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Abstract. We improve a componentwise perturbation bound of Sun for the LU factoriza-
tion and derive a new perturbation bound for the LDU factorization. The latter bound also
improves a result of Sun given for the LDL” factorization.
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1. Introduction

Perturbation bounds for the LU, LDLT factorizations are given by many authors
(e.g., see [1], [9], [7], [8], [2]). Here we improve the componentwise LU perturbation
bound of Sun [9] and derive a new perturbation bound for the LDU decomposition.
These bounds are used to investigate the stability of full rank factorizations produced
by Egervéry’s rank reduction procedure [4], [3]. The LDU perturbation bounds are
then applied to positive definite symmetric matrices. The result is shown to be better
than the LDLT perturbation result of Sun [9].

We need the following notations. Let A = [a;;];";_,. Then [A] = [lay;|]; ;.

diag (A) = diag (a11,a22, -« ,Gny) ,

tril (A1) = |y} ;— and triu (A1) = 8317 ._,» where 0 < [I] < n and

%,J

o Joay, izg—l1 )y, i<yl

a”_{ 0, i<j—1 ° BU_{ 0, i>j—1

We also use the special notations tril (A) = tril (4,0), tril* (A) = tril (4,-1),

triu (A) = triu(A,0) and triu* (A) = triu(A,1). The spectral radius of A will

be denoted by p (A). For two matrices A, B € R™*™ the relation A < B holds if and

only if a;; < b;j forall4,j =1,... ,n. Let I = Zle eiel (e; € R™ is the ith unit

vector) for 1 <k <mn, I =0 for k£ <0 and min (A, B) = [min (a;;, bij)]?j:l'
In Sections 2 and 3 we derive the perturbation bound for the LU and LDU

factorizations. A numerical example is shown in Section 4.
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2. The LU factorization

We first prove the following
Lemma 1 Assume that A, B,C € R™*" are such that A,B,C > 0 and p(B) < 1.
The mazimal solution of the inequality A < C + Btriu(A,l) (1>0) is A* (A* > C),

IO

where A*ep, = (I - Blk_l) Cer (k=1,...,n). A* is the unique solution of the
fized point problem A = f(A) = C + Btriu(A,l). If Ay = (I — B)"'C, then A; =
f(Ai—1) converges to A* monotonically decreasing as i — +o0o and 0 < A; — A* <
(I-B) ' Bi(Ag—A)) (i>1).

Proof. It follows from A < C + Btriu(A,l) < C+ BA that (I — B)A < C. As
I — B is a nonsingular M-matrix by assumption we obtain the upper bound A < Ay =
(I-B)"'C. As

)f(A)—f(A)) - ‘B(triu(A,l)—tm’u (Z,z))) gB)A—A‘

for any two n x n matrices A and A, the map f (A) is a B-contraction [6] on R"*™
and there is a unique fixed point A* = f(A*). Let Xy € R™ " be arbitrary and
Xp = f(Xp_1) (k>1). Then |A* — X}| < (I — B)"' B¥|X; — Xo| (k > 1). As for
any 0< A< A, f A <f (Z) holds and

Ay = C + Btriu ((I—B)*lo,z) <C+B(I-B)'C=(I-B)""C=A4,,

the sequence A; = f(A;—1) tends to A* and is monotonically decreasing. We prove

that A* is the maximal solution of the inequality. Assume that a solution A exists
such that A > A*. Then A = A*+L+U, where triu (U,l) = U and ¢tril (L,l — 1) = L.
Then

A=A"+L+U <C+ Btriu(A* + L+ U,1) < C + Btriu (A,1) + BU

must hold implying that L+ U < BU and 0 < U < — (I — B)flL < 0. Hence
U = L =0. The kth column of A* can be written as A*e;, = Cey + Btriu (A*,1) e,

- ~ -1
where triu (A*,1) e, = I_; A*e. Hence we obtain A*ey, = (I — BIk_l> Ce,. m

Remark 2 The sequence {A;},~ gives an improving sequence of upper estimates for
the mazimal solution A* of the inequality.

We will use the following notations: A* = ¢ (B, C,1), A; = ¢, (B,C,1), ¢, (B,C,1) =
(I -B)"'C and ¢, (B,C,1) = C + Btriu (¢;_1 (B,C,1),1) (i > 1). Notice that for

any diagonal matrix D, ¢ <B, CD, z) = ¢(B,C,1) D and ¢, <B, CD, z) = ¢, (B,C,1)D.
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Remark 3 Consider the inequality A < C+tril (A,—1)B (1 >0) with0 < A, B,C €
R™™ and p(B) < 1. By transposition we obtain AT < CT + BTtril (A, —1)" = CT +
BTtriu (AT, l) the maximal solution of which is given by ¢ (BT, cT, l), The sequence
®; (BT, cT, l) tends to ¢ (BT, CT,Z) and is monotonically decreasing. Hence for the
original inequality we have the maximal solution ¢ (BT,CT,I)T and the monotone

decreasing sequence ¢; (BT, cT, Z)T converging to ¢ (BT, cT, l)T.
The next theorem improves the componentwise estimate of Sun [9].

Theorem 4 Assume that the n X n matriz A has the LU decomposition A = LU,
where Ly is unit lower triangular and U is upper triangular. Also assume that the
perturbed matrix A+ 64 has the LU decomposition A+ 54 = (L1 + 65,) (U + dv),
where L1401, is unit lower triangular and U+ 4y is upper triangular. Finally assume
that p (}LléAU_l}) < 1. Then we have

00, < |Laltril* (¢ (|L7'64U ], |LT 64U ,0)), (2.1)

T
60| < triu <¢ (|L;15AU—1|T : }L;léAU—l}T,l) ) U] (2.2)
Proof. Using the relation
Su(U+06y) "+ L7, = L7604 (U +6p) 7",

where L7187, is a strict lower triangular matrix, while 0y (U + cSU)f1 is upper trian-
gular, we can establish the relations

tril* (L;laA (U + 5U)*1) = 1715, (2.3)
triu (Ll_ldA (U + 6U)‘1) =5y (U +6p)7". (2.4)

From relation
L;l(sA U+ 5U)71 = LII(SAU_l — LII(SAU_l(sU U+ 6U)71 (2.5)

we obtain the inequality

)L;laA U+ 5U)*1) < |LT'6AU Y + [LT 16 AU Y triu (‘Lflé,q (U +6p) " D .

Applying Lemma 1 we obtain the bound

E76a (U +60) 7| < A" = 6 (ET0aU Y L7640

0.
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Hence }Lf16L1| <tril* (A*) and |0, | < |Ly|tril* (A*).
Using the relation

(SUUi1 + (L1 +5L1)71 5[,1 = (L1 +6L1)71 5AU71,

where (L +6L1)_1 8z, is a strict lower triangular matrix, while §;U~! is upper
triangular, we can also establish the relations

tril* ((L1 o) 5AU*1> = (L1 +61,) " 61, (2.6)
and
triv ((L1 o) 5AU—1) S (2.7)
>From relation
(Ly+62,) 104U = L76AU ™ — (L +0r,) 00, LT H64U ™1 (2.8)
we obtain the inequality

‘(L1 + 5L1)*15AU—1‘ < L7 AU + tril” (‘(L1 +5L1)*15AU—1D L76AU

the maximal solution of which is
(L1 +02) 7 0aU | < A = o (L7001 LT au 1>T.
Hence }6UU_1} < triu (Z*) and |0y | < triu (ﬁ*) |U|. This completes the proof. m

Remark 5 If function ¢ is replaced by ¢, in (2.1)-(2.2) we obtain the theorem of
Sun [9], Thm. 5.1). Hence, our result is sharper.

Remark 6 Assume that the LU factorizations A = LUy and
A+da=(L+dL)(Us +du,)

are such that Uy and U, +3y, are upper unit triangular. If AT = UL LT and AT +67% =
(UlT + 551) (LT +61) satisfy the conditions of the previous theorem we may write

60] < |LItril (¢ (|7 6aUT|, |[L7104U Y 1)), (2.9)
and

|60, | < triu* <¢ (|L-15AU;1|T , }L‘lcSAUfl}T , O)T) U] (2.10)

Hence, Theorem 4 is also true for the case A = LUy with unit upper triangular Us.
Notice, however, that we have here tril and triu* instead of tril* and triu, respec-
tively. This is due to the change of the unit triangular part in the LU factorization.
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3. The LDU factorization

Consider the LDU factorization A = L DU; with unit lower triangular Lq, di-
agonal D and unit upper triangular U;. Assume that A + §4 can be factorized so
that

A+ = (Ll +6L1)(D+5D) (U1 +6U1)

where Ly + 01, is unit lower triangular and U + 0y, is unit upper triangular. For
dr, and 0y, we have the bounds (2.1) and (2.10), respectively. We now look for an
estimate of p. We use the relation

L7Y%04 (UL 4 6p,) " = Doy, (U+6p,) " +6p + L', (D +dp),

where the matrix Doy, (U + cSUl)f1 is strict upper triangular, dp is diagonal, and
Li'61, (D +6p) is strict lower triangular. Hence

trit* (L34 (U +00,) ") = L3761, (D +0p), (3.1)
diag (Ll_léA (U, + 5U1)_1) =dp, (3.2)
triu* (L;laA (U, + 5U1)‘1) = Déy, (Uy + 6p,) " (3.3)

>From relation
L*l(s U 5 -1 _ -1 -1 _ 7-1 -1 -1
1 A( 1+ U1) = L1 5AU1 L1 5AU1 5U1 (Ul + 5U1) (3-4)
we obtain the inequality

Ll_léA(Ul—i—éUl)_l) < |L7'aUT'D7Y D]+
+ L7 6 AU D7 triut <‘L1‘16A (U, + 5U1)_1D

the maximal solution of which is given by the bound

L7'0a (U+60,) | < 6 (L7007 D!

Liy'saUT' DY D)L 1) .

)

)

Hence |0p| < |D|diag (¢ (|L7 64U 'D7Y|, | LT 64U ' D71

We may get another estimate by using the expression

(Ly+61,) " 64U = (D +6p) 60, U7 4+ 6p + (L1 + 61,) " 01, D,
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where the matrix (D + dp) oy, Uy 1 is strict upper triangular, ép is diagonal, and
(Ly +61,)"" 61, D is strict lower triangular. Hence

tril* ((Ll + (SLI)_l (5,4Ufl) = (L1 + (SLI)_l 5L1D, (3.5)
diag ((L1 o) 5AU;1) — b, (3.6)

triu* ((L +60,) 6 U‘l) = -1
1 L1) AU = (D+5D)5U1U1 . (3.7)

>From relation
(L1 461,) 64U = LTY04UTY — (Ly 4 61,) " 60, LT 164U} (3.8)
we obtain the inequality

(L +061,) 7 00T < [DI[D LT 64U +
il (‘(L1 +65,)7" 5AU1—1D |D-LLT AU

It has the maximal solution

(La+01) 7 0aUT | < 0 (|07 L4 D LT 00T D) ,1)T.

T
D71L1_15AU1_1|T,1> . We now

Hence |[0p| < |D|diag (qﬁ <}D*1L1—1§AU1_1}T’

have two estimates for |0p|. As in general |AD| # |DA| these two estimates are
different. We can establish

Theorem 7 Assume that the nxn matriz A has the LDU decomposition A = L1 DUy,
where L1 is unit lower triangular, D 1is diagonal and Uy is unit upper triangular.
Also assume that the perturbed matriz A+ §a has the LDU decomposition A+ 4 =
(L1 +95,) (D+6p) (Ur + 6v,), where Ly + 01, is unit lower triangular and Uy + 6y,
is unit upper triangular. Finally assume that max (p(Tr,),p(Ty,)) < 1 holds with
I'p, = }Ll_léAUl_lD_l} and I'y, = }D‘lLl_ldAUl_1|, Then the following inequalities
are satisfied:

|5L1| < |L1|tTZl* ((rb (FL17FL170)) ’ (39)

90| < |D|min {diag (¢ (T1,,Ts,.1)) diag (¢ (VF,, 75,1 )} (3.10)

0v,| < triv (o (U5, TF,,0)" ) |4 (3.11)



Rank reduction and conjugation 115

Remark 8 If ¢ is replaced by ¢, we obtain the following weaker estimates:

0al < 1Ealtrit* (I =T2,) 7' T, (3.12)
0| < triw” (T, (I =Tw,) ™) Al (3.13)
. . —1 . —1
00| < || min (diag (1 =T1,) "' Ts, ) diag (Tu, (1 =Tw,) ")) . (3.14)

Next we specialize the above result for symmetric and positive definite matrices.
Insuch acase 'y, =TF (Tp, =|Ly'6aL; "D~ , Ty, = |[D'L7'04L7 ") and we
have the following

Corollary 9 Assume that A is symmetric and positive definite and its perturbation
04 18 such that A+ 64 remains symmetric and positive definite. If A and A+ 64 are
written in the forms A = LiDLY (D >0) and

At 64 = (L1 +01,) (D +0p) (Lf + 47, ),
respectively, then
02| < [Laftril* (¢ (I'r,, 'L, 0)) (3.15)
and
|6p| < Ddiag (¢ (I'L,,I',,1)) - (3.16)
Replacing ¢ by the weaker estimate ¢, we obtain the following bounds:
0a) < 1Ealtrit” ((I=Tp,) 7' Tu,) (3.17)
and
6p| < Ddiag ((I—PLI)_ll‘Ll). (3.18)
We recall that Sun ([9], Thm. 3.1) for symmetric positive definite matrices proved
that

162, | < |La| tril* <Eld (I - diag (D~ Eyq)) " D*I) : (3.19)

|0p| < diag (Eia) (3.20)
with

Eia=(I—|L7%aLy"| D7) Ly 6aLy ™). (3.21)
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We compare now estimates (3.17)-(3.18) and (3.19)-(3.20), respectively. We ex-
ploit the fact that for any diagonal matrix D, |AD| = |A||D| and diag(AD) =
diag (A) D hold. We can write

(I—Tp) "' Ty, = (I = |7 6aLy T | DY L 6aL; 7| D7 = BygD ™!
and then estimate (3.18) yield

16| < diag ((1 — L7 6L T DY) |L;15AL;T|) = diag (Eua)

As (I —diag (D Ep))"" > I and Eyq (I — diag (D~ Ey4))” D! > EiuD?, the
bound (3.19) satisfies

| L | tril* (Eld (I - diag (D' Epg)) ™ D—l) > |Ly|tril* ((I ) FLI) :

Thus it follows that Theorem 7 improves the special LDL? perturbation result of
Sun ([9], Thm. 3.1).

4. Final remarks

Computer experiments on symmetric positive definite MATLAB test matrices
indicate that estimate ¢, is often so good as ¢ itself. We could observe significant
difference between the estimates if I';,, was relatively large. A typical result is shown
in Figure 4.1.

Here we display the maximum difference between the components of the bound and
the true error matrix for Example 6.1 of [9] to which we added 20 random symmetric
matrices with elements of the magnitude 5 x 1073. Hence, the line marked with +
denotes estimate (3.19) of Sun, the line with triangles denotes the estimate (3.17), the
solid line denotes estimate ¢, while the line with circles denotes the best estimate.

The estimates of Theorems 4 and 7 are optimal, if one accepts inequalities of the
form A < C + Btriu(A,l) (A,B,C > 0) in the estimation process. We can solve,
however, the equation A = C + Btriu (A,l) without any nonnegativity condition.
Hence we can give exact expressions for the perturbation errors. For example, in case
of Theorem 4 we can prove the following result.

Theorem 10 For k=1,... ,n we have

0
or,ex = k) (7 sk (k) Rk, ) ' s
— (LS (Ll) 5 5 (L1 U +51) e

and

) -1 -1 )
i, = a1 (1000 ) (59 0100
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1.8

06T

04r

02r

Figure 1. Perturbation bounds for the LDL” factorization

where €, € R* is the kth unit vector,

Lo oo
1= k k
L

Ul(k) U2(k)
o U

)

k k

5o | o o

) A= 5w 5w
and L U® 5{F) ¢ RExk,

It does not seem easy to find componentwise estimates better than those of The-
orem 4. We can obtain, however, better result than those of Chang and Paige [2].

Finally we remark that either from Theorem 4 or Theorem 7 we can easily obtain
normwise perturbation estimates slightly weaker than those of Barrlund [1] by simply
using the relation |||Al|| = ||A]| » and ¢, instead of ¢.
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