Miskolc Mathematical Notes HU e-ISSN 1787-2413
Vol. 23 (2022), No. 1, pp. 41-50 DOI: 10.18514/MMN.2022.2382

ON THE EXTREMAL GRAPHS FOR SECOND ZAGREB INDEX
WITH FIXED NUMBER OF VERTICES AND CYCLOMATIC
NUMBER

AKBAR ALI KINKAR CH. DAS, AND SOHAIL AKHTER

Received 11 July, 2017

Abstract. The cyclomatic number of a graph G (is denoted by V) is the minimum number of
edges of G whose removal makes G as acyclic. Denote by G,y the collection of all n-vertex con-
nected graphs with cyclomatic number v. The elements of G,y with maximum second Zagreb
(My) index (forv < 4 and v = *&3) 1 where 4 < k < n—2) and with minimum M, index (for
v < 2) have already been reported in the literature. The main contribution of the present article
is the characterization of graphs in the collection G,y with minimum M, index for v > 3 and
n > 2(v—1). The obtained extremal graphs, are molecular graphs and thereby, also minimize
M, index among all the connected molecular n-vertex graphs with cyclomatic number v > 3,
where n > 2(v —1). For n > 6, the graph having maximum M, value in the collection G, 5 has
also been characterized and thereby a conjecture posed by Xu et al. [MATCH Commun. Math.
Comput. Chem. 72 (2014) 641-654] is confirmed for v = 5.
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1. INTRODUCTION

All the graphs considered in the present study are finite, undirected, simple and
connected. Undefined notations and terminologies from (chemical) graph theory can
be found in [11,24].

Chemical compounds can be represented by graphs in which vertices correspond
to the atoms while edges represent the covalent bonds between atoms [24]. In chem-
ical graph theory, graph invariants are usually referred as topological indices. In
1972, Gutman and Trinajsti¢ [9] showed that total 7t-electron energy of a molecule M
depends on the topological index }.,cy () d?, where G is the graph corresponding to
M, V(G) is the vertex set of G and d, is degree of the vertex v. Nowadays, this graph
quantity is known as the first Zagreb index and is denoted by M;. The following to-
pological index (currently known as second Zagreb index and is usually denoted by
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M,) was appeared in [8] within the study of molecular branching:

M2 (G) = Z dudw
uveE(G)

where E(G) is the edge set of the graph G and uv is the edge between the vertices
u,v € V(G). Both of the aforementioned Zagreb indices belong to the oldest and most
studied topological indices. More than five hundred papers have been devoted to
these Zagreb indices, for example see the reviews [4,7,21] published on the occasion
of their 30th anniversary, recent surveys [2, 6], recent papers [3, 12—-18,20,22,23] and
related references mentioned therein.

A vertex v € V(G) is said to be pendent vertex if d, = 1. Following Xu et al. [25],
let K,'(’*k be the graph obtained by attaching n — k pendent vertices to one vertex of
the k-vertex complete graph K. For any positive integer t < k, let K,’:_k (t) be a graph
obtained by adding ¢ new edges between one pendent vertex of K,f’k and ¢ vertices
with degree k — 1 in it. The cyclomatic number of a graph G (is denoted by V) is
the minimum number of edges of G whose removal makes G as acyclic. Denote by
Gp,v the collection of all n-vertex connected graphs with cyclomatic number v. Even
though the mathematical theory of Zagreb indices is well established, some important
extremal graph-theoretical problems concerning these Zagreb indices are still open.
One of these problems is the characterization of extremal graphs with respect to M,
index in G,y (however, a similar problem concerning M; index has already been
solved completely [25]). Indeed, partial solution of the aforementioned problem (for
M, index) has been reported in the literature: see [5] for the characterization of graphs
in G,y with minimum M, value in case of v < 2; see [5] for the characterization of
graphs in G,y with maximum M, value in case of v < 2 and v = 4, respectively.
Also, Xu et al. [25] characterized the members of G,y with maximum M, value for
v<3andv= @ + 1, where 4 <k <n—2. Furthermore, the authors of [25] posed
the following conjecture concerning maximum M, value:

Conjecture 1. Letv:@—i—t—i—l where 1 <t<k—1land4 <k<n-—2. The

graph K *(t) attains maximum M, value among all the members of G, .

For v =4, the Conjecture 1 was proved in [, 10]. In this paper, we confirm the
Conjecture 1 for v =5 and, mainly, characterize the graphs with minimum M, value
in the collection G,y forv>3andn >2(v—1).

2. MAIN RESULTS

In order to obtain the main results, we need to establish some preliminary lemmas
and thereby we recall some notations and definitions. For a vertex u € V(G), the
set of all vertices adjacent with u is denoted by Ng(u). The elements of Ng(u) are
called neighbors of u. A vertex v € V(G) is said to be branching vertex if d, > 3. A
path vivy - -vii g of length k£ > 1 in a graph G is said to be pendent path if one of the
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vertices vy, Vx4 is branching and the other one is pendent, and all the other vertices
(if exist) v, v3, ..., v; of path have degree 2. Let G’ be a graph obtained from another
graph G by applying some graph transformation such that V(G) = V(G'). In the rest
of the paper, whenever such two graphs are under discussion, by the vertex degree d,
we always mean the degree of the vertex u in G.

Lemma 1. Forv >3 andn>2(v —1), if G has minimum M, value among all the
members of G,y then G does not contain any pendant vertex.

Proof. Suppose to the contrary that G has a pendent vertex. Let uuju,...u, be a
pendent path in G, where d,, > 3. Assume that v is a neighbor of u different from u;.
Let G’ be the graph obtained from G by removing the edge uv and adding the edge
vu,. We note that both the graphs G and G’ have same cyclomatic number. If r = 1
then

My(G)—My(G)=d,(d,—2)—d,+2+ Z dy
XENG (u):xF#uy x#v
>d,—d,+2+ ) d, >0,
XENG (u):xFuy x#v
which is a contradiction to the minimality of M»(G). If r > 2 then we have
My(G) —M,(G") =d,(d, —2) + Y de>d,+ ) d; >0,
XENG (u):x£uy x#v XENG (u):x£uy x#v

again a contradiction. 0

Let n; be the number of vertices of degree i in the graph G. The minimum and
maximum vertex degree of a graph is denoted by & and A respectively.

Lemma 2. Forv >3 andn>2(v—1), if G has minimum M, value among all the
members of G,y then maximum vertex degree in G is 3.

Proof. From Lemma 1, we have 8 > 2. The assumption v > 3 and the fact that
the n-vertex cycle graph C, is the only connected graph for which minimum and
maximum vertex degree is 2, implies that maximum vertex degree in G is at least
3. We have to show that A = 3. Contrarily, suppose that A > 4. The inequality
n>2(v—1) implies that

Y m>2m-n=2( Y %— Y n,-):2< Y %— Y n)

2<i<A <2§i§A 3<i<A 3<i<A
which is equivalent to
ny > Z (i—3)n,.
4<i<A
It means that G contains at least one vertex of degree 2. Suppose that the vertex
u € V(G) has maximum degree.
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Case 1. The vertex u has a neighbor w of degree 2.
We note that w is not adjacent to at least one neighbor, say v, of u. Let G’ be the
graph obtained from G by removing the edge uv and adding the edge vw. Then, we
have M>(G) — M,(G") > 0, a contradiction because & > 2 and

My(G) —M,(G") =d,(d,—3) —d; —d,+3+ Y d,

XENG (u)x£vx#w
>2dy—3)—di—dy+3+ Y dy
XENG (1) xF#v.xF#w

where ¢ is the neighbor of w different from u.
Case 2. All the neighbors of u have degree greater than 2.
We notice that there exists a vertex w' € V(G) \ Ng(u) of degree 2 which is not ad-
jacent to at least one neighbor, say Vv, of u. Let G” be the graph obtained from G by
removing the edge uv' and adding the edge v'w'. Due to the assumption d, = A > 4,
we have

My(G) —My(G") =dy(dy,—3)+ Y, dy— Y d.

YENG (u):y#v' ZENG(W')
> 3(du - 3) +3(du - 1) - 2du > 07
again a contradiction. This completes the proof. g

Let x; ; be the number of edges in the graph G connecting the vertices of degrees i
and j.

Lemma 3. Forv > 3, let G € G,y such that it contains only vertices of degree 2
and 3.

() If2(v—1) <n<5(v—1) then at least two vertices of degree 3 are adjacent.
(i) If n > 5(v— 1) then at least two vertices of degree 2 are adjacent.
(iii) Ifn=>5(v—1) and if one of x22,x3 3 is zero then the other is also zero.

Proof. (i) From the definition of G, the following equations must holds:

n+ny=n 2.1
2ny+3n3=2(n+v—1) 2.2)
2x22 +x23 = 2n2 (2.3)
X3+ 2x33 = 3n3. 2.4)

From Egs. (2.1) and (2.2), we obtain n, =n—2(v—1) and n3 = 2(v—1). These two
equations together with the assumption n < 5(v — 1) imply that

2ny < 3nj3. (2.5)

If x3 3 = 0 then from Eqs. (2.3) and (2.4), it follows that 2n, > 3n3 which contradicts
the Inequality (2.5). From this we conclude that at least two vertices of degree 3 are
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adjacent.

(i1) The proof is fully analogous to that of first part.
(iii) The assumption n = 5(v — 1) implies that 2n; = 3n3. Now, from Egs. (2.3)
and (2.4), the desired result follows.
O

Lemma 4. Forv >3 andn > 5(v—1), if G has minimum M, value among all the
members of G,y then for every edge xy € E(G) at least one of the vertices x,y has
degree 2.

Proof. From Lemmata 1, 2 and 3, it follows that G contains only vertices of de-
grees 2, 3 and contains at least two adjacent vertices of degree 2, say u and v. Suppose
to the contrary that there exist two adjacent vertices w,7 € V(G) of degree 3. Letx # u
be the vertex adjacent with v. The vertex x may coincides with w or ¢, if this is the
case, then (without loss of generality) we may assume that x =1t.

Case 1. The vertices u and v do not have common neighbor.

Let G’ be the graph obtained from G by removing the edges uv, vx, wr and adding the
edges ux,wv,1v. Whether x =t or x # 1, in both the cases, we have M (G) — M, (G') =
1, a contradiction to the minimality of M>(G).

Case 2. The vertices u and v have common neighbor.

It is evident that d, = 3. If x # ¢ then the graph G” obtained from G by removing the
edges vx, wt and adding the edges v¢,wx, has same M, value as G has. The vertices u
and v do not have common neighbor in the graph G” and hence by Case 1, we arrives
at a contradiction. If x = ¢ then we consider a neighbor w; of w different from ¢. If
G"" is the graph obtained from G by removing the edges vz, w;w and adding the edges
wv,wit, then M»(G) = M>(G"). Again, the vertices u and v do not have common
neighbor in the graph G’ and hence by Case 1, we arrives at a contradiction. g

Lemma 5. Forv >3 and n=>5(v—1), if G has minimum M, value among all the
members of G,y then for every edge xy € E(G) one of the vertices x,y has degree 2
and the other has degree 3.

Proof. From Lemmas 1 and 2, it follows that G contains only vertices of degree 2
and 3. We claim that x, » = x3 3 = 0. Contrarily, suppose that at least one of x 7,x3 3
is non-zero. If one of x5,x33 is zero then (due to Lemma 3) the other must also
be zero, a contradiction. If both of x;5,x3 3 are non-zero. Then, from the proof of
Lemma 4, we conclude that there exists a graph G’ € G,,,y such that M>(G) > M>(G'),
which is again a contradiction.

O

Lemma 6. For v>3and2(v—1) <n <5(v—1), if G has minimum M, value
among all the members of G,y then G does not contain any edge connecting the
vertices of degree 2.
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Proof. Contrarily, suppose that G contains at least two adjacent vertices of degree
2, say u and v. From Lemmas 1, 2 and 3, it follows that G has at least two adjacent
vertices of degree 3. From the proof of Lemma 4, we conclude that there exists a
graph G’ € G, such that M>(G) > M»(G'), which is a contradiction. O

Theorem 1. If v > 3 then among all the members of Gy,

(i) the cubic graphs uniquely attains minimum M, value (which is 9(v+n—1))
forn=2(v—1);

(ii) the graphs containing only vertices of degree 2 and 3 such that no two ver-
tices of degree 2 are adjacent, uniquely attain minimum M, value (which is
3n+21(v—1))for2(v—1)<n<5(v—-1);

(iii) the graphs containing only vertices of degree 2 and 3 such that for every
pair of adjacent vertices of G one vertex has degree 2 and the other vertex
has degree 3, uniquely attain minimum M, value (which is 6(v+n— 1)) for
n=5(v—1);

(iv) the graphs containing only vertices of degree 2 and 3 such that no two ver-
tices of degree 3 are adjacent, uniquely attain minimum M, value (which is
4n+34(v—1))forn>5(v—1).

Proof. Let G € G,y be the graph with minimum M, value among all the members
of G,y. From Lemmas 1 and 2, it is concluded that G contains only vertices of degree
2 and 3.

(i) If n=2(v—1) then Egs. (2.1) and (2.2) yield n, = 0 and hence G must be a
cubic graph.

(i) If 2(v—1) <n < 5(v—1) then bearing in mind the Lemma 6, we find the
values of xp3, x33 from Eqgs. (2.1) - (2.4): xp3 =2(n—2(v—1)), x33 =
5(v—1)—n. Hence M>(G) =3n+21(v—1).

(iii) A direct consequence of Lemma 5.

(iv) If n > 5(v — 1) then bearing in mind the Lemma 4 we find the values of x; »,
xp3 from Egs. (2.1) - (2.4): xpp =n—5(v—1), xo3 = 6(v—1). Hence
M>(G) =4n+34(v—1).

]

Remark 1. We note that all the extremal graphs characterized in Theorem 1 are
molecular graphs. Hence, these extremal graphs also minimize M> among all the
(connected) molecular n-vertex graphs with cyclomatic number v > 3, where n >
2(v—1).

Remark 2. 1f a graph G € G,y has size m then it holds v = m —n 41 and thereby
the extremal values mentioned in Theorem 1 can be rewritten in terms of order and
size of the graph.

Milicevi€ et al. [19] reformulated the first Zagreb index in terms of edge-degrees
instead of vertex-degrees. This topological index is denoted by EM; and can be
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defined as:

EM((G)= Y (d,+d,—2)
uveE(G)

Remark 3. We remark that the graphs which minimize M, index among all the
members of the collection G,y (where v > 3), also minimize EM index in the afore-
mentioned collection. We omit details because the proofs of the results corresponding
to Lemmas 1, 2, Lemma 4 - Lemma 6 and Theorem 1 concerning EM; index are fully
analogous to that of Lemmas 1, 2, Lemma 4 - Lemma 6 and Theorem 1.

Since all the extremal graphs in Theorem 1 have minimum degree 2, we derive a
sharp lower bound on M, for the n-vertex graph with minimum degree at least 2 and
cyclomatic number V.

Theorem 2. If G is an n-vertex graph with minimum degree at least 2 and cyclo-
matic number v then M(G) > 29(v — 1) — n with equality if and only if G is cubic
graph.

Proof. Bearing in mind the equations
My(G)= Y ijxiy,
2<i<j<A

vVv+n—1= Z Xij

2<i<j<A

1 1
n= Z <.+.>xi,j7
a<i<j<a N

30 30
My(G)—29(v+n—1)+30n= ) <ij—29+i—|—j>x,~7j.

2<i<j<A

we have

To obtain the desired result, we have to show that f(i,j) =ij —29+ % + % >0 for
2 <i< j<Asuchthat f(i, j) = 0 if and only if i = j = 3. Direct calculations yield
£(2,j) >0 for j =2,3. Forall j >4, it holds that £(2, j) > f(2,4) > 0. Also, we
note that f(3,3) =0and f(3, ) > f(3,4) > 0 for all j > 4. Finally, if j > i > 4 then
extension of the function f to the interval [4,0) is increasing in both variables and
hence f(i, j) > f(4,4) > 0. This completes the proof. O

Now, we turn our attention to the prove the Conjecture 1 for v = 5. For this, we need
the following useful lemma:

Lemma 7. [25] If the graph G has maximum My value among all the members of
Gn,v then the maximum vertex degree in G is n — 1.
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n—11=0 n—8=0 n—=7=0 n—7=0 n—6=0 n—9=0
G G G® G4 (el G
n—6=0 n—=7=0 n—6=0 n—8=0 n—8=0 n—10=0
G G® G©@ G109 G G122
n—7=0 n—8=0 n—=72=0 n—9=0 n—=5=0 n—9=0
——
G G G G G Gu®
n—6=0 n—=7=0 n—7=0 n—7=0 n—6=0 n—8=0
G(19) G(ZO) G(Zl) G(ZZ) G(23) G(24)
n—7=0 n—8=0
G G20

FIGURE 1. All the non-isomorphic graphs in G, 5 with maximum
degree n— 1.

Theorem 3. For n > 6, the graph G\\7) (which is isomorphic to KZ%(Z) and is
depicted in Figure 1) uniquely maximizes M» among all the members of G, 5, where
M, (G = n? +8n + 55.

Proof. Firstly, we enumerate all the non-isomorphic members of G, s having max-
imum vertex degree n — 1, which can be obtained from the n-vertex star graph S, by
adding five (possible) edges. All these non-isomorphic graphs are shown in Figure
1. From Lemma 7, it follows that the member of G,y which maximize M, must
be one of the graphs G(l),G(z),...,G(%). Leta; =11,a, =27,a3 = ayj9o =35,a4 =
51,a5 =50,a6 = 20,a7 =ag =42,a9 =41,a;1 =29,a12 = 15,a13 = a3 = 36,a14 =
24 a15 = ars = 30,a16 = 23,a17 = 55,a13 = 19,a19 = 47,ay0 = 39,a21 = 31,a»n =
34,as4 = 26,a6 = 25. Routine calculations yield M>(GY) = n” + 8n + a;, where
i=1,2,3,...,26. Simple comparison gives the desired result. O
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3. CONCLUDING REMARKS

We have characterized the graphs having minimum M, value among all the n-
vertex connected graphs (and molecular graphs) with cyclomatic number v > 3,
where n > 2(v —1). We have also characterized the graphs having maximum M,
value among all the n-vertex connected graphs with cyclomatic number v = 5 and
thereby confirmed the Conjecture 1 for v = 5. We believe that this conjecture is true.
However, at the present moment, we do not have its proof.
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