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ON RELATIVE COMMUTING PROBABILITY OF FINITE RINGS
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Abstract. In this paper we study the probability that the commutator of a randomly chosen pair
of elements, one from a subring of a finite ring and other from the ring itself is equal to a given
element of the ring.
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1. INTRODUCTION

Let S be a subring of a finite ring R. The relative commuting probability of S in
R denoted by Pr.S;R/ is the probability that a randomly chosen pair of elements one
from S and the other from R commute. That is

Pr.S;R/D
jf.x;y/ 2 S �R W xy D yxgj

jS jjRj
:

This ratio Pr.S;R/ can also be viewed as the probability that the commutator of a
randomly chosen pair of elements, one from the subring S and the other from R,
equals the zero of R. We write Œx;y� to denote the commutator xy�yx of x;y 2R.
The study of Pr.S;R/was initiated in [2]. Note that Pr.R;R/, also denoted by Pr.R/,
is the probability that a randomly chosen pair of elements of R commute. The ratio
Pr.R/ is called the commuting probability ofR and it was introduced by MacHale [6]
in the year 1976. It is worth mentioning that the commuting probability of algebraic
structures was originated from the works of ErdRos and TurKan [4] in the year 1968.

In this paper we consider the probability that the commutator of a randomly chosen
pair of elements, one from the subring S and the other fromR, equals a given element
r of R. We write Prr.S;R/ to denote this probability. Therefore

Prr.S;R/D
jf.x;y/ 2 S �R W Œx;y�D rgj

jS jjRj
: (1.1)

Clearly Prr.S;R/D 0 if and only if r …K.S;R/ WD fŒx;y� W x 2 S;y 2Rg. Therefore
we consider r to be an element of K.S;R/ throughout the paper. Also Pr0.S;R/D
Pr.S;R/ where 0 is the zero of R. It may be mentioned here that the case when
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S D R is already considered in [3] by the authors. Interchanging S and R one may
define Prr.R;S/ for r 2R.

The aim of this paper is to obtain some computing formulas and bounds for
Prr.S;R/. We also discuss an invariance property of Prr.S;R/ under Z-isoclinism.
The motivation of this paper lies in [7] where analogous generalization of commuting
probability of finite group is studied.

We write ŒS;R� and Œx;R� for x 2 S to denote the additive subgroups of .R;C/
generated by the sets K.S;R/ and fŒx;y� W y 2 Rg respectively. Note that Œx;R� D
fŒx;y� W y 2Rg. LetZ.S;R/ WD fx 2 S W xy D yx8y 2Rg. ThenZ.R/ WDZ.R;R/
is the center of R. Further, if r 2 R then the set CS .r/ WD fx 2 S W xr D rxg is
a subring of S and \

r2R
CS .r/ D Z.S;R/. We write R

S
and jR W S j to denote the

additive quotient group and the index of S in R respectively.

2. COMPUTING FORMULA FOR Prr.S;R/

In this section, we derive some computing formulas for Prr.S;R/. We begin with
the following useful lemmas.

Lemma 1 (Lemma 2.1 in [3]). Let R be a finite ring. Then

jŒx;R�j D jR W CR.x/j for all x 2R:

Lemma 2. Let S be a subring of a finite ringR and Tx;r.S;R/Dfy 2R W Œx;y�D
rg for x 2 S and r 2R. Then we have the followings

(1) Tx;r.S;R/¤ � if and only if r 2 Œx;R�.
(2) If Tx;r.S;R/¤ � then Tx;r.S;R/D tCCR.x/ for some t 2 Tx;r.S;R/.

Proof. Part (1) follows from the fact that y 2 Ts;r.S;R/ if and only if r 2 Œs;R�.
Let t 2 Tx;r.S;R/ and p 2 tCCR.x/. Then Œx;p�D r and so p 2 Tx;r.S;R/. There-
fore, tCCR.x/� Tx;r.S;R/. Again, if y 2 Tx;r.S;R/ then .y� t / 2 CR.x/ and so
y 2 tCCR.x/. Therefore, Tx;r.S;R/� tCCR.x/. Hence part (2) follows. �

Now we state and prove the following main result of this section.

Theorem 1. Let S be a subring of a finite ring R. Then

Prr.S;R/D
1

jS jjRj

X
x2S

r2Œx;R�

jCR.x/j D
1

jS j

X
x2S

r2Œx;R�

1

jŒx;R�j
:

Proof. Note that f.x;y/2 S�R W Œx;y�D rgD [
x2S

.fxg�Tx;r.S;R//. Therefore,

by (1.1) and Lemma 2, we have

jS jjRjPrr.S;R/D
X
x2S

jTx;r.S;R/j D
X
x2S

r2Œx;R�

jCR.x/j: (2.1)
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The second part follows from (2.1) and Lemma 1. �

Proposition 1. Let S be a subring of a finite ring R and r 2R. Then Prr.S;R/D
Pr�r.R;S/. However, if 2r D 0 then Prr.S;R/D Prr.R;S/.

Proof. Let X D f.x;y/ 2 S �R W Œx;y�D rg and Y D f.y;x/ 2 R�S W Œy;x�D
�rg. It is easy to see that .x;y/ 7! .y;x/ defines a bijective mapping from X to Y .
Therefore, jX j D jY j and the result follows from (1.1).

Second part follows from the fact that r D�r if 2r D 0. �

Proposition 2. Let S1 and S2 be two subrings of the finite rings R1 and R2 re-
spectively. If .r1; r2/ 2R1�R2 then

Pr.r1;r2/.S1�S2;R1�R2/D Prr1
.S1;R1/Prr2

.S2;R2/:

Proof. Let Xi D f.xi ;yi / 2 Si �Ri W Œxi ;yi �D rig for i D 1;2 and

Y D f..x1;x2/; .y1;y2// 2 .S1�S2/� .R1�R2/ W Œ.x1;x2/; .y1;y2/�D .r1; r2/g:

Then ..x1;y1/; .x2;y2// 7! ..x1;x2/; .y1;y2// defines a bijective map from X1�

X2 to Y . Therefore, jY j D jX1jjX2j and hence the result follows from (1.1). �

Using Proposition 1 in Theorem 1, we get the following corollary.

Corollary 1. Let S be a subring of a finite ring R. Then

Pr.R;S/D Pr.S;R/D
1

jS jjRj

X
x2S

jCR.x/j D
1

jS j

X
x2S

1

jŒx;R�j
:

We conclude this section with the following corollary.

Corollary 2. Let S be a subring of a finite non-commutative ring R. If jŒS;R�j D
p, a prime, then

Prr.S;R/D

8<:
1
p

�
1C p�1

jS WZ.S;R/j

�
; if r D 0

1
p

�
1� 1
jS WZ.S;R/j

�
; if r ¤ 0:

Proof. For x 2 S nZ.S;R/, we have f0g¨ Œx;R�� ŒS;R�. Since jŒS;R�j D p, it
follows that ŒS;R�D Œx;R� and hence jŒx;R�j D p for all x 2 S nZ.S;R/.

If r D 0 then by Corollary 1, we have

Prr.S;R/D
1

jS j

0@jZ.S;R/jC X
x2SnZ.S;R/

1

jŒx;R�j

1A
D
1

jS j

�
jZ.S;R/jC

1

p
.jS j� jZ.S;R/j/

�
D
1

p

�
1C

p�1

jS WZ.S;R/j

�
:
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If r ¤ 0 then r … Œx;R� for all x 2Z.S;R/ and r 2 Œx;R� for all x 2 S nZ.S;R/.
Therefore, by Theorem 1, we have

Prr.S;R/D
1

jS j

X
x2SnZ.S;R/

1

jŒx;R�j
D

1

jS j

X
x2SnZ.S;R/

1

p

D
1

p

�
1�

1

jS WZ.S;R/j

�
:

Hence, the result follows. �

3. BOUNDS FOR Prr.S;R/

If S is a subring of a finite ring R then it was shown in [2, Theorem 2.16] that

Pr.S;R/�
1

jK.S;R/j

�
1C
jK.S;R/j�1

jS WZ.S;R/j

�
: (3.1)

Also, if p is the smallest prime dividing jRj then by [2, Theorem 2.5] and [2, Corol-
lary 2.6] we have

Pr.S;R/�
.p�1/jZ.S;R/jC jS j

pjS j
and Pr.R/�

.p�1/jZ.R/jC jRj

pjRj
: (3.2)

In this section, we obtain several bounds for Prr.S;R/ and show that some of our
bounds are better than the bounds given in (3.1) and (3.2). We begin with the follow-
ing upper bound.

Proposition 3. Let S be a subring of a finite ring R. If p is the smallest prime
dividing jRj and r ¤ 0 then

Prr.S;R/�
jS j� jZ.S;R/j

pjS j
<
1

p
:

Proof. Since r ¤ 0 we have S ¤ Z.S;R/. If x 2 Z.S;R/ then r … Œs;R�. If
x 2 S nZ.S;R/ then CR.x/¤ R. Therefore, by Lemma 1, we have jŒx;R�j D jR W
CR.x/j> 1. Since p is the smallest prime dividing jRj we have jŒx;R�j � p. Hence
the result follows from Theorem 1. �

Proposition 4. Let S be a subring of a finite ring R. Then Prr.S;R/ � Pr.S;R/
with equality if and only if r D 0.

Proof. By Theorem 1 and Corollary 1, we have

Prr.S;R/D
1

jS jjRj

X
x2S

r2Œx;R�

jCR.x/j �
1

jS jjRj

X
x2S

jCR.x/j D Pr.S;R/:

The equality holds if and only if r D 0. �
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Proposition 5. If S1 � S2 are two subrings of a finite ring R then

Prr.S1;R/� jS2 W S1jPrr.S2;R/:

Proof. By Theorem 1, we have

jS1jjRjPrr.S1;R/D
X
x2S1

r2Œx;R�

jCR.x/j

�

X
x2S2

r2Œx;R�

jCR.x/j D jS2jjRjPrr.S2;R/:

Hence the result follows. �

Note that equality holds in Proposition 5 if and only if r … Œx;R� for all x 2 S2nS1. If
r D 0 then the condition of equality reduces to S1 D S2. Putting S1 D S and S2 DR
in Proposition 5 we have the following corollary.

Corollary 3. If S is a subring of a finite ring R then

Prr.S;R/� jR W S jPrr.R/:

For any subring S of R, let mS D minfjŒx;R�j W x 2 S nZ.S;R/g and MS D

maxfjŒx;R�j W x 2S nZ.S;R/g. In the following theorem we give bounds for Pr.S;R/
in terms of mS and MS .

Theorem 2. Let S be a subring of a finite ring R. Then

1

MS

�
1C

MS �1

jS WZ.S;R/j

�
� Pr.S;R/�

1

mS

�
1C

mS �1

jS WZ.S;R/j

�
:

The equality holds if and only if mS DMS D jŒx;R�j for all x 2 S nZ.S;R/.

Proof. Since mS � jŒx;R�j and MS � jŒx;R�j for all x 2 S nZ.S;R/, we have

jS j� jZ.S;R/j

MS
�

X
x2SnZ.S;R/

1

jŒx;R�j
�
jS j� jZ.S;R/j

mS
: (3.3)

Again, by Corollary 1, we have

Pr.S;R/D
1

jS j

0@jZ.S;R/jC X
x2SnZ.S;R/

1

jŒx;R�j

1A : (3.4)

Hence, the result follows from (3.3) and (3.4). �

Note that for any two integers m� n, we have

1

n

�
1C

n�1

jS WZ.S;R/j

�
�
1

m

�
1C

m�1

jS WZ.S;R/j

�
: (3.5)
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Clearly equality holds in (3.5) if Z.S;R/D S . Further, if Z.S;R/¤ S then equality
holds if and only if mD n. Since jK.S;R/j �MS , by (3.5), it follows that

1

MS

�
1C

MS �1

jS WZ.S;R/j

�
�

1

jK.S;R/j

�
1C
jK.S;R/j�1

jS WZ.S;R/j

�
:

Therefore, the lower bound obtained in Theorem 2 is better than the lower bound
given in (3.1) for Pr.S;R/. Again, if p is the smallest prime divisor of jRj then
p �mS and hence, by (3.5), we have

1

mS

�
1C

mS �1

jS WZ.S;R/j

�
�
.p�1/jZ.S;R/jC jS j

pjS j
:

This shows that the upper bound obtained in Theorem 2 is better than the upper bound
given in (3.2) for Pr.S;R/.

Putting S DR in Theorem 2 we have the following corollary.

Corollary 4. Let R be a finite ring. Then

1

MR

�
1C

MR�1

jR WZ.R/j

�
� Pr.R/�

1

mR

�
1C

mR�1

jR WZ.R/j

�
:

The equality holds if and only if mR DMR D jŒx;R�j for all x 2R nZ.R/.

We conclude this section noting that the lower bound obtained in Corollary 4 is
better than the lower bound obtained in [2, Corollary 2.18]. Also, if p is the smallest
prime divisor of jRj then the upper bound obtained in Corollary 4 is better than the
upper bound given in (3.2) for Pr.R/.

4. Z-ISOCLINISM AND Prr.S;R/

The idea of isoclinism of groups was introduced by Hall [5] in 1940. Years after
in 2013, Buckley et al. [1] introduced Z-isoclinism of rings. Recently, Dutta et al.
[2] have introduced Z-isoclinism between two pairs of rings, generalizing the notion
of Z-isoclinism of rings. Let S1 and S2 be two subrings of the rings R1 and R2
respectively. Recall that a pair of mappings .˛;ˇ/ is called a Z-isoclinism between
.S1;R1/ and .S2;R2/ if ˛ W R1

Z.S1;R1/
!

R2

Z.S2;R2/
and ˇ W ŒS1;R1�! ŒS2;R2� are

additive group isomorphisms such that ˛
�

S1

Z.S1;R1/

�
D

S2

Z.S2;R2/
and ˇ.Œx1;y1�/D

Œx2;y2�whenever xi 2 Si , yi 2Ri for i D 1;2; ˛.x1CZ.S1;R1//D x2CZ.S2;R2/
and ˛.y1CZ.S1;R1// D y2CZ.S2;R2/. Two pairs of rings are said to be Z-
isoclinic if there exists a Z-isoclinism between them.

In [2, Theorem 3.3], Dutta et al. proved that Pr.S1;R1/D Pr.S2;R2/ if the rings
R1 andR2 are finite and the pairs .S1;R1/ and .S2;R2/ are Z-isoclinic. We conclude
this paper with the following generalization of [2, Theorem 3.3].
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Theorem 3. Let S1 and S2 be two subrings of the finite rings R1 and R2 respect-
ively. If .˛;ˇ/ is a Z-isoclinism between .S1;R1/ and .S2;R2/ then

Prr.S1;R1/D Prˇ.r/.S2;R2/:

Proof. By Theorem 1, we have

Prr.S1;R1/D
jZ.S1;R1/j

jS1jjR1j

X
x1CZ.S1;R1/2

S1
Z.S1;R1/

jCR1
.x1/j

r2Œx1;R1�

noting that r 2 Œx1;R1� if and only if r 2 Œx1C´;R1� and CR1
.x1/D CR1

.x1C´/

for all ´ 2Z.S1;R1/. Now, by Lemma 1, we have

Prr.S1;R1/D
jZ.S1;R1/j

jS1j

X
x1CZ.S1;R1/2

S1
Z.S1;R1/

r2Œx1;R1�

1

jŒx1;R1�j
: (4.1)

Similarly, it can be seen that

Prˇ.r/.S2;R2/D
jZ.S2;R2/j

jS2j

X
x2CZ.S2;R2/2

S2
Z.S2;R2/

ˇ.r/2Œx2;R2�

1

jŒx2;R2�j
: (4.2)

Since .˛;ˇ/ is a Z-isoclinism between .S1;R1/ and .S2;R2/ we have jS1j

jZ.S1;R1/j
D

jS2j

jZ.S2;R2/j
, jŒx1;R1�j D jŒx2;R2�j and r 2 Œx1;R1� if and only if ˇ.r/ 2 Œx2;R2�.

Hence, the result follows from (4.1) and (4.2). �
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