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Abstract. In 2007 Akhobadze [ 1] (see also [2]) introduced the notion of Cesaro means of Fourier
series with variable parameters. In the present paper we prove the almost everywhere conver-
gence of the the Cesaro (C, ;) means of integrable functions op” f — f, where Ng,x 21—
oo for f € L1(I), where I is the Walsh group for every sequence o = (at,), 0 < ot < 1. This
theorem for constant sequences « that is, & = o1 was proved by Fine [3].
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1. INTRODUCTION AND MAIN RESULTS

We follow the standard notions of dyadic analysis introduced by the mathem-
aticians F. Schipp, P. Simon, W. R. Wade (see e.g. [9]) and others. Denote by
N:={0,1,...},P := N\ {0}, the set of natural numbers, the set of positive integers
and [ := [0, 1) the unit interval. Denote by A(B) = | B| the Lebesgue measure of the
set B(B C I). Denote by L?(I) the usual Lebesgue spaces and |||, the correspond-
ing norms (1 < p < 00). Set

e 5 e

on’ on
the set of dyadic intervals and for given x € I and let I,(x) denote the interval

I,(x) € § of length 27" which contains x (n € N). Also use the notion [, :=
I,,(0) (n € N). Let

o0
X = anZ_(”'H)
n=0
be the dyadic expansion of x € I, where x, = 0 or 1 and if x is a dyadic rational
number (x € {2% : p,n € N}) we choose the expansion which terminates in 0’s. The
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notion of the Hardy space H (/) is introduced in the following way [9]. A func-
tion a € L°°([1) is called an atom, if either @ = 1 or a has the following properties:
suppa C Ig, ||a]oo < |Ia|_1,f1a =0, for some I, € J. We say that the function f
belongs to H, if f can be represented as f = Y 7o, A;a;, where a;’s are atoms and
for the coefficients (A;) the inequality Y 72 |Ai| < oo is true. It is known that H is
a Banach space with respect to the norm

o0
I |5 = inf> |,
i=0

where the infimum is taken over all decompositions f =) 72 A;a; € H.
Set the definition of the nth (n € N) Walsh-Paley function at point x € I as:

o0
wn(x) == [ (=¥,
j=0
where N > n = Z;‘;Onjzf (n; €{0,1}(j € N)). It is known (see [8] or [10]) that
the system (wy,n € N) is the character system of (/, +), where the group operation
+ is the so-called dyadic or logical addition on /. That is, for any x,y € 1

oo
xX+y:= Z |xXn —yn|2_(”+1).

n=0
Denote by
R n—1 1 n
f(n):z[lfwnd)k, Dn::Za)k, K, ::n—i—lZDk
k=0 k=0

the Fourier coefficients, the Dirichlet and the Fejér or (C, 1) kernels, respectively. It
is also known that the Fejér or (C, 1) means of f is

n

0 () = —— S f () = /I FEOKLy +x)dA)

n+1k=0
_ ! Xn:/f(x)D 5 +x)dAx), (eN,yel)
n+1k=0 I k ' ’ '

It is known [9] that for n € N, x € I it holds

Doy = 12X E D
n(x)—=
2 0 ,ifx ¢ I,

and also that

Dn(x) = wn(x) ) Dox (x)nc(=1)*,
k=1
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where n =Y 52 n;2, n; = {0,1}(i € N).
Denote by K5” the kernel of the summability method (C,a;) and call it the
(C,ay) kernel or the Cesaro kernel for o, € R\ {—1,-2,...}

1 < _
Ka" = —a > Ay Di

" k=0
where
A — (an + D(ap +2)...(cpy + 1)
ko k! '
. — n A%
It is known [12] that A" = >} _, Az” L AZ” —AZ’fH = —akT’i. The (C,ay)

Cesaro means of integrable function f is
on R 1 . op—1 _ oy
o )= o ARSI 0) = [ F0KE 6+ 0dAw).
" k=0

In [3] Fine proved the almost everywhere convergence o, f — f for all in-
tegrable function f with constant sequence «, = «; > 0. On the rate of conver-
gence of Cesaro means in this constant case see the paper of Fridli [4]. For the
two-dimensional situation see the paper of Goginava [7].

Comment 1. With respect to other locally constant orthonormal sysytems for in-
stance it was a question of Taibleson [8] open for a long time, that does the Fejér-
Lebesgue theorem, that is the a.e. convergence o, f —> f hold for all integrable
function f with respect to the character system of the group of 2-adic integers. In
1997 Gat answered [1] this question in the affirmative. Zheng and Gat generalized
this result [9,2] for more general orthonormal systems.

Set two variable function P(n,x) := Zf’ionﬂ"“ for n € N, € R. For instance
P(n,1) = n. Also set for sequences o = (o) and positive reals K the subset of
natural numbers
P(”,an) <

n%n

Ng,x :=in € N: K

We can easily remark that for a sequence « such that 1 > o, > agp > 0 we have
Ng,x = N for some K depending only on «g. We also remark that 2" € Ny, g for
every o = (ap), 0 <ap <land K > 1.

In this paper C denotes an absolute constant and Cg another one which may de-
pend only on K. The introduction of (C, ;) means due to Akhobadze investigated
[1] the behavior of the L!-norm convergence of 05" f — f for the trigonometric
system. In this paper it is also supposed that 1 > «; > 0 for all n.

The main aim of this paper is to prove :

Theorem 1. Suppose that 1 > oy, > 0. Let f € L1(I). Then we have the almost
everywhere convergence 0" f — f provided that No g > n — oc.
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The method we use to prove Theorem 1 is to investigate the maximal operator
oy J 1= Supuen, & los” f|. We also prove that this operator is a kind of type (H, L)
and of type (L?,L?) forall 1 < p < oco. That s,

Theorem 2. Suppose that 1 > oy, > 0. Let | f| € H(I). Then we have
log fllh < Cklllfllla.

Moreover, the operator o is of type (LP,LP) forall 1 < p < oco. That is,

log fllp = Ck.pll flp

forall1 < p < oo.

For the sequence o;; = 1 Theorem 2 is due to Fujii [5]. For the more general but
constant sequence o, = o1 see Weisz [11].

Basically, in order to prove Theorem 1 we verify that the maximal operator
0% f (a = (atp)) is of weak type (L', L'). The way we get this, the investigation of
kernel functions, and its maximal function on the unit interval / by making a hole
around zero and some quasi locality issues (for the notion of quasi-locality see [9]).
To have the proof of Theorem 2 is the standard way. We need several Lemmas in the
next section.

2. PROOFS
Lemma 1. For j,n € N,j <2" we have

Dzn_j (x) = Dzn (X) —a)zn_l(X)Dj (X)

Proof.
2"—1 27— j—1 271 2"—1
Dy(x)= Y (@)= > o)+ Y op(x)=Da_j+ Y o).
k=0 k=0 k=2n—j k=21—j
We have to prove :
271
> wr(x) = w1 (x) D) (x).
k=21—j

Fork < j.k =k,—12" "' +... 4+ k12! + ko we have
wan—1(X)wg
= Won—14 421420(X)@k, _an—14 ko (X)
= O(1+k,,_1 (mod 2))2 = +...-+(1+ko (mod 2))20 (X)
= O —ky_ (mod 2))27— +...+(1—ko(mod 2))20 (X)
= Won—l4on—24 120_(k,_ 271 +...+k0)(x) = wpn_1—k(x).
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Thus,
j-1 j-1 2"—1
w21 () Dj(x) = wpr1(x) Y o) = Y w1 () = Y ().
k=0 k=0 k=2"—j
This completes the proof of Lemma 1. g

Introduce the following notations: for a,n, j € N let n( j) = le;é ni2i , that is,
ney = 0,n(y =ng and for 28 <n <28+ let |n| := B, n = n(p1). Moreover,
introduce the following functions and operators forn € N and 1 > «, > 0

alnl_q
Qg .__ aqg—1 ,
Tn A(xa Z An—] Dj’
nizo
1 281
foa e L p, S At
n * A(xa 2 n(B)+J
" Jj=0
281

— i+ 1
Fl—ag) Y A T
=0

1 ag—15B | p1
n<3)+jn(B)+j +1 ‘Kj‘—i'An 2 |K23_1|,

(% f(y) = /1 FOOT (y 4+ x)dA(x),
% f(y) = /1 FOOTS (y + ) dAx).

Now, we need to prove the next Lemma which means that maximal operator
sup, 4 |fn@| is quasi-local. This lemma together with the next one are the most im-
portant tools in the proof of the main results of this paper.

Lemma 2. Let 1 > ag >0, f € L'(I) such that supp f C I (w), [}, () fdr =0
for some dyadic interval Ii. (u). Then we have

[ sup e flar=cisih.
I\Ix (u) n,aeN
Moreover, !T,f‘“| < T,?“.

_ Proof. It is easy to have that for n < 2% and x € I (u) we have T3 (y + x) =
Ty (y +u) and

F)TE(y +x)dA(x)
Iy (u)

=T%(y +u) f(x)dA(x) =0.

Iy (w)
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Therefore,
/ sup 1y fd\ = sup 1ye fdA.
I\I}(u) n,aeN I\Iy(u) n>2k geN
Recall that B = |n|. Then
Aga T’;xa
281
= % A
23+n(3) J J
23—1
_ ag—1
- Z An(B)+J DZB
j=0
By Lemma 1 we have
AGaTXa

281

_ ag—1 Z oca—l
= Dys Z An(3)+l W2B—1 n(B)+J
Jj=0

It is easy to have that A“a D,5(z) ZJ e AZE’B_){H 0, for any z € I \ I. This
holds because D,5(z) =0 for B = |n| >k and z € I \ I;. By the help of the Abel

transform we get:
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281
ag—1

Z A”(B)+JD
Jj=0

281 281
_ og—1 oea—l Z oea—l Z .
o Z(An(mﬂ' "<B)+J+1) Di+4 npy+28 D;

j=0 i=0

ag—1 j+1

281
(I—ag) Y A

j=0

2k—1

(1-agq) Z
j=0

A(xa—l j +1

+ A% 2B K]

B_1
2k—1
_ Jj+1
<(I—-aq) A%al
j;) "t gy )+ 1
281 .
_ j+1
+(1—aq) A%a 1+—
Zzzk " gy +J 41
= I+I11+1II.

n(B)+jn(B) +j+1

ny+Jj n(B)+] +1

Kl

1 w—1~B
K; + A3 2% K5,

J

281

—0g) Z

Jj=2k

aa—l ] +1
J

<

‘K}‘ + A% 2B K1,

These equalities above immediately proves inequality ‘T,f‘ “ { < TR,

309

Since for any j < 2k we have that the Fejér kernel K jl (y + x) depends (with
iy then [ FEOIKH 0 +2)|dA(x) =

respect to x) only on coordinates xo, ...

|Kj1(y +u)| flk(u) F(x)dA(x)
On the other hand,

281

IH=(-0g) Y A

j=2

ag—1

< sup |K] |(1—aa)ZA°‘“‘1

”(B)+jn(B) +j+1

= 0 gives flk(u) f)I(y +x)dA(x)=0.

J+1 1
IK; |

Ay (1—ag) sup |K l.

J>2k ] 0 ]>2k
This by Lemma 3 in [6] gives
1
/ sup o / sup |K ldA < C.
I\Ix n>2% aeN Ay NIy j>2k

1

”(B)+jn(B)+j +1 J
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The situation with 777 is similar. Namely,

Aaa_l
1 Ya N <o, < 1.
Aga (aa +n) ¢

So, just as in the case of /1 we apply Lemma 3 in [0]

1
/ sup 4% / sup |K21|n|_1|d)k <C.
IN\Ij n>2*% aeN I\l n>2k aeN

Therefore, substituting z =x +y € I \ I} (since x € Ip(u) and y € I\ I} (1))

/ sup 1@ fdA

I\Ix(u) n>2k geN

ST (y +x)dA(x)
Iy (u)

dA(y)

= / sup
I\Iyx(u) n>2k aeN

5/ / | f(x)|  sup %(11(y+X)+111(y+x))d/\(X)
INIc ) T () Ay

n>2k aeN

=/ o (x)|/ sup a II(z)+111(z))dA(z)dA(x)

NI n>2k aeN A
= [ Irwidae.
I (w)
This completes the proof of Lemma 2. U

A straightforward corollary of this lemma is:

Corollary 1. Let 1 > oy > 0. Then we have | T3 |1 < |13, < C, ||lt5 f|1,

172 flli < Cll f Il and |17 g lloo- 172 g lloo < ClIg lloo for all natural numbers a. n,
where C is some absolute constant and f € L, g € L°°. That is, operators f,‘f “,t,? a
is of type (L', LY and (L®°, L®) (uniformly in n).

Proof. The proof is a straightforward consequence of Lemma 2 and an easy es-
timation below. Let B = |n|. Then
281
g o og—1
|AgaTza|l, < 1Daslly Y Aget
Jj=0
281

-t Jt] -
H—an) 30 Al o UK+ A5 21K .
=0

Then by || D51 =1, ||K} 1 < C we complete the proof of Corollary 1.
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Lemma 3. Let n, N be any natural numbers and 0 < o < 1. Then we have

A_Z<2 n+1\*
aw =\~ )

Proof. By definition we have

AY o o o a
n _(—e— ). 1= <[|1- 1= )
AY n+l+a N+« n+2 N +1

It is well-known that

o a o n+1 . ial
(1_i(n+1)+1)"'(1_(i+1)(n+1))5(1_(i+1)(n+1)) =(e7)"

for every n € N. This gives

o o azL"%J 1
1— el 1= f(e_l) i=2 i
n+2 N+1
5 (e_l)alogelnﬁlJ—H-c
o
< 2(e_l)aloge(”[‘¥‘) =2 (”l . 1) ;
N
where ¢ ~ 0.5772 is the Euler-Mascheroni constant. This completes the proof of
Lemma 3. O

Recall that the two variable function P(n,«) = Z?ionﬂi“ forn € N, € R and
K € R determines the set of natural numbers

n%n

D\la,K={n€|NZ

Let n = 2hs ... 4 270 where hg > --- > ho > 0 are integers. That is, |n| = hs. Let
n() := 2" 4 ... 4 2" This means n = n®). Define the following kernel function
and operators

s Aan Aan

> 0y =1 (=1 Fay,

K’(‘f” = T’;x(s) + Z ( X(x” Dzhl + IZT”T;:I_I)
=0

n) ns)

and
oy f = fxKyr, 6%f:= sup |fxKf|
ne Na,K
In the sequel we prove that maximal operator 6 f is quasi-local. This is the very
base of the proof of the main results of this paper. That is, Theorem 1 and Theorem
2.
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Lemmad. Let 1 > a, >0, f € LY(I) such that supp f C I (u), flk(u) fdA =0
for some dyadic interval Ii, (u). Then we have

/ 5 1da < Cellf I,
I\Iy (u)

where constant Cg can depend only on K.

Proof. Recall thatn = 2hs ... 4 2P0 where hy > --- > ho > 0 are integers. That
is, [n| = hy. Let n) := 2" 4 ... 4270 This means n = n®). Use also the notation

(470
K n()
0fn Aan
@ (1 1 2= Fay,
_.7‘“)4—252 Don + g —Toits
n(é) n(é)
=:G1+ G2 + Gs.

Since nU=1 < 2hat-1+1 then by Lemma 3 we have

A;Xl?l D - n(l—1)+1 on 3 20tn(h]_1+l) <C2h1_lan
A% () = .

o 20nhs - non

That is, by the above written we also have
[ sl G0+ 0w
I\Ik(u)neIN Ik(u)

2h1 1%
[y
I\Ik(u)nelNl=0

since f % D,n = 0 for h < k because of the 4, measurability of D, and [ f = 0.
Besides, for i >k Dyn(y +x) =0 (y +x ¢ Iy).
As a result of these estimations above and by the help of Lemma 2, that is the

quasi-locality of operator /¢ = SUP, zeN |7y | we conclude
[ sl [ G0 +0)+ Gl + i)
I\Ik(u)nelN Ik(u)

< CK/ sup
I\l (u)n,aeN
<Ckll fl-

This completes the proof of Lemma 4. g

dA(y)

dA(y) =0

/ F()Dayn(y + 1) dA()

dA(y)

F) T2 (y +x)dA(x)
I ()

dA(y)

Lemma 5. The operator 6¢ is of type (L*°,L*>°) (6% f := SUPpeNy & |6,?”f’).
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Proof. By the help of the method of Lemma 4 and by Corollary 1 we have

A%
”Kan Hl = HK(x(s) = “T"‘{:) +Z( Z((xln l)||D2h1 1+ /’;(1 > T2 nl— 1||1)
n() n()
A%
<C+CZ n(z USCK
1=0 n(Y)

because n € Ny k. Hence 67 is of type (L*°, L°°) (with constant Cg). This com-
pletes the proof of Lemma 5. 0

Now, we can prove the main tool in order to have Theorem 1 for operator 02 f :=
(04
SUPpeN, x |on" f]-

Lemma 6. The operators 5% and o2 are of weak type (L', L1).

Proof. First, we prove Lemma 6 for operator 6. We apply the Calderon-Zygmund
decomposition lemma [9]. Thatis, let f € L! and || f||; < 8. Then there is a decom-
position:

f=f0+ij
j=1

such that || folleo < C8., | foll1 <C || f|l1 and I/ = I, (u’) are disjoint dyadic in-
tervals for which

| C
S“ppﬁc”’/”ﬁd/bo,lFlsw

(u/ €l ,kjeN, jeP), where F = Ul.oillj. By the o-sublinearity of the max-
imal operator with an appropriate constant Cx we have

o
A(G2 f >2Ck8) < AGE fo > Ckd) +AGL (D fi) > Ck8) =1 +11.
i=1

Since by Lemma 5 |6 folloo < Ckll folloo < Ck 8 then we have I = 0. So,
o0 _ o0
AGEO fi) > Cxd) < |FI+ MF (G2 fi) > Ck8})
i=1 i=1

_C C Cx &
- K”f”l Z/ 59 fdn = KlLfll1+TKZ”I.’
\J

i=1
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where

111 :=/ 52 frd
INTJ

/I i F1R (v + ) dAG)| dA().

< / ~sup
I\Ix,; (/) n€Ng k
The forthcoming estimation of /11/; is given by the help Lemma 4
111 < Ckll fill1-
That is, operator 6¥ is of weak type (L', L!). Next, we prove the estimation
K| < Ky (M

To prove (1) recall again that n = 2hs 4...42h0 where hy > -+ > ho > 0 are integers.
Since n = 25 + =D then we have

2hs+n(5‘—1) n(S‘ 1)
2 : oap—1 ) z : oap—1
A nG—D42hs J A ns—1_ kDZhS—I—k
j=2"hs

nG—D nGs—D

_ oy—1 oy—1

= Dy E A 1(1_5‘ b k+w2hs E A '(15 b_ ka
k=0 k=0

= Dong A% |+ A% K%

=Lons A, (s—1y T Wohs A sy By s—1)-

So, by the help of the equalities above we get
Az?v 9]

K% — 7% + — 4%

n(“) n(V)

(6771
(Dzhs + Wahs K,,<s71)> .
n()

Apply this last formula recursively and Lemma 2. (Note that nD =, T(f‘ "=
Ky =0,45" =1.)

(1 1) (/ 1)
|Kz"|—|1<°‘z)|_|w+2 H 2h/+1_[ et T3

A%n
n(l 1) n(l 9} (x
(g)l + § ( 2hl + — Aan | nln ] |

n(Y) n(")
<K%, = K“"

This completes the proof of inequality (1). This inequality gives that the operator &
is also of weak type (L', L) since
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1Al

)
This completes the proof of Lemma 6. g

Aol f >2Ck8) < AG2|f|>2Ckd) < Ck =Ckg

(Al
)

Proof of Theorem 1. Let P € P be a polynomial where P(x) = Z 2 01 cijw;. Then
for all natural number n > 2%, n € Ng,x we have that S, P = P. Consequently,
the statement o,” P —> P holds everywhere (of course not only for restricted n €
Ng.x). Now, lete,§ >0, f € L. Let P € P be apolynomial such that || f — P |1 <.
Then

ACTm o2 f— f1> )
IIEIN,X,K
<A( Tim |agn(f—P)|>5)+x( im [0% P —P|> %)
neNg. x 3

+A( lim hm |P—f]|> )

neN o, K

3 C
<A( sup 6% (f —P)|> )+0+—||P flli <CkllP— f||1—<—KS

nENa,[(

because o is of weak type (L', L) (with any fixed K > 0). This holds for all § > 0.
That is, for an arbitrary € > 0 we have

AC Im |o" f— f]|>€)=0
nGNa,K

and consequently we also have
AC lim |ogn f— f|>0)=0.
n€Ngy

This finally gives
i Jofrf—f1=0ae.
o f—> f a.e. (n€Nygk).
This completes the proof of Theorem 1. O

Proof of Theorem 2. Inequality (1), Lemma 5 and Lemma 6 by the interpolation
theorem of Marcinkiewicz [9] give that the operator o2 is of type (L7, L?) for all
1 < p < co. In the sequel we prove that operator 6 f = sup,en, x|/ * K| is of
type (H,L).

Let a be an atom (a # 1 can be supposed ), suppa C Ix(x), [lafoo < 2k for some
keNandxel. Then,n<2¥ ne Na,x 1mphesa>|<K°‘ = 0 because K"‘ is Ay
measurable for n < 2% and flk(x)a(z)d)t(t) = 0. That is,

sa= s |5 S
Ny, g dn>2k
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By the help Lemma 4 we have

/ 6lad) = / sup
NIk (x) NIk (%) Ng,

Kk n>2k
< Cx / a()ldA(y)
I (x)

<Cklal
< Cg.

/1 IRGLAC R PR

Since the operator 62 is of type (L2, L?) (i.e |62 f |2 < Ck || f |2 forall f € L?(I)),

then we have
el = [ ata+ [ ota
I\Ix(x) I (x)

1

< Ck + | Ix(x)|2||65al2
—k

<Cg+Cg272 |al2

<Cx+Cg232%
<Ckg.

That is ||6Za||1 < Ck and consequently the o-sublinearity of 6 gives

o0
16 £l <Y Iillagails
i=0

oo
<Cx Y |l
i=0

=Ckllflla

forall Y72 A;a; € H. That is, the operator 62 is of type (H, L). This by inequality
(1) and then by ||¢Z f 1 < 1I6%| f |1 < Ck || f ||z completes the proof of Theorem
2. O
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