j jb0j, then .xn/ 2 `1. Therefore, the operator
.U.aI0Ib/��I/� is onto if j��a0j j��a1j j��a2j> jb0j jb1j jb2j. Then by Lemma
3 U.aI0Ib/��I has a bounded inverse if j��a0j j��a1j j��a2j> jb0j jb1j jb2j.
So, �c.U.aI0Ib/;c0/� f� 2C W j��a0j j��a1j j��a2j � jb0j jb1j jb2jg.
Since �.L;c0/ is the disjoint union of �p.L;c0/, �r.L;c0/ and �c.L;c0/, therefore

�.U.aI0Ib/;c0/� f� 2C W j��a0j j��a1j j��a2j � jb0j jb1j jb2jg :

By Theorem 1, we get

f� 2C W j��a0j j��a1j j��a2j< jb0j jb1j jb2jg
D �p.U.aI0Ib/;c0/� �.U.aI0Ib/;c0/

Since, �.L;c0/ is a compact set, so it is closed and thus,

f� 2C W j��a0j j��a1j j��a2j< jb0j jb1j jb2jg � �.U.aI0Ib/;c0/

D �.U.aI0Ib/;c0/

and f� 2C W j��a0j j��a1j j��a2j � jb0j jb1j jb2jg � �.U.aI0Ib/;c0/.
Hence, �.U.aI0Ib/;c0/ D f� 2C W j��a0j j��a1j j��a2j � jb0j jb1j jb2jg and so
�c.U.aI0Ib/;c0/D f� 2C W j��a0j j��a1j j��a2j D jb0j jb1j jb2jg : �

Theorem 5. If j��a0j j��a1j j��a2j< jb0j jb1j jb2j,then �2 I3�.U.aI0Ib/;c0/:
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Proof. Suppose j��a0j j��a1j j��a2j < jb0j jb1j jb2j and so from Theorem 1,
� 2 �p.U.a0;a1;a2I/;c0/: Hence, � satisfies Golberg’s condition 3. We shall show
that U.aI0Ib/��I is onto when j��a0j j��a1j j��a2j< jb0j jb1j jb2j :
Let y D .yn/ 2 c0 be such that .U.aI0Ib/��I/x D y for x D .xn/. Then,

.a0��/x0Cb0x2 D y0

.a1��/x1Cb1x3 D y1

.a2��/x2Cb2x4 D y2

.a0��/x3Cb0x5 D y3

.a1��/x4Cb1x6 D y4

.a2��/x5Cb2x7 D y5

.a0��/x6Cb0x8 D y6

:::

Calculating xk , we get

x2 D
1

b0
y0C

��a0

b0
x0

x3 D
1

b1
y1C

��a1

b1
x1

x4 D
1

b2
y2C

��a2

b0b2
y0C

.��a0/.��a2/

b0b2
x0

x5 D
1

b0
y3C

��a0

b0b1
y1C

.��a0/.��a1/

b0b1
x1

x6 D
1

b1
y4C

��a1

b1b2
y2C

.��a1/.��a2/

b0b1b2
y0C

.��a0/.��a1/.��a2/

b0b1b2
x0

x7 D
1

b2
y5C

��a2

b0b2
y3C

.��a0/.��a2/

b0b1b2
y1C

.��a0/.��a1/.��a2/

b0b1b2
x1

x8 D
1

b0
y6C

��a0

b0b1
y4C

.��a0/.��a1/

b0b1b2
y2C

.��a0/.��a1/.��a2/

b20b1b2
y0

C
.��a0/

2 .��a1/.��a2/

b20b1b2
x0

:::

From above, we have

x2nCt D
1

b2nC1Ct

24y2n�2Ct C n�2X
kD0

y2kCt

n�k�1Y
�D1

��a2n�2�Ct

b2n�2�CtC1

35
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Cxt

nY
�D1

��a2n�2�Ct

b2n�2�Ct
;

where t D 0;1I nD 2;3; : : :. Herein ax D ay , bx D by for x � y.mod3/.
Since

nY
�D1

��a2n�2�Ct

b2n�2�Ct
�M1

�
.a0��/.a1��/.a2��/

b0b1b2

�.n�1/=3
as n!1;

where M1 is a constant, we have

x2nCt �
1

b2nC1Ct

24y2n�2Ct C n�2X
kD0

y2kCt

n�k�1Y
�D1

��a2n�2�Ct

b2n�2�CtC1

35
CxtM2

�
.a0��/.a1��/.a2��/

b0b1b2

�.n�1/=3
; (2.15)

as n!1. Since y D .yn/ 2 c0, from (2.15)

y D .yn/ 2 c0 iff
ˇ̌̌̌
.��a0/.a1��/.a2��/

b0b1b2

ˇ̌̌̌
< 1:

Thus from (2.15); .xn/ 2 c0 iff j��a0j j��a1j j��a2j < jb0j jb1j jb2j. Therefore,
U.aI0Ib/��I is onto. So, � 2 I . Hence we get the required result. �

3. SUBDIVISION OF THE SPECTRUM

The spectrum �.L;X/ is partitioned into three sets which are not necessarily dis-
joint as follows:

If there exists a sequence .xn/ inX shuch that kxnkD 1 and kLxnk! 0 as n!1
then .xn/ is called Weyl sequence for L.

We call the set

�ap.L;X/ WD f� 2C W there exists a Weyl sequence for �I �Lg (3.1)

the approximate point spectrum of L. Moreover, the set

�ı.L;X/ WD f� 2 �.L;X/ W �I �L is not surjectiveg (3.2)

is called defect spectrum of L. Finally, the set

�co.L;X/D f� 2C WR.�I �L/¤Xg (3.3)

is called compression spectrum in the literature.
The following Proposition is very useful for calculating the separation of the spec-

trum of linear operator in Banach spaces.
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TABLE 1. Subdivisions of spectrum of a linear operator.

1 2 3
L�1
�

exists L�1
�

exists L�1
�

and is bounded and is unbounded does not exists
� 2 �p.L;X/

I R.�I �L/DX � 2 �.L;X/ – � 2 �ap.L;X/

� 2 �c.L;X/ � 2 �p.L;X/

II R.�I �L/DX � 2 �.L;X/ � 2 �ap.L;X/ � 2 �ap.L;X/

� 2 �ı.L;X/ � 2 �ı.L;X/

� 2 �r.L;X/ � 2 �r.L;X/ � 2 �p.L;X/

III R.�I �L/ 6DX � 2 �ı.L;X/ � 2 �ap.L;X/ � 2 �ap.L;X/

� 2 �ı.L;X/ � 2 �ı.L;X/

� 2 �co.L;X/ � 2 �co.L;X/ � 2 �co.L;X/

Proposition 1 ([1], Proposition 1.3). The spectra and subspectra of an operator
L 2 B.X/ and its adjoint L� 2 B.X�/ are related by the following relations:
(a) �.L�;X�/D �.L;X/, (b) �c.L�;X�/� �ap.L;X/,
(c) �ap.L�;X�/D �ı.L;X/, (d) �ı.L�;X�/D �ap.L;X/,
(e) �p.L�;X�/D �co.L;X/, (f) �co.L�;X�/� �p.L;X/,
(g) �.L;X/D �ap.L;X/[�p.L�;X�/D �p.L;X/[�ap.L�;X�/.

By the definitions given above, we can write following table
Many authors have examined spectral divisions of generalized difference matrices.

For example, Paul and Tripathy, [9] have studied the spectrum of the operatorD.r;0;0;s/
over the sequence spaces p̀ and bvp.

The above-mentioned articles, concerned with the decomposition of spectrum defined
by Goldberg. However, in [6] Durna and Yildirim have investigated subdivision of
the spectra for factorable matrices on c0 and in [2] Basar, Durna and Yildirim have
investigated subdivisions of the spectra for generalized difference operator on the se-
quence spaces c0 and c, in [4] Durna, have studied subdivision of the spectra for the
generalized upper triangular double-band matrices �uv over the sequence spaces c0
and c and in [5] Durna, have studied subdivision of the spectra for the generalized
difference operator �a;b on the sequence space p̀, (1 < p <1)

Corollary 2. III1�.U.aI0Ib/;c0/D III2�.U.aI0Ib/;c0/D¿:

Proof. Since �r.L;c0/D III1�.L;c0/[III2�.L;c0/ from Table 1, the required
result is obtained from Theorem 3. �

Corollary 3. II3�.U.aI0Ib/;c0/D III3�.U.aI0Ib/;c0/D¿:



THE SPECTRUM OF U.aI0Ib/ 221

Proof. Since �p.L;c0/D I3�.L;c0/[II3�.L;c0/[III3�.L;c0/ from Table 1,
the required result is obtained from Theorem 1 and Theorem 5. �

Theorem 6. The following statements are hold

.a/�ap.U.aI0Ib/;c0/D f� 2C W j��a0j j��a1j j��a2j � jb0j jb1j jb2jg ;

.b/�ı.U.aI0Ib/;c0/D f� 2C W j��a0j j��a1j j��a2j D jb0j jb1j jb2jg ;

.c/�co.U.aI0Ib/;c0/D¿:

Proof. (a) From Table 1, we get

�ap .U.aI0Ib/;c0/D � .U.aI0Ib/;c0/nIII1� .U.aI0Ib/;c0/ :

Hence �ap .U.aI0Ib/;c0/D f� 2C W j��a0j j��a1j j��a2j � jb0j jb1j jb2jg from
Corollary 2.

(b) From Table 1, we have

�ı .U.aI0Ib/;c0/D � .U.aI0Ib/;c0/nI3� .U.aI0Ib/;c0/ :

By using Theorem 4 and 5, we get the required result.
(c) By Proposition 1 (e), we have

�p.U
�.aI0Ib/;c�0 /D �co .U.aI0Ib/;c0/ :

From Theorem 2, we get the required result. �

Corollary 4. The following statements are hold

.a/�ap.U.aI0Ib/
�; c�0 Š `1/D f� 2C W j��a0j j��a1j j��a2j D jb0j jb1j jb2jg

.b/�ı.U.aI0Ib/
�; c�0 Š `1/D f� 2C W j��a0j j��a1j j��a2j � jb0j jb1j jb2jg :

Proof. Using Proposition 1 (c) and (d), we have

�ap.U.aI0Ib/
�; c�0 Š `1/D �ı.U.aI0Ib/;c0/

and

�ı.U.aI0Ib/
�; c�0 Š `1/D �ap.U.aI0Ib/;c0/:

From Theorem 6 (a) and (b), we get the required results. �

4. RESULTS

We can generalize our operator as follows.

U.a0;a1; : : : ;an�1I0Ib0;b1; : : : ;bn�1/
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D

26666666664

a0 0 b0 0 0 0 0 0 0 � � �

0 a1 0 b1 0 0 0 0 0 � � �

0 0
: : : 0

: : : 0 0 0 0 � � �

0 0 0 an�1 0 bn�1 0 0 0 � � �

0 0 0 0 a0 0 b0 0 0 � � �

0 0 0 0 0 a1 0 b1 0 � � �

:::
:::

:::
:::

:::
:::

: : :
: : :

: : : � � �

37777777775
(4.1)

where b0;b1; : : : ;bn�1 ¤ 0.
One can get parallel all our results obtained in before section as follows.

Theorem 7. The following statements are provided where

S D

(
� 2C W

n�1Q
kD0

ˇ̌̌
��ak
bk

ˇ̌̌
� 1

)
, VS be the interior of the set S and @S be the bound-

ary of the set S

(1) �p.U.a0;a1; : : : ;an�1I0Ib0;b1; : : : ;bn�1/;c0/D VS;
(2) �p.U.a0;a1; : : : ;an�1I0Ib0;b1; : : : ;bn�1/�; c�0eD`1/D¿;
(3) �r.U.a0;a1; : : : ;an�1I0Ib0;b1; : : : ;bn�1/;c0/D¿;
(4) �c.U.a0;a1; : : : ;an�1I0Ib0;b1; : : : ;bn�1/;c0/D @S;
(5) �.U.a0;a1; : : : ;an�1I0Ib0;b1; : : : ;bn�1/;c0/D S;
(6) I3�.U.a0;a1; : : : ;an�1I0Ib0;b1; : : : ;bn�1/;c0/D VS;
(7) III1� .U.a0;a1; : : : ;an�1I0Ib0;b1; : : : ;bn�1/;c0/D¿;
(8) III2�.U.a0;a1; : : : ;an�1I0Ib0;b1; : : : ;bn�1/;c0/D¿;
(9) III3�.U.a0;a1; : : : ;an�1I0Ib0;b1; : : : ;bn�1/;c0/D¿;

(10) II3�.U.a0;a1; : : : ;an�1I0Ib0;b1; : : : ;bn�1/;c0/D¿;
(11) �ap.U.a0;a1; : : : ;an�1I0Ib0;b1; : : : ;bn�1/;c0/D S;
(12) �ı.U.a0;a1; : : : ;an�1I0Ib0;b1; : : : ;bn�1/;c0/D @S;
(13) �co.U.a0;a1; : : : ;an�1I0Ib0;b1; : : : ;bn�1/;c0/D¿;
(14) �ap.U.a0;a1; : : : ;an�1I0Ib0;b1; : : : ;bn�1/�; c�0eD`1/D @S;
(15) �ı.U.a0;a1; : : : ;an�1I0Ib0;b1; : : : ;bn�1/�; c�0eD`1/D S:
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