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Abstract. We study the problems of finding the conditions for the existence of solutions of a
linear Noetherian boundary-value problem for a hybrid system of ordinary differential equations
and difference equations and the construction of these solutions. We also propose an algorithm
for the construction of solutions of linear Noetherian boundary-value problems for hybrid sys-
tems of difference-differential equations in the critical and noncritical cases.
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1. INTRODUCTION

The mathematical description of continuous processes with short-term perturba-
tions whose duration can be neglected leads to the investigation of boundary-value
problems for impulsive ordinary differential equations [7, 13, 14,19,22,24,25]. The
analysis of discrete processes requires the study of boundary-value problems for dif-
ference equations [3,5,20,21,23]. The proposed hybrid difference-differential system
contains an unknown function of piecewise continuous argument and an unknown
function of discrete argument. To find these unknowns, we propose to use a sys-
tem of ordinary differential equations containing the unknown function of discrete
argument and a system of difference equations containing the unknown function of
piecewise continuous argument. The proposed approach to the mathematical descrip-
tion of both continuous and discrete processes enables one to combine the efficient
methods of the theory of boundary-value problems for ordinary differential and dif-
ference equations.

2. STATEMENT OF THE PROBLEM
We consider the problem of finding conditions for the existence of solutions
x(t)eR", teQUO, Q2:=la,11[U[tp,,1p+1[U...U[1p, . Tp,+1] C la,b],
y(k)eR", ke®:={a, 11,72, ..., Tp;s Tpj+1> s Tpys Tpotls s D}
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and the problem of construction of these solutions for the hybrid Noetherian (m +n #
A + p) difference-differential boundary-value problem

xX'(t) = A(t,k)x(t) + B(t,k)y(k) +o(t, k), tes, (2.1)
yik+1)=Ck)x(k)+Dk)yk)+y(k), ke®, (2.2)
Ax(Tp; +1: Tpsyp) i= S,piJrl x(tp;+1—0) +b’ﬂi+1’ Ix()=a, py()=pB. 2.3)
We seek the first component of the required solution x (¢) € C'[£2;] of the boundary-
value problem (2.1)—(2.3) in a class of functions continuously differentiable on the

set £2 C [a,b], except the points 71, Tp,+1. Tpr+1s - » Tp,_; at Which the solution
x (t) may have finite discontinuities

AX(Tp;+1,Tpiyy) i= X(Tp; ) — X (1p;+1—0) <p, i=0,1,2,....,9—1,
where a := 19 := 1p,, Tp,+1:=b, a € R¥, B € R”. The second component of
the required solution y(k) € R™, k € @ of the Noetherian boundary-value problem
(2.1)—(2.3) is sought in the set of bounded sequences. The matrices A(f,k) € R"*",
B(t,k) € R"™™ and the vector function ¢(z,k) € R” are assumed to be continu-
ous in the first and second arguments on the segment [a,b]. The matrices C(k) €
R™ " D(k) € R™™ S € R™*™ and the vector function ¥ (k) € R™ are assumed
to be bounded on the set ® by functions, £x (-) is the linear bounded vector functional:

(x(-): CR— R

g y () is the linear bounded vector functional given in the space of vector functions
bounded on the set @ as follows:

Py : k) ©=>R"} >R, u#v.

Various hybrid boundary-value problems for systems of ordinary differential and
functional-differential equations are extensively investigated (see, e.g., [3]). The
posed hybrid boundary-value problem (2.1)—(2.3) is a generalization of boundary-
value problems for ordinary impulsive differential equations [7, 13, 19,22, 24, 25],
boundary-value problems for difference equations [5,20,21,23], and different boundary-
value problems for systems of ordinary differential equations [7].

3. GENERALIZED GREEN OPERATOR OF THE CAUCHY PROBLEM
For the sake of definiteness, we set
x(@)=CeR", y@) =¢e€R™, m#n. (3.1

Let X, (¢) be the normal (X, (a) = I,) fundamental matrix of the homogeneous part
x'(t) = A(t,a)x(t) of system (2.1) on the segment [a;71]. The solution of system
(2.1) in the interval [a; T [ is represented in the form

x(2,8.8) = Xa () + Va(1)§ + Kq [w(s,a)](t),
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$(@.0.8) = Z(@)t + W) + K[W(To)} (@). Z(t0) := 0. W(z0) = In.

where

Va(t) := Xa(t) f X () B(s.a)Wia) ds. K[W(To)](a) =0
and .
Ka [(p(s,a)}(t) = Xa(t)/ X' (s)g(s.a)ds

is the generalized Green operator of the Cauchy problem (3.1) for system (2.1) in the
interval [a; 71 [. We represent the solution of system (2.2) for k = 7 in the form

V(1 LE) = Z(0)E+ W)+ K[w(a)](n), Z(r1) = C(xo). W(t1):=Di(zo).
where
K[w(a)}(n) — (o) = ¥(a)

is the generalized Green operator of the Cauchy problem y(a) = & for system (2.2)
with k = t1. Similarly, we represent the solution of system (2.2) for k = 15 in the
form

V(12,8,8) = Z(12){ + W(12)§ + K[lﬂ(fl)] (12),
where

Z(12) := C(t1) Xa(t1) + D(t1) Z(71), W(2) := C(r1)Va(r1) + D(r1) W(71),

K[W(fl)](fz) =C(t1)Kq [fﬂ(s,a)] (1) + D(Tl)K[W(a)] (r1) + ¥ (7).

If we continue our reasoning, then we get a solution of system (2.2) with k = 1, :

Y (ipr LB = Z(ep ) + Wity )E + K[wpl _ 1)](rp1),
where

Z(rpl) = C(Tpl—l)Xa(Tpl—l) + D(Tpl_l)z(‘[pl_l)a
W(tp,) == C(tp,—1)Va(tp,—1) + D(tp, 1) W(Tp;—1)

and

K[wp]_l)](rpl) = Cltpy1)Ka [w(am)}(rpl-l)

+ D(Tp]—l)K[w(rpl—Z)} (Tpl—l) + w(‘[p1—1)
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is the generalized Green operator of the Cauchy problem y(a) = & for system (2.2)
with k = 7,,. Let X;(¢) be the normal (X1(zp,) = I,) fundamental matrix of the
homogeneous part

X/(l) = A(I9Tp1)x(t)’ re [Tpl;fpl-i-l[

of system (2.1). We represent the solution of system (2.1) satisfying the first condition
in (2.3) on the interval [y, ; Tp, +-1[ in the form

X(1,6,6) = Xey, (O + Vi, (D + Koy, [go(s,rpl):bl}(z),

where
t
Ko, [(p(s,rpl)](t) =X (t)/ XY $)o(s, tp)ds, t €[ty 11, +1[
T,
is the Green operator of the Cauchy problem (3.1) for system (2.1),

til (1) := X1 () (Un + S1) Xa(T1) + Kr,,l |:B(S’ Tpl)Z(Tpl)] (1)

is the normal (X<, (tp,) = (In + S1)Xa(71)) fundamental matrix of the homogen-
eous part of system (2.1) for ¢ € 1, ;7p, +1[ satisfying the first condition in (2.3)

Vi (0) := X1 () (In + S1)Va(®1) + Ko, [B(s,rm)W(rpl)](z),
Ky, [(p(s, rpl);bl](t) = X1(1)b1 + X1(1)(In + S1) K4 |:(p(s,a)i| (t1)

+ Kfm |:<p(s, TPI)] )+ Kfm { B(s, fpl)K[‘ﬂ(Tpl—l)} (TPI)} ().

Note that the function x (¢, ¢, £) is defined both on the segment [7,, ; 75, 1] and at the
points

t=kel{ty, ph+1s o» Tpo—1} €O.
We represent the solution of system (2.2) for k = 75, 41 in the form

V(i +1,8.8) = Z(tp, +1)¢ + W(‘Ep1+1)§+J<|:W(rp1);b1:|(rpl+l),
where

Z(tp+1) = C(Tpl)er, (tp1) + D(1p) Z(3p,).
W(tp,+1) := C(tp) Ve, (tp)) + D(tp )W (1p,)

and

K[erl);bl}(rml) = Clep) K, [w(s,rpl);bl}@pl)
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+D<rp1>1<[w(rp1_1>}(rpl) ()

is the generalized Green operator of the Cauchy problem y(a) = & for system (2.2).
Continuing our reasoning, we determine a solution of system (2.2) with k = 1, :

V(tp2s §,8) = Z(1p,)E + W(tp,)6 + K [W(sz - 1):’?1} (Tp2),
where

Z(tp,) := Cltpr—1) X, (Tpy—1) + D(1py-1) Z(Tpy-1),
W(sz) = C(fpz—l)Vrpl (sz—l) + D(sz—l)W(sz—l)

and

K[W(sz - 1);b1j|(rp2) = C(sz—l)x‘rpl |:(ﬂ(s» rp2—2);blj|(fp2—l)

+ D(sz—l)K[W(fpz—Z)] (Ipz—l) + W(sz—l)

is the generalized Green operator of the Cauchy problem y(a) = £ for system (2.2).
Further, we continue our reasoning and assume that X, (7) is the normal (X4(7p,) =
I,) fundamental matrix of the homogeneous part

x'(1) = A(t,1p,)x(1), 1 €[1p,:b].

of system (2.1). We represent the solution of system (2.1) satisfying the first condition
in (2.3) on the segment [z, ;b] in the form

X(t,8,€) = X, (0 + Ve, (DE + Ko, [go(s, rm):bq](r),

where
Krpq |:(p(s,tpq)](t) = Xq(t)/: Xq_l(s)(p(s,rpl)ds, t € [tp,:b].
7
is the Green operator of the Cauchy problqem (3.1) for system (2.1),
X,pq (t):=Xq@O)Un+ Sq) Xp,_, (tq) + Kr,,q [B(s,qu)Z(rpq)](t)

is the normal (X<, (tp,) = (In + Sq) Xp,_, (t¢)) fundamental matrix of the homo-
geneous part of system (2.1) for 7 € [t :b] satisfying the first condition in (2.3),

Ve, (1) 1= Xq () (In + Sq)Vrpq_l (tp,) + K, [B(s, rpq)W(rpq)i| ®),

J{t,)q |:(p(s, qu)§bq](t) = Xg(O)bg + Xq()(In + Sq)J{r,,q [W(S’qu—l);bq—l}(qu)
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1K, [so(s, rpq)}a) 1K, { BGs. rpqm[w(rpl_o;bq_l](rpq)} 0.

Lemma 1. The general solution of the Cauchy problem (3.1) for system (2.1),
(2.2) satisfying the first condition in (2.3) can be represented in the form

X(1.8.6) = Xe, (D + Ve, (O + Koy, [w(s, n)](r),

y(k,8.§) = Z(k)§+ W(k)§ + Jf[lﬂ(k -1, Ti)i|(k),
where the matrices
Va(t) := X,(t) /tXa_l(s)B(s,a)W(a) ds, tela;t],

Z(tp,) = C(tp—1)Xa(tp,—1) + D(1p, 1) Z(1py—1), Z(a):=0,
W(tp,) := C(tp,-1)Va(tp,—1) + D(tp,—1) W(zp,-1), W(a):=1Im, ...,

Xv,, (1) = Xg(O)In + Sg) Xp,_, (1g) + K, [B(S, qu)Z(qu)}(t), 1 € [1p,:0],
Vi, ) = Xq(O)In + SV, (tp,) + Koy, [B(S,qu)W(qu)](t), 1 € [tp,: 0],

specify the general solution

x(1.8.8) = Xe, ()04 Ve, (0§, y(k.0.§) = Z(k){+ W(k)E

of the homogeneous part of system (2.1), (2.2) satisfying the first condition in (2.3)
and

K |:(p(s,a)j|(t) = Xa(t)/t X 1(s)p(s,a)ds,t € [a;ty],
K W(a)](rl) =y (1),

K W(fl)](rz) = C(11)Kq [w(s,a)](fl)-i-D(fl)K[W(a)](fl)-i-W(n),

K W(Tpl—l)j|(fp1) 1= C(tp,-1)Ka |:(/)(S7T0)j|(77p1—1)
+ D(Tpl—l)K[w(Tpl—z)](Tpl—l) + w(fpl—l), K[W(Tpl);bl](fpl-i-l)
1= C(1p,) Ky, |:(P(S’Tp1)§b1j|(fp1) + D(Tpl)K[W(Tpl—l)}(fpl) + ¥ (), -

J{t,)q |:(p(s, qu)§bq](t) = Xq(t)bg + Xq(@)(In + Sq)J{t,)q |:‘/’(S»77Pq—1)§bq—1i|(qu)
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K, [w(s, w} )+ K, { B(s.tp,) K [vf(rp]_l);bq_l](rpq)} ©). 1 eltp,:bl,
J{[W(qu - l)ibq:| (tp,) = C(qu—l)f]{rpq |:‘P(Sa qu—z);bq] (Tpy—1)

+ D(‘[pq—l)K|:l/f(‘L'pq—2):| (tpy—1) + ¥ (tp,—1)

is the generalized Green operator of the Cauchy problem (3.1) for system (2.1), (2.2)
satisfying the first condition in (2.3).

4. GENERALIZED GREEN OPERATOR OF THE HYBRID
DIFFERENCE-DIFFERENTIAL BOUNDARY-VALUE PROBLEM

In what follows, we study the problem of determination of conditions for the ex-
istence of solutions of the linear boundary-value problem (2.1)—(2.3) and construct
these solutions. Assume that the conditions of the lemma are satisfied. We represent
the linear bounded vector functional £x (-) in the form

q
x() =Y lix(),

i=0

where
Gx(): Cly, 1y 1] = R™, i=0,1,2, .., ¢
are linear bounded vector functionals. Further, we enumerate elements of the set ® :
ki€e®:ko:=a, ky:=711, ..., ke :=b, 0:=p1+ ... pg+2.
Similarly, we represent the linear bounded vector functional oy (-) in the form
Py() = oy ().
ke®

where prv(-): {y(k): ® — R™} — RY are linear bounded vector functionals.
Denote the vectors

q
o= b, ot |0 € R
=0
and

o
A i Zpl-x[w(ki);bj}(ki +1. j=0.12 ...q.
i=0

Substituting the solution of the Cauchy problem (3.1) for system (2.1), (2.2) satisfy-
ing the first condition in (2.3) in the second and third conditions in (2.3), we arrive
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at the problem of determination of solutions { € R”, £ € R™ of the linear matrix

equation
¢\ o a—Ayg
(Q(E)—A, A.—(ﬂ_k&)).

In the critical case (Pg+ # 0), under the condition
Pg: 1 =0, (4.1)

the solution of the last equation is given by the vector

(g):éfrk—i—P@rcr, ¢ € R,

where
9. ( (X() e )
S\ eZ0) eW()

is an ((4 4+ v) x (m + n)) constant matrix. Here, Pg= is the ((u + v) x (1 + v))
matrix orthoprojector Pg+ : RATY — N(Q*); the matrix Pg, is formed by r linearly
independent columns of the ((m + n) x (m + n)) matrix orthoprojector Pg, and the
matrix P@:«; is formed by d linearly independent rows of the matrix orthoprojector
Pg+. In addition,

q q
UX() =) iXe, (), LV() =) LiVy, (),

i=0 i=0

g g
PZC) =Y i Zki). oW =) oiW(ki).
i=0 i=0
In the critical case, under condition (4.1), the solution of the boundary-value problem
(2.1)—(2.3) specifies an r-parameter family of vectors ¢ € R, £ € R™. We denote the
blocks of the matrix orthoprojector Pg as follows:

P@r(m ::( In O )P@r’ P@r<12> ::( 0 I )P(Qr,
P@r(21) ::( I, O )P@r, P@"az) ;:( o I, )P@r'

For the matrices, we write

Xa(t)P@r(m, t €la;t],
Xz, ()P, 1€ [tp1: Ty +11[s
X () := tiz (Z)P@r(ll), r e [sz;fp2+1[,
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Va(t)P@r(lz), t €la;t],

Ve, ) Pa, - 1€t i+l
Ve(t) := 1 Xo,, (O Pa, €[0Tl

Ve (0P, . 1€ p,:b]

Z,(k):=Z(k)Pa,,, . Wrk):=W(k)Pa,,,  ke6.

We also denote the blocks of the matrix @ as

Qily=(In 0)@" Qi,:=(0 I.)a",
Qb ==(1In 0)Q%, @b, ==(0 In)a"

The theorem presented below gives necessary and sufficient conditions for the
solvability of the hybrid difference-differential boundary-value problem (2.1)—(2.3).

Theorem 1. [In the critical case (Pg+ # 0), under condition (4.1), the solution of
the hybrid difference-differential boundary-value problem (2.1)—(2.3) can be repres-
ented in the form

x(t,¢r) = Xp(@O)er + Vi (0)er +G|:(P(S’Ti)§0{|(l‘)’ cr €R,

yk.er) = Zy(K)er + W)y + G[wac— l,ri);ﬂ}(k)

with the help of the generalized Green operator of the linear boundary-value problem
(2.1)—(2.3)

G[w(s,m;a]m =

Xal0)@{s 1)1+ Va0 + Ko 060.0) |0, (e lainl.

X, ()@ (11)/\ + Vi, (t)(fl(lz),u—i- Kz, (p(s,rpl;bl)](t), t et tp+1l,

Xr,,q(t) (11)A+Vt (t)éz(lz)ﬂ'i‘xtpq ‘p(svqu;bq)](t)’ ZE[qu;b],

G[w(k 1,%); ﬁ}(k) = Z(K)QG A+ W) Qb+ Ky (k—D](k). k€6,

where the matrices X, (t), Vy(t), Zy(k), and W (k) specify the general solution of
the homogeneous part of the boundary-value problem (2.1)—(2.3); here, K[p(s,k)](t),
K[y (k —1)](k) is the generalized Green operator of the Cauchy problem (3.1) for
system (2.1), (2.2) satisfying the first condition in (2.3).
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The condition of solvability (4.1) and the structure of the generalized Green oper-
ator of the hybrid difference-differential boundary-value problem (2.1)—(2.3) general-
ize the conventional results of the theory of Noetherian boundary-value problems for
impulsive ordinary differential equations [7, 13,22,24] and the corresponding results
of the theory of boundary-value problems for difference equations [5,21,23].

Example 1. The problem of construction of solutions of the hybrid difference-
differential system

x'(t) = Ax(@t) + By (k) +¢(t), y(k+1)=Cx((k)+Dyk)+v(k), (4.2
satisfying the antiperiodic boundary condition with pulsed action
Ax(t1,13) = S1x(11 —0) + by, x()=a eR? py()=p R (4.3)

where 11 1= 7, 15, :=2m,

0 1 1 0 0 0 0 0
a=(%0) m=(00) c=(10) 2=(0 1)

@(1) = ( sint )» v(k) = ( sink ), 2 :=[0,7[VU[2n,37], 10 := 3%7

cos 3¢ cosk

wea(0) () o= (3) 0-(2)

3
O .= {O,n, 7,271,371} , £x()=x0)+xBn), py():=y0)+yQBn)
satisfies the conditions of the proved Theorem 1.

The matrices

Xo(t)z( cost  sint ) Vo(t)=( sint 0 ) Z(0) = W(0) = I

—sint cost cost—1 0

specify the general solution

X(1,8,6) = Xo(E+Vo(E, y(0,8,6) = ZO),+W(0)E, (R &R’

of the homogeneous part of system (4.2) on the interval [0; 7z[. Similarly, the matrices

2z =(1 o) wom=(o V)

/(3)-(58) »(2)-(31)

specify the general solution

) =2z wens. v (Fce) =2 (3 )eew (T )e
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of the homogeneous part of system (4.2) with k € {r, 3Z}. The matrices

2sint 0
XZn(t) = XO(t), VZn(t) = ( 2cost 0 ),

Z(2n)=(8 _01 ),W(27t)=(_01 (1))

specify the general solution

X(1,8.6) = Xon () +Var (0§, y(2n,8.6) = ZQu){+W(R2n)E, (€R?, R’

of the homogeneous part of system (4.2) on the segment [277; 3] satisfying the first
boundary condition in (4.3). Similarly, the matrices

Z(3n):((1) _01) W(3JT):(_01 (1))

specify the general solution
y(3r. 8.8 = ZBn) +WEBn)E, (eR? EeR’

of the homogeneous part of system (4.2) with k = 3. Since

00 0 0
00 —2 0
Q=110 1 o |
1 0 -1 2

we have Pgx # 0. Therefore, the problem of construction of solutions of the hybrid
difference-differential boundary-value problem (4.2), (4.3) corresponds to the critical
case; moreover, the condition of its solvability (4.1) is satisfied. A solution of the
hybrid difference-differential boundary-value problem (4.2), (4.3) can be represented
in the form

x(t,cr) = Xr(@)er + Vi (t)er +G|:(p(s,r,');a:|(t), cr €RY,

y(kcr) = Zo (K)er + Wy (k)er + G[w(k - l,ri);ﬁ](k)

with the help of the generalized Green operator of the linear boundary-value problem
(4.2), (4.3)

6|t mia 0= ks, [ots.m o,

G[w(k_ 1,1,-);/3}(@ - K[w(k - l,r,-);b,-](k).
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Here,

2sint sin2¢

l( tel0, 7]
e 2\ —sinf +sin3t ) R
K‘Epi [¢(S,k),bz](t) - l( 3cost —cos3t —2sint ) . [27[ 37T]

2—2cost —3sint + sin 3¢
0
0

ko= (o ). kwoim=( 1 ). v |(3)-
klv(F)]en=(% ). xwenien=( )

is the generalized Green operator of the Cauchy problem
x(a)=C€R? ya)=£€R?
for system (4.2), (4.3). Since rank Pg = 1, we get
Po,=(0 1 0 0)°
and, hence,
sint
cost

0 0
2,(0) = ~2,(37) = ( : ) W, (0) = W, (3) = ( 0 )

In the noncritical case (Pg+ = 0), condition (4.1) is satisfied for any inhomogen-
eities p(t,k) e R", t € 2, and ¥ (k) € R™, k € ®. Moreover, the solution of the
hybrid difference-differential boundary-value problem (2.1)—(2.3) is determined by
the following assertion:

X,(t):( ) Vo(t) =0, tef,

Corollary 1. In the noncritical case (Pg+ = 0), the solution of the hybrid differ-
ence-differential boundary-value problem (2.1)—(2.3) can be represented in the form

x(t,¢r) =Ur(®)cr + Ve (t)er +G|:¢(S,Ti);a](t), cr € R,

y(k,cr) = Zp(k)er + Wr(k)er + G[w(k - l,ri);ﬂ](k)

with the help of the generalized Green operator of the linear boundary-value problem
(2.1)—(2.3)

G|:g0(s,tl-);oz:|(t), t e s, G[w(k—l,ri);ﬁ](k), k €®,

where the matrices X,(t), Vy(t), Z,(k), and Wy (k) specify the general solution of
the homogeneous part of the boundary-value problem (2.1)—(2.3); here, K[p(s,k)](t),
K[y (k —1)](k) is the generalized Green operator of the Cauchy problem (3.1) for
system (2.1), (2.2) satisfying the first condition in (2.3).
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Example 2. The problem of construction of the solutions of the hybrid difference-
differential system

x'(t) = Ax(t) + By (k) + ¢(t), y(k+1)=Cx(k)+ Dy(k)+ v (k) 4.4)
satisfying the boundary condition
Ax(11,7p,) i= S1x(11 =0) + by, €x()=acR? py()=BecR', 45

where
0 1 0
A:=(_1 O)’ B::(l), C:=(10), D:=(1), 1i:=m,

3

o) = ( 2:)2332 ) w(k) = ( sink ) Ty = R 2 :=[0,7[U[2n,37],

3w 1 0 1 1
oclon T ansl. syma(L0). bam () wm( 1),

tx():=x(0)—x(@m), py():=yO0)+yGn), B:=(3). 1 =2x
satisfies the conditions of the proved Corollary 1.

The matrices

cost  sint sint
Xo(t) = ( —sint cost )’ Vo(t) = ( —1 4+ cost )’

ZO)=(0 0),WO)=(1)
specify the general solution
x(1,8,8) = Xo(E+ Vo), ¥(0,8,6) = Z(O) +W(0)§, ¢ eR? EeR!

of the homogeneous part of the difference system (4.4) in the interval [0; 7z[. Simil-
arly, the matrices

Zm=(10), Wm=(1 ),2(37”)=(0 0), W(%’T)=( 3)
specify the general solution
st = 2+ wens v (68) =z (3 )ew ()¢

of the homogeneous part of the difference system (4.4) for k € {x, 3£} . The matrices

cost O 2sint
Xon (1) 1= ( —sint 1 ) Var (1) = ( 2cost )

W(3—”)=1, Z(%”):(o 0).Z2em)=(0 -1),

2
W2r)=(0),Z3Br)=(1 —1), W@Br)=(0)
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specify the general solution

x(2,8,8) = Xan ()04 Var ()8, y(k,0.§) = Z(K)¢+ W(k)E, k €{m, 37}

of the homogeneous part of system (4.2) on the segment [277;37] satisfying the first
boundary condition in (4.3). Since

0
0
-1

Q=

9’

—_ O N

0
2
1

we have Pg = Pg+ = 0. Therefore, the problem of construction of solutions of the
hybrid difference-differential boundary-value problem (4.4), (4.5) corresponds to the
noncritical case. Moreover, the unique (r = 0) solution

X(t)=G[<p(s,fi);a}(t), (e, y(k)=G[¢(k—1,ri);ﬁ}(k), keo

of the hybrid difference-differential boundary-value problem (4.4), (4.5) can be rep-
resented by using the generalized Green operator of the linear boundary-value prob-
lem (4.4), (4.5)

4sint + cost —cos 3¢
1
2 ( —2+4cost —sint + sin 3¢ )’ tef0.x[.

3cost +2sint —cos 3¢ t € 2. 37]
4+2cost —3sint +sin3t )’ 27

G|:¢(szi)§a](t) =

N|—=

G[wm);ﬂ}m) 0, ... G[w(zm;ﬁ]on) _o.

Note that scheme of construction and the structure of the generalized Green oper-
ator for the hybrid difference-differential boundary-value problem (2.1), (2.2) is inde-
pendent of degeneracy [18] or nondegeneracy [7,22,24] of the matrices X T, (t),t e
£2,and W(k), k € ®, and the matrix

_( Xo, 0 Ve,
T A

specifying the general solution of the homogeneous part of the boundary-value prob-
lem (2.1), (2.2). In particular, the matrices X(¢), W(k), and I T, (z,k) in Examples 1
and 2 are nondegenerate.

), tef2, ke®, i=0,1,2,..,q,

Example 3. The matrices Xz, (1), W, (k),and I';, (¢,k) degenerate in the prob-
lem of construction of solutions of the hybrid difference-differential problem (4.2),
(4.3) as aresult of the degenerate det(/, + S1) = 0 pulsed action for Sy := —15.

The matrices Xo(¢), Vo(¢), Z(0), and W(0) specifying the general solution
xX(t,8,8) = Xo()E +Vo()§, y(0,£,6) = Z(0)( + W(0)E, (eR? EeR?
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of the homogeneous part of system (4.2) in the interval [0; 7z [ and the matrices
3n 3n
Z(m), Wr), Z| — ), W[ —
. wen. 2 (5 ). w ()
specifying the general solution
3n 3n 3
v =2+ wns. y (oes) =z (3 )erw (T )s
of the homogeneous part of system (4.2) for k € {n, 3—”} are given in Example 1.

Moreover,
detI(0,0) =detlp(mw,m) =17£0.

Since
1 0 0 O
01 0 O
Q= 1 0 1 0}
0O 0 -1 2

we have Pg = Pg+ = 0. Therefore, the problem of construction of solutions of the
hybrid difference-differential boundary-value problem (4.2), (4.3) corresponds to the
noncritical case. Furthermore,

1 cost —cos 3t
( —sint + sin 3¢ )’ t€[0.x,
3cost —cos3t —2sint
2—2cost —3sint + sin3t

o|vorslo=( ). olv (5 )blen=(7 ).
6| vemislen=( ).

Note that, as a result of the degenerate det(/, + S1) = 0 pulsed action, we get the
equality det I'o(2m,27) = det [, (37,37m) = 0.

Since the set £2 U @ is a special case of the set of the “time scale”-type, the ac-
cumulated results can be deduced in a similar way [1,2,4, 11]. The scheme of in-
vestigation of hybrid boundary-value problems for systems of difference-differential
equations can be applied to the analysis of the problems of bifurcation of solutions of
boundary-value problems for difference-differential systems with pulsed action [7],
hybrid difference-differential boundary-value problems for systems with pulsed ac-
tion of a more general form [13, 14], matrix difference-differential boundary-value
problems for systems with pulsed action [0, 12, 15, 16], hybrid difference-integro-
differential boundary-value problems for systems with pulsed action [8, 9], and hy-
brid difference-differential boundary-value problems for systems with pulsed action
in abstract spaces [10, 17].

G[w(s,fi);a}(t) = ) [ ]
, tel2n, 3],

=
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