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Abstract. In this paper we study the probability that the commutator of a randomly chosen pair
of elements, one from a subring of a finite ring and other from the ring itself is equal to a given
element of the ring.
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1. INTRODUCTION

Let S be a subring of a finite ring R. The relative commuting probability of S in
R denoted by Pr(S, R) is the probability that a randomly chosen pair of elements one
from S and the other from R commute. That is

[1(x,y) € SXR:xy = yx}|
ISR

This ratio Pr(S, R) can also be viewed as the probability that the commutator of a
randomly chosen pair of elements, one from the subring S and the other from R,
equals the zero of R. We write [x, y] to denote the commutator xy — yx of x,y € R.
The study of Pr(S, R) was initiated in [2]. Note that Pr(R, R), also denoted by Pr(R),
is the probability that a randomly chosen pair of elements of R commute. The ratio
Pr(R) is called the commuting probability of R and it was introduced by MacHale [6]
in the year 1976. It is worth mentioning that the commuting probability of algebraic
structures was originated from the works of Erdos and Turan [4] in the year 1968.

In this paper we consider the probability that the commutator of a randomly chosen
pair of elements, one from the subring S and the other from R, equals a given element
r of R. We write Pr, (S, R) to denote this probability. Therefore

{(r.y) €S xR [x.y] =7}
Pr, (S, R) STIR| . (1.1)
Clearly Pr, (S, R) =0ifand only if r ¢ K(S,R) :={[x,y]:x €S,y € R}. Therefore
we consider r to be an element of K(S, R) throughout the paper. Also Pro(S, R) =
Pr(S, R) where 0 is the zero of R. It may be mentioned here that the case when

Pr(S,R) =
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S = R is already considered in [3] by the authors. Interchanging S and R one may
define Pr, (R, S) forr € R.

The aim of this paper is to obtain some computing formulas and bounds for
Pr, (S, R). We also discuss an invariance property of Pr, (S, R) under Z-isoclinism.
The motivation of this paper lies in [7] where analogous generalization of commuting
probability of finite group is studied.

We write [S, R] and [x, R] for x € S to denote the additive subgroups of (R, +)
generated by the sets K(S, R) and {[x,y] : y € R} respectively. Note that [x, R] =
{[x,y]:yeR}.Let Z(S,R):={x e S:xy=yxVy € R}. Then Z(R) := Z(R,R)
is the center of R. Further, if r € R then the set Cg(r) :={x € S : xr = rx} is
a subring of S and QRCS(r) = Z(S,R). We write % and |R : S| to denote the

r

additive quotient group and the index of S in R respectively.

2. COMPUTING FORMULA FOR Pr, (S, R)

In this section, we derive some computing formulas for Pr, (S, R). We begin with
the following useful lemmas.
Lemma 1 (Lemma 2.1 in [3]). Let R be a finite ring. Then
[[x,R]| =|R: Cgr(x)| forall x € R.

Lemma 2. Let S be a subring of a finite ring R and Tx (S, R) ={y e R:[x,y] =
r}for x € S and r € R. Then we have the followings

(1) Tx»(S,R) # ¢ ifand only if r € [x, R].
(2) If Tx r(S,R) # ¢ then Tx (S, R) =t + Cr(x) for some t € Ty r(S, R).

Proof. Part (1) follows from the fact that y € T, (S, R) if and only if r € [s, R].
Lett € Tx »(S,R)and p €t + Cgr(x). Then [x, p] =r and so p € Tx (S, R). There-
fore, t + Cr(x) C Tx (S, R). Again, if y € Ty (S, R) then (y —¢t) € Cr(x) and so
y €t 4+ Cr(x). Therefore, Tx (S, R) €t + Cr(x). Hence part (2) follows. O

Now we state and prove the following main result of this section.

Theorem 1. Let S be a subring of a finite ring R. Then

1 1 1
Pr,(S,R) = —— |ICR(x)| = — _
' [SIIR| 2; H 2; [bx. R]|
re[x,R] r€[x,R]

Proof. Notethat {(x,y) e SXR:[x,y]=r}= US({x} X Tx (S, R)). Therefore,
xe

by (1.1) and Lemma 2, we have

ISIRIPE(S.R) = Y |Tr (S, R) = > [Cr()I. @.1)
X€S x€S
r€[x,R]
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The second part follows from (2.1) and Lemma 1. ]

Proposition 1. Let S be a subring of a finite ring R and r € R. Then Pr,(S,R) =
Pr_,(R,S). However, if 2r = 0 then Pr, (S, R) = Pr, (R, S).

Proof. Let X ={(x,y) e SxR:[x,y]=r}andY ={(y,x) e Rx S : [y,x] =
—r}. Tt is easy to see that (x,y) — (y,x) defines a bijective mapping from X to Y.
Therefore, | X | = |Y | and the result follows from (1.1).

Second part follows from the fact that r = —r if 2r = 0. g

Proposition 2. Let S1 and S» be two subrings of the finite rings Ry and R; re-
spectively. If (r1,r2) € Ry X R then

Pr(rl,rz)(Sl X Sz, R1 X Rz) = PI‘,«1 (Sl, Rl)PI‘r2 (Sz, Rz).
Proof. Let X; = {(x;,y;) € Si xR; :[xj,yi] =ri}fori =1,2 and
Y ={((x1,x2),(y1,¥2)) € (S1 X 82) X (R1 X R2) : [(x1,x2),(y1,y2)] = (r1,r2)}

Then ((x1, 1), (X2, ¥2)) = ((¥1,2). (¥1. v2)) defines a bijective map from X; x
X5 to Y. Therefore, |Y | = | X1]| X2| and hence the result follows from (1.1). O

Using Proposition 1 in Theorem 1, we get the following corollary.

Corollary 1. Let S be a subring of a finite ring R. Then
1

Pr(R,S) =Pr(S.R) = |ICr(X)| = :
ISIIRIZ ISIZI[x,R]I
We conclude this section with the following corollary.

Corollary 2. Let S be a subring of a finite non-commutative ring R. If |[S, R]| =
D, a prime, then

1 p—1 . _
7 (1 + —|S:Z(S,R)|) . fr=0
1 1 .

7 (1 - |S:Z(S,R)|)’ ifr #0.

Proof. For x € S\ Z(S, R), we have {0} C [x, R] C [S, R]. Since |[S,R]| = p, it
follows that [S, R] = [x, R] and hence |[x, R]| = p forall x € S\ Z(S, R).
If r = 0 then by Corollary 1, we have

Pr,.(S,R) =

1 1
Pro(S.R) =< [1ZE.BI+ Y
S e xR

—5i (1Z.001%~s1- 12580

_1 p—1
‘p(1+|S:Z(S,R)|)'
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Ifr #0thenr ¢ [x,R] forall x € Z(S,R) and r € [x,R] forall x € S\ Z(S, R).
Therefore, by Theorem 1, we have

1 1 1 1
Pr S,R == = — J—
PER=15 2 RIS

xeS\Z(S,R) § xes\z(s,R) ¥

_1 (1_;)
T p IS:Z(S.R)| )’

Hence, the result follows. O

3. BOUNDS FOR Pr, (S, R)

If S is a subring of a finite ring R then it was shown in [2, Theorem 2.16] that
( |K(S.R)| —1)
|K(S.R)| 1S:Z(S,B)| /)
Also, if p is the smallest prime dividing | R| then by [2, Theorem 2.5] and [2, Corol-
lary 2.6] we have
—1D|Z(S,R S —D|Z(R R
pr(s. Ry < LT DIZERIEIS] o G=DIZWRIHIRL -
pIS| PIR]

In this section, we obtain several bounds for Pr, (S, R) and show that some of our
bounds are better than the bounds given in (3.1) and (3.2). We begin with the follow-
ing upper bound.

Pr(S,R) >

3.1

Proposition 3. Let S be a subring of a finite ring R. If p is the smallest prime
dividing |R| and r # 0O then
S|—|Z(S,R
SI=1Z(S. R _ 1
plS| p
Proof. Since r # 0 we have S # Z(S,R). If x € Z(S,R) then r ¢ [s,R]. If
x € S\ Z(S,R) then Cr(x) # R. Therefore, by Lemma 1, we have |[x,R]| = |R :

CRr(x)| > 1. Since p is the smallest prime dividing | R| we have |[x, R]| > p. Hence
the result follows from Theorem 1. U

Proposition 4. Let S be a subring of a finite ring R. Then Pr, (S, R) <Pr(S,R)
with equality if and only if r = 0.

Pr, (S, R) =<

Proof. By Theorem 1 and Corollary 1, we have
Pr.(S. R |ICr(x)| = |Cr(x)| =Pr(S,R).
' ISIIRI Z ISIIRIZ

re[x R]
The equality holds if and only if r = 0. U
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Proposition 5. If S; C S, are two subrings of a finite ring R then
Pr,(S1,R) < |82 : S1|Pr,(S2, R).

Proof. By Theorem 1, we have

S1IIR[Pr(S1.R) = > |Cr(®)]
x€S
r€[x,R]

< Y |Cr(X)| = S2||R|Pr(S2. R).
X€SH
re[x,R]

Hence the result follows. 0
Note that equality holds in Proposition 5 if and only if r ¢ [x, R] for all x € S\ Sy. If

r = 0 then the condition of equality reduces to §1 = S». Putting S; = S and S, = R
in Proposition 5 we have the following corollary.

Corollary 3. If S is a subring of a finite ring R then
Pr;(S,R) <|R: S|Prr(R).

For any subring S of R, let mg = min{|[x,R]| : x € S\ Z(S,R)} and M5 =
max{|[x, R]|: x € S\ Z(S, R)}. In the following theorem we give bounds for Pr(S, R)
in terms of mg and M.

Theorem 2. Let S be a subring of a finite ring R. Then

1 Mg —1 1 mg—1
— | 1+— | <Pr(S,R) < — |1+ —7——).
MS( +|S:Z(S,R)|)— T )_ms( +|S:Z(S,R)|)

The equality holds if and only if ms = Mg = |[x, R]| for all x € S\ Z(S, R).
Proof. Since mg < |[x, R]| and Mg > |[x, R]| for all x € S\ Z(S, R), we have

S|—1Z(S,R 1 S|—1Z(S,R
SIZERIL g L SISZERI
§ res\z(s,r) X Rl el
Again, by Corollary 1, we have
1 1
Pr(S.R) = [ 1Z(S. R+ > . (3.4)
|S| xeS\Z(S R)l[x’R]|
Hence, the result follows from (3.3) and (3.4). ]

Note that for any two integers m > n, we have

l 1+L)>l 1+m——1 3.5)
n( IS : Z(S,R)| —m( |S:Z(S,R)|)' G



230 PARAMA DUTTA AND RAJAT KANTI NATH

Clearly equality holds in (3.5) if Z(S, R) = S. Further, if Z(S, R) # S then equality
holds if and only if m = n. Since |K(S, R)| > Mg, by (3.5), it follows that

1 ( Mg —1 ) 1 ( |K(S,R)|—1)
— 1+ > 1+ — .
Mg IS Z(S,R)| |K(S,R)| 1S Z(S,R)|
Therefore, the lower bound obtained in Theorem 2 is better than the lower bound

given in (3.1) for Pr(S, R). Again, if p is the smallest prime divisor of |R| then
p < mg and hence, by (3.5), we have

L( ms —1 )<<p—1>|Z(S,R)|+|S|
ms IS Z(S, B/~ pIS|
This shows that the upper bound obtained in Theorem 2 is better than the upper bound

given in (3.2) for Pr(S, R).
Putting S = R in Theorem 2 we have the following corollary.

Corollary 4. Let R be a finite ring. Then

1 Mgr—1 1 mprp—1
Mz (1 IR Z(R)I) PR = (1 IR Z(R>|)'

The equality holds if and only if mg = Mg = |[x, R]| for all x € R\ Z(R).

We conclude this section noting that the lower bound obtained in Corollary 4 is
better than the lower bound obtained in [2, Corollary 2.18]. Also, if p is the smallest
prime divisor of |R| then the upper bound obtained in Corollary 4 is better than the
upper bound given in (3.2) for Pr(R).

4. Z-1SOCLINISM AND Pr, (S, R)

The idea of isoclinism of groups was introduced by Hall [5] in 1940. Years after
in 2013, Buckley et al. [1] introduced Z-isoclinism of rings. Recently, Dutta et al.
[2] have introduced Z-isoclinism between two pairs of rings, generalizing the notion
of Z-isoclinism of rings. Let S7 and S, be two subrings of the rings R; and R;
respectively. Recall that a pair of mappings («, ) is called a Z-isoclinism between
(S1,R1) and (S2, R») if o : Z(S’fle) — Z(S’fRz) and B : [S1.R1] = [S2. R»] are

additive group isomorphisms such that o (Z(SSII,RI)) = Z(Si%Rz) and B([x1,y1]) =
[x2,y2] whenever x; € S;, y; € R; fori =1,2; a(x1+ Z(S1,R1)) = x2+ Z(S2, R2)
and a(y1 + Z(S1,R1)) = y2 + Z(S2, R2). Two pairs of rings are said to be Z-
isoclinic if there exists a Z-isoclinism between them.

In [2, Theorem 3.3], Dutta et al. proved that Pr(Sy, R;) = Pr(S2, R») if the rings
R; and R are finite and the pairs (S, R1) and (S, R») are Z-isoclinic. We conclude
this paper with the following generalization of [2, Theorem 3.3].
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Theorem 3. Let S and S, be two subrings of the finite rings Ry and R, respect-
ively. If («, B) is a Z-isoclinism between (S1, R1) and (S2, R2) then

Pr,(S1, R1) = Prg(»)(S2, R2).

Proof. By Theorem 1, we have

|Z(S1, R1)|
Pr,(S1,R|) =———= C
r(S1R1) = > |Cr, (x1)]

s
x1+Z(S1.RDE 7577
re[xy,Ry]

noting that r € [x1, R{] if and only if r € [x1 + 2z, Rq] and Cg, (x1) = Cg, (x1 +2)
for all z € Z(S1, R1). Now, by Lemma 1, we have

|Z(S1,R1)| 1
Pr,(S1.R1) = ———— _— 4.1)
5 51] 2 Rl
xl+Z(S1’R])€WI'Rl)
refx1,R1]
Similarly, it can be seen that
|Z(S2, R2)| 1
Prg)(S2,R2) = —————— _—. 4.2)
o B L Tk

X2+Z(52,R2)€W?132)
B(r)€lx2,R]

Since (o, B) is a Z-isoclinism between (S, R1) and (S, R2) we have % =

ey ¥ Rill = [lx2. Roll and r € [y, Ri] if and only if B(r) € [x2. Ra]

Hence, the result follows from (4.1) and (4.2). O
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