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Abstract. The paper gives multiplicity results for the impulsive boundary value problem

x00 D f .t;x/; for a.e. t 2 Œ0;T �; such that x.t/ 2 intK;

x0.sC/ D �x0.s�/; if s 2 .0;T /; x.s/ 2 @K;

x.0/ D A; x.T / D B;

where K � R is a compact interal, f is Carathéodory function on Œ0;T � � K and A;B 2 intK.
This problem can be understood as a problem in one-dimensional billiard space and it is also
a generalization of oscillator with obstacles from below and from above and absolutely elastic
impacts. A simple condition for the existence of solution with exact number of impacts is given,
as well as the multiplicity result. The results are obtained by a transformation into problem
without impulses (without impacts) and using Schauder fixed point theorem.

2010 Mathematics Subject Classification: 34A37; 34B37

Keywords: state-dependent impulses, system with impact, billiard space, Dirichlet problem, ex-
istence and multiplicity result

1. INTRODUCTION

The theory of impulsive differential equations is quite well developed theory. It
received a lot of attention during the last decades, see e.g. monographs [1, 3, 5, 6, 8,
10, 11]. The theory enables to model phenomena described by differential equations
where abrupt changes on short time intervals (often caused by external forces) occur.
It is more advantageous to model these changes as instantaneous (so called impulses).

Systems with impact draw attention of many mathematicians and physicists in the
past several centuries. Let us mention a monograph [7] and some papers investigating
periodic solutions of linear impact oscillator, see e.g. [2, 9] and references therein.
Note, that the dynamics with impacts can be understood by means of impulsive dif-
ferential equations. Here the impulse (discontinuity) occurs at the time of impact and
the velocity (derivative) undergoes discontinuous change (the mass bounces off of an
obstacle), e.g. billiard ball hits the boundary of the table, mass on spring hits some
obstacle, etc.
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Recently, in [4], Dirichlet problem in billiard spaces with absolutely elastic impact

x00 D f .t;x/ for a.e. t 2 Œ0;T �;x.t/ 2 intK;

4x0.s/ D I.x.s/;x0.s//; x.s/ 2 @K;

x.0/ D x.T / D 0;

was investigated for two cases: (i) one-dimensional case, i.e. K � R is a compact in-
terval, (ii) multidimensional case, for K � R2k , k 2 N, certain appropriate compact
set. In the one-dimensional case, there were reached multiplicity results under con-
ditions that f is Carathéodory condition and is Lipschitz continuous in the second
variable. The existence of infinitely solutions are then guaranteed. The purpose of
this paper was to give more general and more detailed information than in [4] for
the one-dimensional case. Here, the Lipschitz condition is not needed. Moreover,
the exact number of impacts is given (see Theorem 1). The reason of the weakened
assumptions lies in the fact that paper [4] relies on the shooting method and continu-
ous dependence on initial values of solution. On the other hand, the idea in [4] can
be quite easily generalized for higher dimensions. Here, the idea is to investigate an
auxiliary problem without impulses.

In this paper the impulsive boundary value problem

x00 D f .t;x/; for a.e. t 2 Œ0;T �; such that x.t/ 2 intK; (1.1)

x0.sC/ D �x0.s�/; if s 2 .0;T /; x.s/ 2 @K; (1.2)
x.0/ D A; x.T / D B; (1.3)

where K � R is some compact interval, f W Œ0;T � � K ! R is a Carathéodory func-
tion, A, B 2 intK, is investigated. The impulsive condition (1.2) represents abso-
lutely elastic impact on the boundary of K.

First let us give the definition of a solution to this problem.

Definition 1. The function x 2 C.Œ0;T �/ is called a solution of the problem
(1.1),(1.2), if and only if

� there exists a finite set ft1; : : : ; tpg � .0;T /, t1 < t2 < :: : < tp such that
xjŒti ;tiC1� 2 AC1.Œti ; tiC1�/ for i D 0; : : : ;p, where we put t0 D 0, tpC1 D T ,

� x.t/ 2 K for each t 2 Œ0;T � and x.t/ 2 @K iff t D ti for some i D 1; : : : ;p,
� x satisfies the differential equation (1.1) and impulsive conditions (1.2).

The number p is called a number of impacts of a solution x. A solution x of
(1.1),(1.2) is called a solution of (1.1)–(1.3), if it satisfies (1.3).

The main result of this paper is the following.

Theorem 1. Let K D Œa;b� be a compact interval, f 2 Car.Œ0;T ��K/ and A;B 2
intK. Then for each p 2 N satisfying

p >
T

b �a

Z T

0

jm.t/jdt C1;
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where
m.t/ D max

x2K
jf .t;x/j; a.e. t 2 Œ0;T �;

the problem (1.1)–(1.3) has at least two solutions with exactly p impacts.

The paper is organized as follows. In Section 2 necessary notation and some trivial
results are presented. In Section 3, auxiliary singular nonimpulsive problem is invest-
igated and its relation to the original problem is shown. Finally, Section 4 contains
the main results of the paper, incl. the proof of Theorem 1.

2. NOTATION AND PRELIMINARIES

By N, Z, R we denote the set of all positive integers, integers and reals, respect-
ively. By AC.J /, (AC1.J /) we denote the set of absolutely continuous functions
on the interval J (having absolutely continuous derivatives on J ) and by C.Œ0;T �/,
C1.Œ0;T �/ the space of continuous functions on the interval Œ0;T � (having continu-
ous derivatives) equipped with standard norms. Moreover, L1.Œ0;T �/ is the space
of all Lebesgue integrable functions on Œ0;T � with the norm kxkL1 D R T

0 jx.t/jdt ,
x 2 L1.Œ0;T �/. By Car.Œ0;T � � ˝/, where ˝ � R we mean the set of all functions
f W Œ0;T ��˝ ! R satisfying Carathéodory conditions:

� for each x 2 ˝ the function f .�;x/ is Lebesgue measurable on Œ0;T �,
� for a.e. t 2 Œ0;T � the function f .t; �/ is continuous on ˝,
� for each compact set K � ˝, there exists m 2 L1.Œ0;T �/ such that jf .t;x/j �

m.t/ for a.e. t 2 Œ0;T �.
Also, let us remind some facts about the fractional part of a real number: For x;a 2 R,
a > 0 we denote

x mod a WD x �a
jx

a

k
;

where bxc stands for the integer part of x. Let us note that the function

R 3 t 7! t mod a

is a-periodic function.

Remark 1. Let x W J ! R, J � R be an interval, a 2 R, a > 0, x mod a ¤ 0 on J ,
i 2 N. Then

� if x is continuous on J , then is x mod a;
� if x has an i -th derivative at t 2 intJ , then .x mod a/.i/.t/ D x.i/.t/.

Lemma 1. Let R 2 R, R > 0 and ' W .0;R/ ! R. Then the function '� W R ! R
defined by

'�.x/ D

8
<̂

:̂

'.x mod 2R/ if x mod 2R 2 .0;R/;

�'.2R � .x mod 2R// if x mod 2R 2 .R;2R/;

0 if x mod R D 0
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is 2R-periodic and odd function.

Proof. The periodicity follows directly from the definition of '� and periodicity of
the mapping x 7! x mod 2R. In order to prove that the function is odd we consider
three cases:
CASE A. Let x modR D 0. Then also .�x/modR D 0 and therefore '�.�x/ D 0 D
�'�.x/.
CASE B. Let x mod 2R 2 .0;R/. Then there exists an integer k such that x D
2Rk Cx mod 2R. Then

�x D 2R.�k/�x mod 2R D 2R.�k �1/C2R �x mod 2R;

where 2R � x mod 2R 2 .R;2R/ and therefore .�x/ mod 2R D 2R � x mod 2R 2
.R;2R/. Then

'�.�x/ D �'.2R � .�x/ mod 2R/ D �'.2R � .2R �x mod 2R//

D �'.x mod 2R/ D �'�.x/:

CASE C. The case x mod 2R 2 .R;2R/ can be proved similarly to the previous one.
�

Remark 2. If ' is continuous on .0;R/, then from the properties of '� (from
Lemma 1) it follows only that '� is continuous on each interval .kR;.k C 1/R/,
k 2 Z and

'�.kRC/ D �'�.kR�/ D
(

'.0C/ if k is even;

�'.R�/ if k is odd:

Since '�.kR/ D 0 for k 2 Z, the function '� has discontinuities at x D kR, k 2 Z
unless '.0C/ D '.R�/ D 0.

Remark 3. In the next section will use function

�.t/ D
(

t mod 2R if t mod 2R 2 Œ0;R/;

2R � t mod 2R if t mod 2R 2 ŒR;2R/:

Let us note that inclusion t mod 2R 2 Œ0;R/ is equivalent to t 2 Œ2kR;.2k C 1/R/

for some k 2 Z and the inclusion t mod 2R 2 ŒR;2R/ is equivalent to t 2 Œ.2k C
1/R;2.k C 1/R/ for some k 2 Z. Then, we can see that � W R ! R, �.t/ D jt j for
t 2 Œ�R;R� and � is 2R-periodic. Therefore, range of � is Œ0;R�, it is a piecewise
linear function, it is Lipschitz continuous on R. Moreover,

�0.t/ D .�1/k if t 2 .kR;.k C1/R/; k 2 Z:
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3. SINGULAR AUXILIARY PROBLEM

In this section we assume that

R 2 R; R > 0; K D Œ0;R�; T > 0; f 2 Car.Œ0;T ��K/; (3.1)

and let us denote

m.t/ WD sup
x2K

jf .t;x/j for a.e. t 2 Œ0;T �; m WD kmkL1 : (3.2)

Unlike the paper [4], here the existence result is obtained by using an appropriate
”extension” of the right-hand side of the equation (1.1) onto the set Œ0;T � � R. Note
that this extension is not neccessarily a Carathéodory function on Œ0;T � � R, but it
has possible discontinuities in the state variable.

We define an auxiliary function f � W Œ0;T ��R ! R by

f �.t;x/ D

8
<̂

:̂

f .t;x mod 2R/ if x mod 2R 2 .0;R/;

�f .t;2R � .x mod 2R// if x mod 2R 2 .R;2R/;

0; if x mod R D 0;

for a.e. t 2 Œ0;T �:

(3.3)
As we can see from Lemma 1 the function f � is odd and 2R-periodic in the second
variable. We consider an auxiliary differential equation

y00 D f �.t;y/: (3.4)

Its purpose is cleared out in Lemma 2. By a solution of (3.4) we understand a func-
tion y 2 AC1.Œ0;T �/ such that (3.4) is satisfied almost everywhere on Œ0;T �.

Lemma 2. If y is a strictly monotone solution of equation (3.4) such that y.0/mod
R ¤ 0, y.T / mod R ¤ 0, then the function

x.t/ D .�ıy/.t/ D
(

y.t/ mod 2R if y.t/ mod 2R 2 Œ0;R/;

2R � .y.t/ mod 2R/ if y.t/ mod 2R 2 ŒR;2R/;
t 2 Œ0;T �

(3.5)
is a solution of impulsive equation (1.1),(1.2) having exactly

ˇ̌
ˇ̌
�

y.0/

R

�
�

�
y.T /

R

�ˇ̌
ˇ̌

impacts.

Proof. Let y be a strictly increasing solution of (3.4). From Remark 3 it follows
that x is continuous on Œ0;T � and x.t/ 2 K for each t 2 Œ0;T �. Let us denote

k WD
�

y.0/

R

�
; l WD

�
y.T /

R

�
; p WD

ˇ̌
ˇ̌
�

y.0/

R

�
�

�
y.T /

R

�ˇ̌
ˇ̌ :

Then p D jk � l j D l � k, kR < y.0/ < .k C 1/R, lR < y.T / < .l C 1/R. From the
continuity and monotonicity it follows that there exist 0 < t1 < t2 < :: : < tp < T such
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that
y.ti / D .k C i/R; i D 1; : : : ;p:

Then for every t 2 Œ0;T � the equation y.t/ mod R D 0 is satisfied iff t D ti for some
i 2 f1; : : : ;pg, i.e. x.t/ 2 f0;Rg D @K iff t D ti . This means that x has exactly p

impacts.
Let us put t0 D 0, tpC1 D T . For i D 0; : : : ;p, t 2 .ti ; tiC1/ we have y.t/ 2

..k C i/R;.k C i C1/R/ and according to Remark 3 we see that

x0.t/ D �0.y.t//y0.t/ D .�1/kCiy0.t/ t 2 .ti ; tiC1/;

i.e. x0 is absolutely continuous on .ti ; tiC1/. Moreover

x0.tiC/ D lim
t!ti Cx0.t/ D lim

t!ti C.�1/kCiy0.t/ D .�1/kCiy0.ti /; i D 0; : : : ;p

and

x0.ti�/ D lim
t!ti �x0.t/ D lim

t!ti �.�1/kCi�1y0.t/ D .�1/kCi�1y0.ti /; i D 1; : : : ;pC1:

Therefore xjŒti ;tiC1� has absolutely continuous derivative on Œti ; tiC1�, i D 0; : : : ;p

and x satisfies (1.2).
Let i 2 f0; : : : ;pg. If y.t/ mod 2R 2 .0;R/ for each t 2 .ti ; tiC1/, then by (3.3),

(3.5) we have

x00.t/ D .y.t/ mod 2R/00 D y00.t/ D f �.t;y.t// D f .t;y.t/ mod 2R/ D f .t;x.t//

for a.e. t 2 .ti ; tiC1/. If y.t/ mod 2R 2 .R;2R/ for t 2 .ti ; tiC1/, then

x00.t/ D .2R � .y.t/ mod 2R//00 D �y00.t/ D �f �.t;y.t//

D �.�f .t;2R � .y.t/ mod 2R/// D f .t;x.t//

for a.e. t 2 .ti ; tiC1/. Therefore x satisfies Eq. (1.1). The proof is similar for the case
when y is strictly decreasing. �

Note that the function f � is not Carathéodory in general, since

lim
x!RkC

f �.t;x/ D � lim
x!Rk�

f �.t;x/ 2 R:

for each k 2 Z and a.e. t 2 Œ0;T �, see Remark 2. Therefore we use regularization
technique to obtain a solution of problem (3.4),(1.3), with A;B 2 R, satisfying Amod
R ¤ 0 ¤ B mod R.

For n 2 N, we put

�n.x/ D

8
ˆ̂<
ˆ̂:

2n
R

x if x 2
h
0; R

2n

�
;

1 if x 2
h

R
2n

;R
�
1� 1

2n

�i
;

2n
R

.R �x/ if x 2 �
R

�
1� 1

2n

�
;R

�
:

Let us emphasize that for every n 2 N the function �n has the following properties:
� �n W Œ0;R� ! R is continuous,
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� �n.0/ D �n.R/ D 0,
� 0 � �n.x/ � 1 for x 2 Œ0;R� and
� �n.x/ D 1 for x 2

h
R
2n

;R
�
1� 1

2n

�i
.

Let us consider truncated functions

f �
n .t;x/ D �n.x mod R/f �.t;x/; (3.6)

for a.e. t 2 Œ0;T �, all x 2 R, n 2 N.

Remark 4. Let us note that from the assumption (3.1), properties of �n and Remark
2, it follows that f �

n 2 Car.Œ0;T � � R/, and moreover jf �.t;x/j � m.t/ as well as
jf �

n .t;x/j � m.t/ for a.e. t 2 Œ0;T �, all x 2 R and n 2 N.

To obtain the existence result for boundary value problem (3.4), (1.3) we consider
auxiliary equation

y00 D f �
n .t;y/ for a.e. t 2 Œ0;T �: (3.7)

for n 2 N.

Lemma 3. Let us assume (3.1), (3.2), A;B 2 R, AmodR ¤ 0 ¤ B modR, n 2 N.
Then there exists at least one solution yn 2 AC1.Œ0;T �/ to the problem (3.7),(1.3)
satisfying

kynk1 � K;

ˇ̌
ˇ̌y0

n.t/� B �A

T

ˇ̌
ˇ̌ � m; t 2 Œ0;T �; (3.8)

where
K WD jAjC jBjCT m: (3.9)

Proof. Let us put

G.t;s/ D
(

t.s�T /
T

t � s;
s.t�T /

T
t > s;

which is the Green’s function of the boundary value problem

y00 D 0 on Œ0;T �; y.0/ D 0; y.T / D 0:

Let Tn W C1.Œ0;T �/ ! C1.Œ0;T �/ be an operator defined by

Tny.t/ D t

T
B C T � t

T
AC

Z T

0

G.t;s/f �
n .s;y.s//ds; y 2 C1.Œ0;T �/;

and a set
˝ D fy 2 C1.Œ0;T �/ W kyk1 � K; ky0k1 � K1g

with (3.9) and K1 WD jB�Aj
T

Cm. According to Remark 4 and definition of Tn we see
that Tn.C1.Œ0;T �// � ˝. It is a standard argument to prove that Tn are totally con-
tinuous on ˝ – using Arzelà–Ascoli theorem. Therefore according to the Schauder
fixed point theorem there exists a fixed point yn 2 ˝ of Tn. Again, it is a standard
procedure to prove that yn is a solution of (3.7),(1.3). �
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Let us emphasize the fact that the upper estimates K and m in (3.8) are independent
of n.

Lemma 4. Let us assume (3.1), (3.2), A;B 2 R, A mod R 6D 0 6D B mod R. If

jB �Aj > T m; (3.10)

then there exists a strictly monotone solution of problem (3.4), (1.3).

Proof. According to Lemma 3 for every n 2 N there exists a solution yn 2
AC1.Œ0;T �/ of problem (3.7), (1.3) satisfying (3.8), (3.9). Obviously, the sequences
fyng1

nD1 and fy0
ng1

nD1 are uniformly bounded. Moreover, due to (3.7) and Remark 4,
for every n 2 N and t; s 2 Œ0;T � we have

jy0
n.t/�y0

n.s/j D
ˇ̌
ˇ̌
Z t

s

y00
n.�/d�

ˇ̌
ˇ̌ �

ˇ̌
ˇ̌
Z t

s

jf �
n .�;yn.�//jd�

ˇ̌
ˇ̌ �

ˇ̌
ˇ̌
Z t

s

m.�/d�

ˇ̌
ˇ̌ :

Since m 2 L1.Œ0;T �/, the sequence fy0
ng1

nD1 is equicontinuous. According to Arzelà–
Ascoli theorem there exists a convergent (in C1.Œ0;T �/) subsequence

˚
ykn

�1
nD1

and
its limit y 2 C1.Œ0;T �/. From (3.8) by taking limit n ! 1 we have

B �A

T
�m � y0.t/ � B �A

T
Cm; t 2 Œ0;T �: (3.11)

From assumption (3.10) we see that A ¤ B . There are two cases:
If A < B , then from (3.10) we get

B �A

T
> m:

Consequently from the first inequality in (3.11) we see that y0 > 0 on Œ0;T �, therefore
y is strictly increasing.
If A > B , then from (3.10) we have

�B �A

T
> m:

Consequently from the second inequality in (3.11) we see that y0 < 0 on Œ0;T �, there-
fore y is strictly decreasing.
In both cases y is a strictly monotone function. Since y is strictly monotone and con-
tinuous, it follows that there exists a finite set Ty such that for t 2 Œ0;T � the equality
y.t/ mod R D 0 holds iff t 2 Ty . If Ty D ¿, then we put t0 D 0, t1 D T and p D 0.
If Ty ¤ ¿, we denote Ty D ft1; t2; : : : ; tpg, where

0 DW t0 < t1 < t2 < :: : < tp < tpC1 WD T:

Let i 2 f0; : : : ;pg. Then for each s1; s2 2 .ti ; tiC1/, s1 < s2 we have

y0.s2/�y0.s1/ D lim
n!1.y0

kn
.s2/�y0

kn
.s1//

D lim
n!1

Z s2

s1

y00
kn

.s/ds D lim
n!1

Z s2

s1

f �
kn

.s;ykn
.s//ds:
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Since
˚
ykn

�1
nD1

uniformly converges to y on .ti ; tiC1/ and y is strictly monotone and
continuous on this interval, it follows that there exists n0 2 N such that for n � n0

we have

ykn
.t/ mod R 2

�
R

2kn
;R

�
1� 1

2kn

��
� .0;R/ for each t 2 .s1; s2/:

Therefore by (3.6) and the last property of �n we get

lim
n!1

Z s2

s1

f �
kn

.s;ykn
.s//ds D lim

n!1

Z s2

s1

f �.s;ykn
.s//ds D

Z s2

s1

f �.s;y.s//ds:

Summarizing, we obtain

y0.s2/�y0.s1/ D
Z s2

s1

f �.s;y.s//ds

for each s1; s2 2 .ti ; tiC1/. According to Remark 4 we see that y 2 AC1.Œti ; tiC1�/

and therefore y 2 AC1.Œ0;T �/. Moreover y satisfies differential equation (3.4) for
a.e. t 2 Œ0;T �. Obviously, y satisfies (1.3), as well. �

4. MAIN RESULTS

Now we are able to formulate and prove the existence theorems.

Theorem 2. Let (3.1) be satisfied, A;B 2 .0;R/ and p 2 N be such that

p >
T m

R
C1; (4.1)

where m is defined in (3.2). Then there exist at least two solutions of (1.1)–(1.3)
having exactly p-impacts.

Proof. STEP 1. (Existence of solutions of auxiliary problems) For i 2 Z satisfying
ji j D p we consider the differential equation (3.4) together with boundary conditions

y.0/ D A; y.T / D iR C�i ; (4.2)

where

�i D
(

B if i is even;

R �B if i is odd:

Let us note that if y satisfies (4.2), then
ˇ̌
ˇ̌
�

y.0/

R

�
�

�
y.T /

R

�ˇ̌
ˇ̌ D

ˇ̌
ˇ̌
�

A

R

�
�

�
iR C�i

R

�ˇ̌
ˇ̌ D

ˇ̌
ˇ̌
�

iR C�i

R

�ˇ̌
ˇ̌ D

ˇ̌
ˇ̌
�

i C �i

R

�ˇ̌
ˇ̌ D ji j:

(4.3)
According to (4.1), we have

jiR C�i �Aj � jiRj� j�i �Aj � ji jR �R D .ji j�1/R D .p �1/R > T m;
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which is the assumption (3.10) for B D iR C �i . Therefore we conclude that by
Lemma 4 there exists at least one increasing solution y1 of (3.4) with boundary con-
dition

y.0/ D A; y.T / D pR C�p ;

and at least one decreasing solution y2 of (3.4) with boundary condition

y.0/ D A; y.T / D �pR C��p :

From (4.3) we getˇ̌
ˇ̌
�

y1.0/

R

�
�

�
y1.T /

R

�ˇ̌
ˇ̌ D

ˇ̌
ˇ̌
�

y2.0/

R

�
�

�
y2.T /

R

�ˇ̌
ˇ̌ D p : (4.4)

STEP 2. (Solutions of (1.1)–(1.3)) Let us define x1 by (3.5) with x1 and y1 in place
of x and y, respectively. Then according to Lemma 2 and (4.4), the function x1 is a
solution of (1.1), (1.2) and it has exactly p impacts. Moreover, x1.0/ D y1.0/ D A.
It remains to prove that y1.T / D B . If p is even, then y1.T / D pR C B . Obviously
y1.T / mod 2R D B 2 .0;R/ and then

x1.T / D y1.T / mod 2R D B:

If p is odd, then y1.T / D .pC1/R�B D .p�1/RC2R�B . Obviously y1.T /mod
2R D 2R �B and then

x1.T / D 2R � .y1.T / mod 2R/ D 2R � .2R �B/ D B:

So the function x1 is a solution of (1.1)–(1.3) having exactly p impacts. Similarly,
we define x2 by (3.5) with x2 and y2 in place of x and y, respectively, and prove that
x2 is solution of (1.1)–(1.3) having exactly p impacts, in the same way. From the
properties of yi we can see that x1 ¤ x2. �

Corollary 1. Let (3.1) be satisfied, A;B 2 .0;R/. Then there exist infinitely many
solutions of (1.1)–(1.3).

Remark 5. Theorem 2 states that for p satisfying (4.1) there are two solutions x1,
x2 of (1.1)–(1.3). But from the proof we can say much more about these solutions.
Let t i

1; : : : ; t i
p be times of impacts of xi , t i

0 D 0, t i
pC1 D T , i D 1;2. Then

� x0
i .t/.�1/iCj > 0 for t 2 .t i

j �1; t i
j /, j D 1; : : : ;p C1, i D 1;2,

� x1.t1
j / D R and x2.t2

j / D 0 for odd j 2 f1; : : : ;pg,
� x1.t1

j / D 0 and x2.t2
j / D R for even j 2 f1; : : : ;pg.

For instance, this means that x1 is increasing on the interval Œ0; t1
1 �, it hits x D R at

t D t1
1 , then it is decreasing until it is positive and so on.

The proof of Theorem 1 is almost a consequence of Theorem 2.
Proof. (Proof of Theorem 1) Let us put eR WD b �a, eK D Œ0;eR� and

ef .t;x/ WD f .t;x Ca/ a.e. t 2 Œ0;T �; all x 2 Œ0;eR� D eK;
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eA WD A�a, eB WD B �a. Then

jef .t;x/j � m.t/ for a.e. t 2 Œ0;T �; all x 2 eK:

According to Theorem 2 there exist two solutions ex1, ex2 of (1.1)–(1.3) with f D ef ,
R D eR, K D eK, A D eA, B D eB having exactly p impacts. It is not difficult to check
that

x1.t/ WD ex1.t/Ca; x2.t/ WD ex2.t/Ca; t 2 Œ0;T �

are solutions to problem (1.1)–(1.3) for K D Œa;b�. �

Example 1. Let us consider a one-dimensional billiard problem

y00 D t˛ C
p

jyj; for a.e. t 2 Œ0;T �; y.t/ 2 .�r;r/;

y0.sC/ D �y0.s�/; s 2 .0;T /; jy.s/j D r;

y.0/ D y.T / D 0;

where ˛ > 0. According to Theorem 1 putting a D �r , b D r , A D 0, B D 0, then
for each p 2 N,

p >
T 2

2r

�
T ˛

˛ C1
Cp

r

�
C1;

there exist at least two solutions of the Dirichlet problem having exactly p impacts.
Note that a similar result in [4] (Theorem 3.6) cannot be applied in this case, because
the right-hand side of the differential equation is not Lipschitz–continuous in the
second variable. Moreover, Theorem 1 gives more detailed multiplicity results than
the result in [4].

Example 2. Let us consider oscillator

y00 D ��y Cq.t/;

with � > 0, p the Lebesgue integrable function on Œ0;T � with obstacles from above
and from below, i.e. the solution has values in a compact interval K D Œ�r;r �. If the
value reaches the boundary of K, then the impact occurs and the oscillator bounces
back with absolutely elastic impact, which can be expressed by condition

y0.sC/ D �y0.s�/; if jy.s/j D r :

Let us look for solutions of this equation with impact satisfying Dirichlet conditions
y.0/ D A, y.T / D B , where jAj; jBj < r . Since

max
x2Œ�r;r�

j��x Cq.t/j � �r Cjq.t/j; for a.e. t 2 Œ0;T �

we can conclude from Theorem 1 that for each integer p greater than
T

2r
.�rT CkqkL1/C1 ;

there exist at least two solutions of this boundary value problem with exactly p-
impacts.
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