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Abstract. In this paper, we show that the contractive definition considered by Proinov [Fixed
point theorems in metric spaces, Nonlinear Analysis 64 (2006) 546 - 557] is strong enough to
generate a fixed point but does not force the mapping to be continuous at the fixed point. Thus we
provide several answers to the open question posed by B.E. Rhoades in Contractive definitions
and continuity, Contemporary Mathematics 72(1988), 233-245.
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1. INTRODUCTION

For a self-mapping T of a metric space .X;d/ we put

m.x;y/Dmax
�
d.x;y/;d.x;T x/;d.y;Ty/;

d.x;Ty/Cd.y;T x/

2

�
: (1.1)

The most general type of contractive condition is either a Ćirić [7] type contractive
condition

d.T x;Ty/� ˛ �m.x;y/;x;y 2X;0� ˛ < 1;

or a '- contractive condition (see [4, 6, 8, 9]) of the form

d.T x;Ty/� '.m.x;y//;x;y 2X;

where ' WRC!RC satisfies different set of conditions (see [1,18,23,24]), or a Meir-
Keeler [15] type .�;ı/ contractive condition,
given � > 0 there exists a ı.�/ > 0 such that for x;y 2X ,

� �m.x;y/ < �C ı H) d.T x;Ty/ < �:

Let us recall that a fixed point of T is said to be contractive [12] if all of the Picard
iterates of T converge to this fixed point. The set O.xIT /D fT nx W nD 0;1;2; :::g
is called the orbit of the self-mapping T at the point x 2 X . Mapping T is orbitally
continuous at a point ´ 2 X if for any sequence fxng � O.xIT / (for some x 2 X )
xn! ´ implies T xn! T ´ as n!1. Every continuous self-mapping of a metric
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space is orbitally continuous, but the converse need not be true (see Example 2.1
below). Mapping T is asymptotically regular if limn!1d.T nx;T nC1x/ D 0 for
each x 2X [5].

Let ˚1 [21] denote the class of all functions ' W RC ! RC satisfying; for any
� > 0 there exists ı > � such that � < t < ı implies '.t/ � �. It is easy to see that
'.t/ < t for t > 0. In 2006, Proinov [21] proved the following very interesting fixed
point theorem which subsumes most of the fixed point theorems based on conditions
discussed above.

Theorem 1. Let .X;d/ be a complete metric space. Let T be a continuous and
asymptotically regular self-mapping on X such that:

(i) There exists ' 2 ˚1 such that d.T x;Ty/ � '.D .x;y// for all x;y 2 X ,
where D .x;y/D d.x;y/CŒd.x;T x/Cd.y;Ty/�, where  � 0;

(ii) d.T x;Ty/ < D .x;y/ for all x;y 2X with x ¤ y.

Then T has a contractive fixed point. Moreover, in the case  D 1 and if ' is con-
tinuous and satisfies '.t/ < t for all t > 0, then the continuity of T can be dropped.

Let us point out (see Theorem 3.2 [21]), that the first part of Theorem 1 is equival-
ent to the following result.

Theorem 2. Let .X;d/ be a complete metric space. Let T be a continuous and
asymptotically regular self-mapping on X such that:

(i) For any � > 0 there exists ı > � such that � < D .x;y/ < ı implies
d.T x;Ty/� �;

(ii) d.T x;Ty/ < D .x;y/ for all x;y 2X with x ¤ y.

Then T has a contractive fixed point.

The question whether there exists a contractive definition which is strong enough
to generate a fixed point but which does not force the mapping to be continuous at
the fixed point was investigated by Rhoades in [24] as an existing open problem. The
question of the existence of contractive mappings which are discontinuous at their
fixed points was settled in the affirmative by Pant [16]. In order to achieve his goal
he employed a combination of an .�� ı/ condition and a �-contractive condition to
prove a fixed point in which the fixed point may be a point of discontinuity. Recently
in [3] Bisht and Rakočević have studied generalized Meir-Keeler type contractions
and discontinuity at fixed point.

In this paper we show that the contractive definition introduced by Proinov [21]
need not be continuous at the fixed point. Thus we not only relax the continuity re-
quirement in the results proved by Proinov but also provide more answers to the open
question posed in [24].
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2. MAIN RESULTS

Our first main result is the following.

Theorem 3. Let .X;d/ be a complete metric space. Let T be an orbitally continu-
ous and asymptotically regular self-mapping on X satisfying (i) and (ii) of Theorem
1. Then T has a contractive fixed point.

Proof. Let x0 be any point in X . Define a sequence fxng in X given by the
rule xnC1 D T nx0 D T xn. From the proof of Theorem 4.1 of [21], we know that
limnd.xn;xnC1/ D 0 and that fxng is a Cauchy sequence. Since X is complete,
there exists a point ´ 2X such that xn! ´ as n!1. Also T xn! ´: Orbital con-
tinuity of T implies that limn!1T xn D T ´: This yields T ´D ´; that is, ´ is a fixed
point of T . Uniqueness of the fixed point follows from (ii). �

As in Theorem 2, the first part of Theorem 3 is equivalent to the following result.

Theorem 4. Let .X;d/ be a complete metric space. Let T be an orbitally con-
tinuous and asymptotically regular self-mapping on X such that:

(i) For any � > 0 there exists ı > � such that � < D .x;y/ < ı implies
d.T x;Ty/� �;

(ii) d.T x;Ty/ < D .x;y/ for all x;y 2X with x ¤ y.
Then T has a contractive fixed point.

The following example [16] illustrates the above theorems.

Example 1. Let X D Œ0;2� and d be the usual metric on X . Define T WX !X by

T .x/D

�
1; if 0� x � 1I
0; if 1 < x � 2:

Then T satisfies all the conditions of above theorems and has a unique fixed point
x D 1. The mapping T satisfies condition (i) of Theorems 3 and 4 with

'.t/D

�
1 if t > 1I
t
2
; if t � 1;

ı.�/D

�
1 for � � 1I
1� �; for � < 1; respectively:

It can also be easily seen that limx!1D .x;1/ ¤ 0 and T is discontinuous at the
fixed point x D 1. It can be verified that T neither satisfy Theorem 1 nor Theorem
2. Therefore, Theorems 3 and 4 are effective generalizations of Proinov fixed point
theorem [21].

In the next theorem, we shall use the continuity of T 2 and a special case of
D .x;y/, that is D1.x;y/.

Theorem 5. Let .X;d/ be a complete metric space. Let T be an asymptotically
regular self-mapping on X such that T 2 is continuous for any x;y 2X ;
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(i) There exists ' 2˚1 such that d.T x;Ty/� '.D1.x;y// for all x;y 2X and
'.t/ < t for all t > 0;

(ii) d.T x;Ty/ < D1.x;y/ for all x;y 2X with x ¤ y.
Then T has a contractive fixed point. say ´, and T nx! ´ for each x 2X .

Proof. Let x0 be any point in X . Define a sequence fxng in X given by the rule
xnC1 D T

nx0 D T xn. Then from the above theorem (taking  D 1/ we conclude
that fxng is a Cauchy sequence. Since X is complete, there exists a point ´ 2X such
that xn! ´ as n!1. Also T xn! ´ and T 2xn! ´. By continuity of T 2, we
have T 2xn! T 2´. This implies T 2´D ´. Using (i) we get

d.T ´;T 2xn/� '.D1.´;T xn/D '.d.´;T xn/Cd.´;T ´/Cd.xn;T
2xn//:

Taking n!1 and in view of '.t/ < t we get d.´;T ´/D 0, i.e., ´ is a fixed point
of T . Uniqueness of the fixed point follows from (ii). �

As in Theorem 2 the first part of Theorem 5 is equivalent to the following result.

Theorem 6. Let .X;d/ be a complete metric space. Let T be an asymptotically
regular self-mapping on X such that T 2 is continuous for any x;y 2X ;

(i) For any � > 0 there exists ı > � such that � < D1.x;y/ < ı implies
d.T x;Ty/� �;

(ii) d.T x;Ty/ < D1.x;y/ for all x;y 2X with x ¤ y.
Then T has a contractive fixed point. say ´, and T nx! ´ for each x 2X .

The following theorems verify that power contraction also allows the possibility
of discontinuity at the fixed point.

Theorem 7. Let .X;d/ be a complete metric space. Let T be an asymptotically
regular self-mapping on X such that:

(i) There exists ' 2 ˚1 such that

d.T nx;T ny/� '.d.x;y/Cd.x;T nx/Cd.y;T ny//

for all x;y 2X and n 2N;
(ii)

d.T nx;T ny/ < d.x;y/Cd.x;T nx/Cd.y;T ny/

for all x;y 2X with x ¤ y.
Then T has a contractive fixed point. say ´, and T nx! ´ for each x 2X .

Proof. By Theorem 1, T n has a unique fixed point ´ 2 X ; i.e., T n.´/D ´. Then
T .´/D T .T n.´//D T n.T .´// and so T .´/ is a fixed point of T n. Since the fixed
point of T n is unique, T ´D ´. To prove the uniqueness, we assume that y is another
fixed point of T . Then Ty D y and so T n.y/D y. Again by the uniqueness of the
fixed point of T n, we have ´D y. Hence ´ is a fixed point of T . �

As in Theorem 2, the first part of Theorem 7 is equivalent to the following result.
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Theorem 8. Let .X;d/ be a complete metric space. Let T be an asymptotically
regular self-mapping on X such that:

(i) For any � > 0 there exists ı > � such that � < d.x;y/C d.x;T nx/C

d.y;T ny/ < ı implies d.T nx;T ny/� � and n 2N;
(ii) d.T nx;T ny/ < d.x;y/C d.x;T nx/C d.y;T ny/ for all x;y 2 X with

x ¤ y.
Then T has a contractive fixed point. say ´, and T nx! ´ for each x 2X .

In view of

m.x;y/Dmaxfd.x;y/;d.x;T x/;d.y;Ty/; Œd.x;Ty/Cd.y;T x/�=2g

� d.x;y/Cd.x;T x/Cd.y;Ty/;

we get the following corollaries:

Corollary 1. Let .X;d/ be a complete metric space. Let T be an orbitally con-
tinuous self-mapping on X such that:

(i) There exists ' 2 ˚1 such that d.T x;Ty/� '.m.x;y// for all x;y 2X ;
(ii) d.T x;Ty/ < m.x;y/ for all x;y 2X with x ¤ y.

Then T has a contractive fixed point. say ´, and T nx! ´ for each x 2X .

Corollary 2. Let .X;d/ be a complete metric space. Let T be an orbitally con-
tinuous self-mapping on X such that:

(i) For any � > 0 there exists ı > � such that � < m.x;y/ < ı implies
d.T x;Ty/� �;

(ii) d.T x;Ty/ < m.x;y/ for all x;y 2X with x ¤ y.
Then T has a contractive fixed point. say ´, and T nx! ´ for each x 2X .

Corollary 3. Let .X;d/ be a complete metric space. Let T be a self-mapping on
X such that T 2 is continuous for any x;y 2X ;

(i) There exists ' 2 ˚1 such that d.T x;Ty/� '.m.x;y// for all x;y 2X ;
(ii) d.T x;Ty/ < m.x;y/ for all x;y 2X with x ¤ y.

Then T has a contractive fixed point. say ´, and T nx! ´ for each x 2X .

Corollary 4. Let .X;d/ be a complete metric space. Let T be a self-mapping on
X such that T 2 is continuous for any x;y 2X ;

(i) For any � > 0 there exists ı > � such that � < m.x;y/ < ı implies
d.T x;Ty/� �;

(ii) d.T x;Ty/ < m.x;y/ for all x;y 2X with x ¤ y.
Then T has a contractive fixed point. say ´, and T nx! ´ for each x 2X .

Remark 1. The above proved theorems unify and improve the results due to Bisht
and Pant [2], Boyd and Wong [4], Ćirić [7], Jachymski [8], Kannan [10], Lim [13],
Kuczma et al. [11], Matkowski [14], Pant [16, 17], Park and Bae [19], Park and
Rhoades [20], Proinov [21] and Rao and Rao [22].
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