ON THE RECIPROCAL SUMS OF SQUARE OF GENERALIZED BI-PERIODIC FIBONACCI NUMBERS

GINKYU CHOI AND YOUNSEOK CHOO

Received 06 September, 2017

Abstract. Recently Basbük and Yazlik [1] proved identities related to the reciprocal sum of generalized bi-periodic Fibonacci numbers starting from 0 and 1, and raised an open question whether we can obtain similar results for the reciprocal sum of m^{th} power ($m \geq 2$) of the same numbers. In this paper we derive identities for the reciprocal sum of square of generalized bi-periodic Fibonacci numbers with arbitrary initial conditions.

2010 Mathematics Subject Classification: 11B39; 11B37

Keywords: bi-periodic Fibonacci numbers, reciprocal sum, floor function

1. INTRODUCTION

Throughout this paper we use the notation \(\{G_n\}_{n=0}^{\infty} = S(G_0, G_1, a, b) \) to denote the generalized bi-periodic Fibonacci numbers \(\{G_n\}_{n=0}^{\infty} \) generated from the recurrence relation [4]

\[
G_n = \begin{cases}
a G_{n-1} + G_{n-2}, & \text{if } n \in \mathbb{N}_e;
b G_{n-1} + G_{n-2}, & \text{if } n \in \mathbb{N}_o,
\end{cases} \quad (n \geq 2),
\]

with initial conditions \(G_0 \) and \(G_1 \), where \(G_0, G_1, a \) and \(b \) are real numbers, and \(\mathbb{N}_e \) (\(\mathbb{N}_o \), respectively) denotes the set of positive even (odd, respectively) integers.

Recently Ohtsuka and Nakamura [8] found interesting properties of the Fibonacci numbers \(\{F_n\}_{n=0}^{\infty} = S(0, 1, 1, 1) \) and proved (1.1) and (1.2) below, where \(\lfloor \cdot \rfloor \) indicates the floor function.

\[
\left[\left(\sum_{k=n}^{\infty} \frac{1}{F_k} \right) \right]^{-1} = \begin{cases}
F_n - F_{n-1}, & \text{if } n \geq 2 \text{ and } n \in \mathbb{N}_e;
F_n - F_{n-1} - 1, & \text{if } n \geq 3 \text{ and } n \in \mathbb{N}_o.
\end{cases} \quad (1.1)
\]

\[
\left[\left(\sum_{k=n}^{\infty} \frac{1}{F_k^2} \right) \right]^{-1} = \begin{cases}
F_{n-1} F_n - 1, & \text{if } n \geq 2 \text{ and } n \in \mathbb{N}_e;
F_{n-1} F_n, & \text{if } n \geq 3 \text{ and } n \in \mathbb{N}_o.
\end{cases} \quad (1.2)
\]
The work of Ohtsuka and Nakamura was generalized by several authors \[1,2,5–7\]. In particular, Basbük and Yazlik \[1\] considered the reciprocal sum of generalized bi-periodic Fibonacci numbers \(G_n\) and proved the following theorem.

Theorem 1. Let \(a\) and \(b\) positive integers. Then, for \(G_n = S(0, 1, a, b)\), we have

\[
\left(\sum_{k=n}^{\infty} \frac{\psi(k)}{G_k} \right)^{-1} = \begin{cases}
G_n - G_{n-1}, & \text{if } n \geq 2 \text{ and } n \in \mathbb{N}_e; \\
G_n - G_{n-1} - 1, & \text{if } n \geq 1 \text{ and } n \in \mathbb{N}_o.
\end{cases}
\]

(1.3)

where

\[
\psi(k) = \xi(k + 1) - \xi(n + 1) - (-1)^n \left\lfloor \frac{k - n}{2} \right\rfloor,
\]

and \(\xi(n)\) is the parity function such that

\[
\xi(n) = \begin{cases}
0, & \text{if } n \in \{0\} \cup \mathbb{N}_e; \\
1, & \text{if } n \in \mathbb{N}_o.
\end{cases}
\]

In \[1\], Basbük and Yazlik raised an open question whether we can obtain similar results for the reciprocal sum of \(m^{th}\) power \((m \geq 2)\) of the same numbers.

In this paper we derive identities for the reciprocal sum of square of generalized bi-periodic Fibonacci numbers \(G_n = S(G_0, G_1, a, b)\), where \(G_0\) is a nonnegative integer and \(G_1\) is a positive integer.

2. **Main Results**

Lemma 1 will be used to prove our main results.

Lemma 1. For \(G_n = S(G_0, G_1, a, b)\), (a)-(c) below hold:

(a) \(G_n G_{n+1} - G_{n-1} G_{n+2} = (-1)^n (abG_0^2 + abG_0G_1 - aG_1^2)\).

(b) \(a^{\xi(n+1)} b^{\xi(n)} G_{n-1} G_{n+1} - a^{\xi(n)} b^{\xi(n+1)} G_n^2 = (-1)^n (aG_0^2 - abG_0G_1 - bG_1^2)\).

(c) \(G_{n+1} G_{n+2} - G_{n-1} G_n = a^{\xi(n)} b^{\xi(n+1)} G_n^2 + a^{\xi(n+1)} b^{\xi(n)} G_{n+1}^2\).

Proof. (a) and (b) are special cases of \[3, Theorem 2.2\]. Since

\[G_n = a^{\xi(n-1)} b^{\xi(n)} G_{n-1} + G_{n-2},\]

then (c) follows from the identity

\[G_n G_{n+1} = (G_{n+2} - a^{\xi(n+1)} b^{\xi(n)} G_{n+1}) G_{n+1} = G_n (a^{\xi(n)} b^{\xi(n)} G_n + G_{n-1}).\]

\(\Box\)
The main results of this paper are stated in Theorem 2. For the ease of presentation, we use the following notation for \(\{G_n\}_{n=0}^{\infty} = S(G_0, G_1, a, b) \)
\[
\Phi(G) := b^2G_0^2 + ab^2G_0G_1 - abG_1^2.
\]

Theorem 2. Let \(G_0 \) be a nonnegative integer and let \(G_1, a \) and \(b \) positive integers. Then, for \(\{G_n\}_{n=0}^{\infty} = S(G_0, G_1, a, b) \), (a) and (b) below hold:

(a) If
\[
\frac{\Phi(G)}{ab + 2} \notin \mathbb{Z},
\]
define
\[
g := \left\lfloor \frac{\Phi(G)}{ab + 2} \right\rfloor + \Delta,
\]
where
\[
\Delta = \begin{cases}
1, & \text{if } \Phi(G) > 0; \\
0, & \text{if } \Phi(G) < 0.
\end{cases}
\]

(i) If \(\Phi(G) > 0 \), then there exist positive integers \(n_0 \) and \(n_1 \) such that
\[
\left\lfloor \left(\sum_{k=n}^{\infty} \left(\frac{a}{b} \right)^{1-k} \frac{G_k^2}{G_k^2} \right)^{-1} \right\rfloor = \begin{cases}
bG_{n-1}G_n + g - 1, & \text{if } n \geq n_0 \text{ and } n \in \mathbb{N}_e; \\
bG_{n-1}G_n - g, & \text{if } n \geq n_1 \text{ and } n \in \mathbb{N}_o.
\end{cases}
\]
\]
(ii) If \(\Phi(G) < 0 \), then there exist positive integers \(n_2 \) and \(n_3 \) such that
\[
\left\lfloor \left(\sum_{k=n}^{\infty} \left(\frac{a}{b} \right)^{1-k} \frac{G_k^2}{G_k^2} \right)^{-1} \right\rfloor = \begin{cases}
bG_{n-1}G_n + g, & \text{if } n \geq n_2 \text{ and } n \in \mathbb{N}_e; \\
bG_{n-1}G_n - g - 1, & \text{if } n \geq n_3 \text{ and } n \in \mathbb{N}_o.
\end{cases}
\]

(b) If
\[
\frac{\Phi(G)}{ab + 2} \in \mathbb{Z},
\]
then there exist positive integers \(n_4 \) and \(n_5 \) such that
\[
\left\lfloor \left(\sum_{k=n}^{\infty} \left(\frac{a}{b} \right)^{1-k} \frac{G_k^2}{G_k^2} \right)^{-1} \right\rfloor = \begin{cases}
bG_{n-1}G_n + \hat{g}, & \text{if } n \geq n_4 \text{ and } n \in \mathbb{N}_e; \\
bG_{n-1}G_n - \hat{g}, & \text{if } n \geq n_5 \text{ and } n \in \mathbb{N}_o,
\end{cases}
\]
where
\[
\hat{g} := \frac{\Phi(G)}{ab + 2}.
\]

Proof. (a) To prove (2.1), assume that \(\Phi(G) > 0 \). Then
\[
\Phi(G) - g(ab + 2) < 0.
\]
Firstly, consider
Then with Lemma 2.1(a),(b), we have

\[
\frac{1}{bG_{n-1}G_n + (-1)^n g} - \frac{1}{bG_{n+1}G_{n+2} + (-1)^n g} - \left(\frac{a}{b} \right)^{1-\xi(n)} G_n - \left(\frac{a}{b} \right)^{1-\xi(n+1)} G_{n+1}
\]

\[
= \frac{(bG_{n-1}G_n + (-1)^n g)(bG_{n+1}G_{n+2} + (-1)^n g)G_n^2G_{n+1}^2}{Y_1}
\]

where, by Lemma 1(c)

\[
Y_1 = \left\{ \left(\frac{a}{b} \right)^{1-\xi(n+1)} G_n + \left(\frac{a}{b} \right)^{1-\xi(n)} G_{n+1} \right\} \hat{Y}_1.
\]

with

\[
\hat{Y}_1 = b^2(G_n^2G_{n+1}^2 - G_{n-1}G_nG_{n+1}G_{n+2})
\]

\[-(-1)^n gb(G_{n-1}G_n + G_{n+1}G_{n+2}) - g^2.
\]

By Lemma 2.1(a),(b), we have

\[
G_n^2G_{n+1}^2 - G_{n-1}G_nG_{n+1}G_{n+2}
\]

\[= (G_nG_{n+1} - G_{n-1}G_{n+2})G_nG_{n+1}
\]

\[= (-1)^n (bG_0^2 + abG_0G_1 - aG_1^2)G_nG_{n+1}.
\]

and

\[
G_{n-1}G_n + G_{n+1}G_{n+2}
\]

\[= (G_{n+1} - a\xi(n)b\xi(n+1)G_n)G_n + G_{n+1}(a\xi(n+1)b\xi(n)G_{n+1} + G_n)
\]

\[= (ab + 2)G_nG_{n+1} + a\xi(n+1)b\xi(n)G_{n-1}G_{n+1} - a\xi(n)b\xi(n+1)G_n^2
\]

\[= (ab + 2)G_nG_{n+1} + (-1)^n (aG_1^2 - abG_0G_1 - bG_0^2).
\]

Then

\[
\hat{Y}_1 = (-1)^n b^2(bG_0^2 + abG_0G_1 - aG_1^2)G_nG_{n+1}
\]

\[-(-1)^n gb \left\{ (ab + 2)G_nG_{n+1} + (-1)^n (aG_1^2 - abG_0G_1 - bG_0^2) \right\} - g^2
\]

\[= (-1)^n gbG_nG_{n+1} \left\{ \Phi(G) - g(ab + 2) \right\} + g^2 \Phi(G) - g^2.
\]

If \(n \in \mathbb{N}_e\), then there exists a positive integer \(m_0\) such that, for \(n \geq m_0\), \(X_1 < 0\), and

\[
\frac{1}{bG_{n-1}G_n + (-1)^n g} - \frac{1}{bG_{n+1}G_{n+2} + (-1)^n g} < \left(\frac{a}{b} \right)^{1-\xi(n)} G_n - \left(\frac{a}{b} \right)^{1-\xi(n+1)} G_{n+1}.
\]
Repeatedly applying the above inequality, we have
\[
\frac{1}{bG_{n-1}G_n + (-1)^n g} < \sum_{k=n}^{\infty} \left(\frac{a}{b} \right)^{1-\xi(k)} \frac{G_k^2}{G_k}, \quad \text{if } n \geq m_0 \text{ and } n \in \mathbb{N}. \tag{2.4}
\]
Similarly, we obtain, for some positive integer \(m_1 \),
\[
\sum_{k=n}^{\infty} \left(\frac{a}{b} \right)^{1-\xi(k)} \frac{G_k^2}{G_k} < \frac{1}{bG_{n-1}G_n + (-1)^n g}, \quad \text{if } n \geq m_1 \text{ and } n \in \mathbb{N}. \tag{2.5}
\]
Next, consider
\[
X_2 = \frac{1}{bG_{n-1}G_n + (-1)^n g - 1} - \frac{1}{bG_nG_{n+1} + (-1)^{n+1} g - 1} - \frac{\left(\frac{a}{b} \right)^{1-\xi(n)}}{G_n^2}
\]
where
\[
Y_2 = bG_n^2G_{n+1} - ba^{1-\xi(n)}b^{\xi(n)}G_{n-1}G_nG_{n+1} - bG_{n-1}G_n^3
\]
\[
- (-1)^n g (2G_n^2 - a^{1-\xi(n)}b^{\xi(n)}G_{n-1}G_n + a^{1-\xi(n)}b^{\xi(n)}G_nG_{n+1})
\]
\[
+ a^{1-\xi(n)}b^{\xi(n)}(G_{n-1}G_n + G_nG_{n+1}) + a^{1-\xi(n)}b^{\xi(n)-1}(g^2 - 1).
\]
Using Lemma 1(a), we have
\[
bG_n^2G_{n+1} - ba^{1-\xi(n)}b^{\xi(n)}G_{n-1}G_nG_{n+1} - bG_{n-1}G_n^3
\]
\[
= bG_n^2(G_n - a^{1-\xi(n)}b^{\xi(n)}G_{n-1}) - bG_{n-1}G_n^3
\]
\[
= bG_n^2(G_{n-2}G_{n+1} - G_{n-1}G_n)
\]
\[
= (-1)^n bG_n^2(bG_0^2 + abG_0G_1 - aG_1^2).
\]
and
\[
2G_n^2 - a^{1-\xi(n)}b^{\xi(n)}G_{n-1}G_n + a^{1-\xi(n)}b^{\xi(n)}G_nG_{n+1}
\]
\[
= 2G_n^2 - a^{1-\xi(n)}b^{\xi(n)}G_{n-1}G_n + a^{1-\xi(n)}b^{\xi(n)}G_n(a^{1-\xi(n+1)}b^{\xi(n+1)}G_n + G_{n-1})
\]
\[
= (ab + 2)G_n^2.
\]
Hence we obtain
\[
Y_2 = (-1)^n G_n^2 \Phi(G) - g(ab + 2)
\]
\[
+ a^{1-\xi(n)}b^{\xi(n)}(G_{n-1}G_n + G_nG_{n+1}) + a^{1-\xi(n)}b^{\xi(n)-1}(g^2 - 1).
\]
If \(n \in \mathbb{N}_e \), then there exists a positive integer \(m_2 \) such that, for \(n \geq m_2 \), \(X_2 > 0 \), and

\[
\frac{\left(\frac{a}{b} \right)^{1 - \xi(n)}}{G_n^2} < \frac{1}{bG_{n-1}G_n + (-1)^n g - 1} - \frac{1}{bG_nG_{n+1} + (-1)^{n+1} g - 1}.
\]

Repeatedly applying the above inequality, we have

\[
\sum_{k=n}^{\infty} \frac{\left(\frac{a}{b} \right)^{1 - \xi(k)}}{G_k^2} < \frac{1}{bG_{n-1}G_n + (-1)^n g - 1}, \quad \text{if } n \geq m_2 \text{ and } n \in \mathbb{N}_e. \tag{2.6}
\]

Similarly, consider

\[
X_3 = \frac{1}{bG_{n-1}G_n + (-1)^n g + 1} - \frac{1}{bG_nG_{n+1} + (-1)^{n+1} g + 1} - \frac{\left(\frac{a}{b} \right)^{1 - \xi(n)}}{G_n^2} Y_3,
\]

where

\[
Y_3 = Y_2 - 2a^{1 - \xi(n)}b^{\xi(n)}(G_{n-1}G_n + G_nG_{n+1})
\]

\[
= (-1)^n G_n^2 \left\{ \Phi(G) - g(ab + 2) \right\}
\]

\[
- a^{1 - \xi(n)}b^{\xi(n)}(G_{n-1}G_n + G_nG_{n+1}) + a^{1 - \xi(n)}b^{\xi(n)-1}(g^2 - 1).
\]

If \(n \in \mathbb{N}_o \), then there exists a positive integer \(m_3 \) such that, for \(n \geq m_3 \), \(X_3 < 0 \), and

\[
\frac{1}{bG_{n-1}G_n + (-1)^n g + 1} - \frac{1}{bG_nG_{n+1} + (-1)^{n+1} g + 1} < \frac{\left(\frac{a}{b} \right)^{1 - \xi(n)}}{G_n^2},
\]

from which we have

\[
\frac{1}{bG_{n-1}G_n + (-1)^n g + 1} < \sum_{k=n}^{\infty} \frac{\left(\frac{a}{b} \right)^{1 - \xi(k)}}{G_k^2}, \quad \text{if } n \geq m_3 \text{ and } n \in \mathbb{N}_o. \tag{2.7}
\]

Then (2.1) follows from (2.4), (2.5), (2.6) and (2.7).

Now suppose that \(\Phi(G) < 0 \). In this case, we have

\[
\Phi(G) - g(ab + 2) > 0,
\]

and (2.4), (2.5), (2.6) and (2.7) are respectively modified as

\[
\sum_{k=n}^{\infty} \frac{\left(\frac{a}{b} \right)^{1 - \xi(k)}}{G_k^2} < \frac{1}{bG_{n-1}G_n + (-1)^n g}, \quad \text{if } n \geq m_4 \text{ and } n \in \mathbb{N}_e. \tag{2.8}
\]
Reciprocal sums of generalized bi-periodic Fibonacci numbers

\[\frac{1}{bG_{n-1}G_n + (-1)^n g} < \sum_{k=n}^{\infty} \frac{1}{G_k^2}, \text{ if } n \geq m_5 \text{ and } n \in \mathbb{N}_o. \quad (2.9) \]

\[\sum_{k=n}^{\infty} \frac{(\frac{a}{b})^{1-\xi(k)}}{G_k^2} < \frac{1}{bG_{n-1}G_n + (-1)^n g - 1}, \text{ if } n \geq m_6 \text{ and } n \in \mathbb{N}_o. \quad (2.10) \]

and

\[\frac{1}{bG_{n-1}G_n + (-1)^n g + 1} < \sum_{k=n}^{\infty} \frac{1}{G_k^2}, \text{ if } n \geq m_7 \text{ and } n \in \mathbb{N}_e. \quad (2.11) \]

Then, (2.2) easily follows and the proof of (a) is completed.

(b) Suppose that

\[\frac{\Phi(G)}{ab + 2} \in \mathbb{Z}. \]

We recall the proof of (a). Replacing \(g \) by \(\hat{g} \), we have

\[\hat{Y}_1 = \hat{g} \Phi(G) - \hat{g}^2 = (ab + 1)\hat{g}^2 > 0. \]

Hence there exist positive integers \(m_8 \) and \(m_9 \) such that \(X_1 > 0 \) if \(n \geq m_8 \) and \(n \in \mathbb{N}_e \) or if \(n \geq m_9 \) and \(n \in \mathbb{N}_o \). Hence we obtain

\[\sum_{k=n}^{\infty} \frac{(\frac{a}{b})^{1-\xi(k)}}{G_k^2} < \frac{1}{bG_{n-1}G_n + (-1)^n \hat{g}}, \text{ if } n \geq m_8 \quad (n \in \mathbb{N}_e) \text{ or if } n \geq m_9 \quad (n \in \mathbb{N}_o). \]

Similarly, there exist positive integers \(m_{10} \) and \(m_{11} \) such that \(X_3 < 0 \) if \(n \geq m_{10} \) and \(n \in \mathbb{N}_e \) or if \(n \geq m_{11} \) and \(n \in \mathbb{N}_o \), from which we have

\[\frac{1}{bG_{n-1}G_n + (-1)^n \hat{g} + 1} < \sum_{k=n}^{\infty} \frac{1}{G_k^2}, \text{ if } n \geq m_{10} \quad (n \in \mathbb{N}_e) \text{ or if } n \geq m_{11} \quad (n \in \mathbb{N}_o). \]

Then, (2.3) follows from (2.12) and (2.13), and (b) is also proved.

□

Example 1. For \(\{G_n\}_{n=0}^\infty = S(2, 1, 2, 1) \), we have \(\Phi(G) = 6 \) and

\[g = \left\lfloor \frac{6}{4} \right\rfloor + 1 = 2. \]

Then, from (2.1), we have

\[\left\lfloor \left(\sum_{k=n}^{\infty} \frac{2^{1-\xi(k)}}{G_k^2} \right)^{-1} \right\rfloor = \begin{cases} G_{n-1}G_n + 1, & \text{if } n \geq 2 \text{ and } n \in \mathbb{N}_e; \\ G_{n-1}G_n - 2, & \text{if } n \geq 1 \text{ and } n \in \mathbb{N}_o. \end{cases} \]
Example 2. Consider \(\{G_n\}_{n=0}^\infty = S(0,1,a,b) \) with \(a \) and \(b \) positive integers. In this case, we have \(\Phi(G) = -ab < 0 \) and
\[
g = \left\lfloor \frac{-ab}{ab + 2} \right\rfloor = -1.
\]
Then, from (2.2), we obtain
\[
\left(\sum_{k=n}^{\infty} \left(\frac{a}{b} \right)^{1-\xi(k)} \frac{1}{G_k^2} \right)^{-1} = \begin{cases}
bG_{n-1}G_n - 1, & \text{if } n \geq 2 \text{ and } n \in \mathbb{N}_e; \\
bG_{n-1}G_n, & \text{if } n \geq 1 \text{ and } n \in \mathbb{N}_o. \end{cases}
\]

Example 3. For \(\{G_n\}_{n=0}^\infty = S(2,1,4,2) \), we have \(\Phi(G) = 40, \hat{g} = 4 \). Then, from (2.3), we have
\[
\left(\sum_{k=n}^{\infty} \frac{2^{1-\xi(k)}}{G_k^2} \right)^{-1} = \begin{cases}
2G_{n-1}G_n + 4, & \text{if } n \geq 2 \text{ and } n \in \mathbb{N}_e; \\
2G_{n-1}G_n - 4, & \text{if } n \geq 1 \text{ and } n \in \mathbb{N}_o. \end{cases}
\]

ACKNOWLEDGEMENT

The authors thank to the anonymous reviewer for his helpful comments which led to improved presentation of the paper.

REFERENCES

Authors’ addresses

Ginkyu Choi
Hongik University, Department of Electronic and Electrical Engineering, 2639 Sejong-Ro, 30016 Sejong, Republic of Korea
E-mail address: gkchoi@hongik.ac.kr

Younseok Choo
Hongik University, Department of Electronic and Electrical Engineering, 2639 Sejong-Ro, 30016 Sejong, Republic of Korea
E-mail address: yschoo@hongik.ac.kr