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Abstract. The authors establish some new criteria for the oscillation of second order damped
nonlinear neutral differential equations with distributed deviating arguments. Two examples are
also provided to illustrate the results.

2010 Mathematics Subject Classification: 34C10; 34K11; 34K40

Keywords: Second order, neutral differential equations, damped equation, oscillation, asymp-
totic behavior, distributed deviating arguments

1. INTRODUCTION

This paper deals with oscillatory behavior of all solutions of the second order
damped nonlinear neutral differential equation with distributed deviating arguments
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r.t/

�
y0.t/

�˛�0
Cp.t/

�
y0.t/

�˛
C

bZ
a

q.t;�/f .t;x.g.t;�///d� D 0;

t � t0 � 0; (1.1)

where y.t/D x.t/Cb.t/� .x.�.t///, 0 < a < b, and ˛ is the quotient of odd positive
integers.

In the remainder of the paper we assume that:
(i) p;r W Œt0;1/!RC are continuous functions such that r.t/ is nondecreasing,

and
1Z
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�
1
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where

A.t; t0/D exp
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(ii) b W Œt0;1/! R is a continuous function such that 0� b.t/ < 1;
(iii) q W Œt0;1/� Œa;b�! RC is a continuous function;
(iv) g W Œt0;1/� Œa;b�!R is a continuous function such that g.t;�/ is decreasing

in � , g.t;�/� t , and g.t;�/!1 as t !1, � 2 Œa;b�;
(v) f .t;u/ W Œt0;1/�R! R is a continuous function such that uf .t;u/ > 0 for

all u¤ 0 and there exists a positive constant � such that

f .t;u/=u˛ � � for u¤ 0I

(vi) � W R! R is a continuous function such that u�.u/ > 0 for all u ¤ 0 and
there exists a real number ˇ with 0 < ˇ < 1 such that �.u/=u� ˇ for u¤ 0;

(vii) � W Œt0;1/! R is a continuous function such that �.t/ � t , and �.t/!1
as t !1.

By a solution of (1) we mean a function x W Œtx;1/! R such that
y 2 C 1 .Œtx;1/;R/ and r.t/ .y0.t//˛ 2 C 1 .Œtx;1/;R/, and which satisfies equation
(1) on Œtx;1/. Without further mention, we will assume throughout that every solu-
tion x.t/ of (1) under consideration here is continuable to the right and nontrivial, i.e.,
x.t/ is defined on some ray Œtx;1/, for some tx � t0, and supfjx.t/j W t � T g> 0 for
every T � tx . Moreover, we tacitly assume that (1) possesses such solutions. Such a
solution is said to be oscillatory if it has arbitrarily large zeros on Œtx;1/; otherwise
it is called nonoscillatory. Equation (1) is said to be oscillatory if all its solutions are
oscillatory.

In recent years, there has been much research activity concerning the oscillation
and nonoscillation of solutions of various differential equations, and we refer the
reader to the papers [1, 2, 4–7, 9, 10, 12, 13] and the references therein as examples of
recent results on this topic. However, oscillation results for second order differential
equations with distributed deviating arguments are relatively scarce in the literature;
some results can be found, for example, in [3, 8, 11, 14] and the references contained
therein. Our purpose here is to establish some new oscillation criteria for equation (1)
different from those in [3,8,11,14] and to contribute to the growing body of research
on second order neutral differential equations in general and those with distributed
delays and a damping term in particular.

2. MAIN RESULTS

In this section, we establish some new criteria for the oscillation of equation (1).
It will be convenient to employ the following notations.

Q.t/D

bZ
a

q.t;�/B˛ .g.t;�//d�; g.t;b/D g.t/; B.t/D 1�ˇb.t/;
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a

q.t;�/Q˛1 .g.t;�//d�; R.t/D

1Z
t

�
A.s; t/

r.s/

�1=˛
ds;

and

Q1.t/D

�
1�ˇb.t/

�
R.�.t//

R.t/

��
:

Throughout the paper we assume that

Q1.t/� 0 for t � t0: (2.1)

We begin with the following lemma that will be used to prove our main results.

Lemma 1 ([4]). Let �.t/ 2 C .Œt0;1/;R/, �.t/ � t , and �.t/!1 as t !1.
Assume x 2 C 2ŒT;1/ satisfies

x.t/ > 0; x0.t/ > 0; and x00.t/� 0 for t � T � t0:

Then for each k 2 .0;1/, there exists Tk � T such that

x.�.t//

�.t/
� k

x.t/

t
for t � Tk : (2.2)

Theorem 1. Let conditions (i)-(vii), (1.2), and (2.1) hold. If there exists a positive
function �.t/ 2 C 1 .Œt0;1/;R/ such that

p.t/�
r.t/�0.t/

�.t/
for t � t0; (2.3)

1Z
t0

�.s/Q.s/

�
g.s/

s

�˛
ds D1; (2.4)

and
1Z
t0

24A.t; t0/
r.t/

tZ
t0

Q�.s/R˛.s/ds

351=˛ dt D1; (2.5)

then equation (1) is oscillatory.

Proof. Let x.t/ be a nonoscillatory solution of (1), say x.t/ > 0 and x.�.t// > 0
for t 2 Œt1;1/, and x.g.t;�// > 0 for .t; �/ 2 Œt1;1/� Œa;b� for some t1 2 Œt0;1/.
From (1) and (v), we have
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a
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� 0: (2.6)



762 SAID R. GRACE, JOHN R. GRAEF, AND ERCAN TUNÇ

Setting u.t/D r.t/ .y0.t//˛, we see that

u0.t/C
p.t/

r.t/
u.t/� 0;

which implies 0@u.t/exp

0@ tZ
t1

p.s/

r.s/
ds

1A1A0 � 0:
Thus, u.t/exp

 
tR
t1

p.s/
r.s/

ds

!
is decreasing and so is eventually of one sign. Therefore,

y0.t/ eventually has a fixed sign say for t � t2 � t1.
We shall then distinguish the following two cases:
Case (I): y0.t/ > 0 for t � t2;
Case (II): y0.t/ < 0 for t � t2.
Consider Case (I). From (1) and (v), we obtain

�
r.t/

�
y0.t/

�˛�0
Cp.t/

�
y0.t/

�˛
C�

bZ
a

q.t;�/x˛.g.t;�//d� � 0 for t � t1: (2.7)

Since x.t/� y.t/, in view of (vi) and (vii), we have

y.t/� x.t/Cˇb.t/x.�.t//� x.t/Cˇb.t/y.�.t//� x.t/Cˇb.t/y.t/;

from which we see that

x.t/� .1�ˇb.t//y.t/D B.t/y.t/: (2.8)

Using (2.8) in (2.7) gives

�
r.t/

�
y0.t/

�˛�0
Cp.t/

�
y0.t/

�˛
C�

bZ
a

q.t;�/B˛.g.t;�//y˛.g.t;�//d� � 0:

In view of (iv) and the fact that y.t/ is increasing, the last inequality takes the form�
r.t/

�
y0.t/

�˛�0
Cp.t/

�
y0.t/

�˛
C�Q.t/y˛.g.t//� 0: (2.9)

From (2.6) we see that

r 0.t/
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�˛
C˛r.t/

�
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�˛�1
y00.t/Cp.t/

�
y0.t/

�˛
� 0:

Since r.t/ is positive and nondecreasing, this implies y00.t/ < 0. Therefore, by
Lemma 1, for k 2 .0;1/ fixed, there exits t3 � t2 such that

y.g.t//

g.t/
� k

y.t/

t
for all t � t3: (2.10)
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Substituting (2.10) into (2.9) gives�
r.t/

�
y0.t/

�˛�0
Cp.t/

�
y0.t/

�˛
C�k˛Q.t/

�
g.t/

t

�˛
y˛.t/� 0 for t � t3:

(2.11)
Now define the function w.t/ by

w.t/D �.t/
r.t/ .y0.t//

˛

y˛.t/
for t � t3: (2.12)

Clearly, w.t/ > 0, and

w0.t/D
�0.t/

�.t/
w.t/C�.t/

�
r.t/ .y0.t//

˛�0
y˛.t/

��.t/
r.t/ .y0.t//

˛
.y˛.t//0

y2˛.t/
: (2.13)

Using (2.11) and (2.12) in (2.13), we obtain

w0.t/� ��k˛�.t/Q.t/

�
g.t/

t

�˛
C

�
�0.t/

�.t/
�
p.t/

r.t/

�
w.t/�

˛.w.t//1C1=˛

.r.t/�.t//1=˛
:

In view of (2.3) and w.t/ > 0, the last inequality implies

w0.t/� ��k˛�.t/Q.t/

�
g.t/

t

�˛
for t � t3:

Integrating this inequality from t3 to t yields

0� w.t/� w.t3/��k
˛

tZ
t3

�.s/Q.s/

�
g.s/

s

�˛
ds!�1

as t !1, which is a contradiction.
Next, we consider Case (II). From (1.1), we obtain�
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˛
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D

�
r.t/ .y0.t//

˛�0
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˛
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D
1
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��
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Cp.t/
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�˛�
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1
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bZ
a

q.t;�/f .t;x.g.t;�///d� � 0;

i.e, r.t/ .y0.t//˛ =A.t; t0/ is decreasing. Hence, we have

r.s/.y0.s//
˛

A.s; t0/
�
r.t/ .y0.t//

˛

A.t; t0/
for s � t � t3; (2.14)
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from which we obtain

y0.s/� r1=˛.t/y0.t/

�
A.s; t/

r.s/

�1=˛
for s � t:

It follows that

y.u/�y.t/� r1=˛.t/y0.t/

uZ
t

�
A.s; t/

r.s/

�1=˛
ds:

Letting u!1 in the last inequality, we see that

y.t/� �r1=˛.t/y0.t/

1Z
t

�
A.s; t/

r.s/

�1=˛
ds DR.t/

�
�r1=˛.t/y0.t/

�
; (2.15)

which implies �
y.t/

R.t/

�0
� 0;

and hence y.t/=R.t/ is nondecreasing. From this, the definition of y.t/, (vi), and
(vii), we have

x.t/� y.t/�ˇb.t/x.�.t//� y.t/�ˇb.t/y.�.t/

�

�
1�ˇb.t/

�
R.�.t//

R.t/

��
y.t/DQ1.t/y.t/: (2.16)

Again using the fact that r.t/ .y0.t//˛ =A.t; t0/ is decreasing, we have

r.t/
�
�y0.t/

�˛
�
A.t; t0/

A.t3; t0/
r.t2/

�
�y0.t2/

�˛
D 
A.t; t0/ > 0 for t � t3; (2.17)

for some positive constant 
 .
Combining (2.17) and (2.15) gives

y.t/� 
1=˛R.t/A1=˛.t; t0/ for t � t3: (2.18)

From (2.7), (2.16), (iv), and the fact that y.t/ is decreasing, we obtain
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D p.t/
�
y0.t/

�˛
C�Q�.t/y˛.t/: (2.19)

Using (2.18) in (2.19), we arrive at

�

�
r.t/

�
y0.t/

�˛�0
� p.t/

�
y0.t/

�˛
C�
Q�.t/A.t; t0/R

˛.t/: (2.20)

With U.t/D r.t/ .y0.t//˛, (2.20) becomes

U 0.t/� �
p.t/

r.t/
U.t/��
Q�.t/A.t; t0/R

˛.t/;

which can be written as�
U.t/

A.t; t0/

�0
� ��
Q�.t/R˛.t/; for t � t3:

Integrating this inequality from t3 to t gives

U.t/� U.t3/A.t; t3/��
A.t; t0/

tZ
t3

Q�.s/R˛.s/ds

� ��
A.t; t0/

tZ
t3

Q�.s/R˛.s/ds;

which leads to

y0.t/� �.�
/1=˛

0@A.t; t0/
r.t/

tZ
t3

Q�.s/R˛.s/ds

1A1=˛ :
An integration of the last inequality from t3 to t implies

0 < y.t/� y.t3/� .�
/
1=˛

tZ
t3

0@A.u; t0/
r.u/

uZ
t3

Q�.s/R˛.s/ds

1A1=˛ du!�1
as t!1, by (2.5). This is contradicts the fact that y.t/ > 0 and completes the proof
of the theorem. �

Our next theorem gives conditions under which a solution will either oscillate or
converge to zero as t !1.

Theorem 2. In Theorem 2.2, if condition (2.5) is replaced by

1Z
t0

�
A.t; t0/

r.t/

�1=˛0@ tZ
t0

Q�.s/ds

1A1=˛ dt D1; (2.21)

then any solution x of equation (1) either oscillates or converges to zero as t !1.
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Proof. Let x.t/ be a nonoscillatory solution of (1), say x.t/ > 0, x.�.t// > 0 for
t 2 Œt1;1/, and x.g.t;�// > 0 for .t; �/ 2 Œt1;1/� Œa;b� for some t1 2 Œt0;1/. We
again distinguish the two cases:

(I) y0.t/ > 0 or (II) y0.t/ < 0

for t � t2 for some t2 � t1.
The proof if Case (I) holds is similar to that of Case (I) in the proof of Theorem 1,

and hence is omitted.
Next, we consider Case (II). Since y.t/ > 0 and y0.t/ < 0, there exists a constant

c such that

lim
t!1

y.t/D c <1;

where c � 0.
If c > 0, there exists t3 � t2 such that

y.t/� c for t � t3. (2.22)

From (2.7), (2.16), (2.22), and (iv), we see that

�

�
r.t/

�
y0.t/

�˛�0
� p.t/

�
y0.t/

�˛
C�

bZ
a

q.t;�/x˛.g.t;�//d�

� p.t/
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y0.t/

�˛
C�

bZ
a

q.t;�/Q˛1 .g.t;�//y
˛.g.t;�//d�

� p.t/
�
y0.t/

�˛
C�

bZ
a

q.t;�/Q˛1 .g.t;�//y
˛.t//d�

� p.t/
�
y0.t/

�˛
C�c˛Q�.t/;

which can be written as �
r.t/ .y0.t//

˛�
A.t; t0/

!0
� ��c˛

1

A.t; t0/
Q�.t/

� ��c˛Q�.t/; for t � t3: (2.23)

Integrating (2.23) from t3 to t , we obtain

r.t/ .y0.t//
˛

A.t; t0/
�
r.t3/.y

0.t3//
˛

A.t3; t0/
��c˛

tZ
t3

Q�.s/ds � ��c˛
tZ

t3

Q�.s/ds;
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which leads to

y0.t/� �c�1=˛
�
A.t; t0/

r.t/

�1=˛0@ tZ
t3

Q�.s/ds

1A1=˛ :
Integrating from t3 to u� t3 and applying (2.21), we see that

0� y.u/� y.t3/� c�
1=˛

uZ
t3

�
A.t; t0/

r.t/

�1=˛0@ tZ
t3

Q�.s/ds

1A1=˛ dt !�1
as u!1 which is a contradiction. Hence, we have c D 0, that is, limt!1y.t/D 0.
Since 0 < x.t/� y.t/ on Œt1;1/, we have limt!1x.t/D 0, and this completes the
proof of the theorem. �

3. DISCUSSION AND EXAMPLES

The results here appear to be one of the first attempts to look at equations in the
form of (1) containing a damping term. We hope that this will encourage other re-
searchers to explore similar problems. We conclude this paper with two examples to
illustrate the applicability of our results.

Example 1. Consider the neutral differential equation

�
t2
�
y0.t/

�1=3�0
C t

�
y0.t/

�1=3
C

2Z
1

�
t6C2�

�
f .t;x.t=2C1=3�//d� D 0;

t � 1: (3.1)

Here we have ˛ D 1=3, r.t/ D t2, p.t/ D t , q.t;�/ D t6C 2� , g.t;�/ D t=2C

1=3� , a D 1, b D 2, and we take y.t/ D x.t/C 1
32
� .x.t=2// with �.u/ D 1

2
u,

and f .t;u/ D u˛. Then, ˇ D 1=2, � D 1, b.t/ D 1=32, B.t/ D 63=64, Q.t/ D
.63=64/1=3

�
t6C3

�
,Q�.t/D .1=2/1=3Œt6C3�,Q1.t/D 1=2,A.t; t0/D 1=t ,A.s; t/D

t=s, and R.t/D 1=8t5, R.�.t//D 4=t5. It is clear that conditions (i)-(vii) and (1.2)
hold. With �.t/D t , we see that condition (2.3) holds, and conditions (2.4) and (2.5)
become

.63=64/1=3
1Z
1

s
�
s6C3

��s=2C1=6
s

�1=3
� .63=128/1=3

1Z
1

s7ds D1;

and
1Z
1

24 1
t3

tZ
1

�
1

2

�1=3 �
s6C3

�� 1

8s5

�1=3
ds

353dt
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� .33=216/

1Z
1

24
�
t16=3�1

�
t3

353dt D1;
respectively, so equation (1) is oscillatory by Theorem 1.

Example 2. In Example 1, if we take q.t;�/ D t5=2C 2� instead of q.t;�/ D
t6C 2� , then we see that all conditions of Theorem 2 hold. Since condition (2.5) is
not satisfied, Theorem 1 can not be applied to Example 2. In this case, any solution
x.t/ of the equation either oscillates or converges to zero as t !1.
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