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Abstract. Sharma [32] introduced a g-analogue of a new sequence of classical Bernstein type
operators defined by Deo et al. [14] for functions defined in the interval [0, n"ﬁ]. The purpose
of this paper is to study the rate of convergence of these operators with the aid of the modulus
of continuity and a Lipschitz type space. Subsequently, we define the bivariate case of these
operators and discuss the approximation properties by means of the complete and partial modulus
of continuity, Lipschitz class and the Peetre’s K- functional. Some numerical results which
show the rate of convergence of these operators to certain functions using Maple algorithms are
given. Lastly, we construct the associated GBS operators and study the approximation of Bogel
continuous and Bogel differentiable functions. The comparison of convergence of the bivariate
operator and its GBS type operator is made considering numerical examples.
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1. INTRODUCTION

For f € C[0,1], Bernstein [¢] constructed a sequence of polynomials

z k
Ba(fi0) = i) f (;)
k=0
where

by k(x) = KA=x)"k n=1,2-, xelo.1],

n
k
and proved that the sequence B, (f;x) converges to f(x), as n — oo, uniformly in
x €[0,1] . These polynomials are called Bernstein polynomials and possess many
remarkable properties. For f € L]0, 1], the space of Lebesgue integrable functions
in [0, 1], Durrmeyer [18] introduced an integral modification of Bernstein operators
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as
n 1
Dalfix) =+ 1) Y bur) [ bur £t
k=0 0

which was extensively studied by Derriennic [15].

In recent years, the applications of g-calculus in the area of approximation theory
is one of the main areas of research (see [1], [2], [13]). Also, the reader should consult
the monographies of A. Aral et al. [5], Gupta et al. [23] and G. Tachev et al. [24]. In
1987, for f € C[0,1] and 0 < g < 1, Lupas [27] introduced a g-analogue of Bernstein
polynomials. After a decade, another g-generalization of Bernstein polynomials was
introduced by Phillips [31]. The g-analogue of Bernstein polynomials due to Phil-
lips was studied by several researchers e.g Ostrovska [29,30], Kim [26] and Wang
[38] etc. In 2005, Derriennic [16] introduced the g-analogue of Bernstein-Durrmeyer
polynomials with Jacobi weights and studied some approximation properties. Later,
Gupta [21] introduced the g-analogue of the Bernstein-Durrmeyer operators which
was investigated later by Finta and Gupta ([20], [22]) and several other research-
ers. Dalmanoglu [13] introduced the Kantorovich type modification of g-Bernstein
polynomials and established some approximation results. Muraru [28] introduced
Bernstein-Schurer polynomials based on g-integers and established the rate of con-
vergence in terms of the modulus of continuity. Agrawal et al. [2] considered the
Stancu variant of these operators and obtained some local and global direct results.
Later, Agrawal et al. [4] proposed the Durrmeyer type modification of these operators
and discussed some local direct results and the rate of convergence of the modified
limit g-Bernstein-Schurer type operators.

Deo et al. [14] introduced a new sequence of Bernstein type operators V;, as

z k
Va ) =3 pus() f (;) (L)

k=0

where

= (14 1) (") (- o
Pr el X)) = n k)Y \nr1 7 Y ‘n+1]

In the same paper, to approximate Lebesgue integrable functions on the interval
[0, 1], the authors defined an integral modification of the operators (1.1) as

(n+1)?
n

(Lo f)(x) = > puao) [ paslt) 1,
k=0 0
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and studied some approximation properties.
From [25, page 69], the definite g-integral in the interval [0,a],a > 0 is defined as:

/0 f@)dgx =(1—q)a Y ¢’ (g’ a).

Jj=0

Later, Sharma [32] investigated the g-analogue of these operators given by

+12 & e

S 0 pugea () / e ka@) f(O)dgt, (12)
[”]q k=0 0

g in| ko In] nk [n]
Pn,k,q(x) = [n]g 4q |:k:|qx ([n +(i]q —x)q , XE |:0, [n+i]qi|

In the present paper, first we obtain the order of approximation of the operators
defined by (1.2) by means of the modulus of continuity and the Lipschitz class. Then
we proceed to define the bivariate generalization of these operators and investigate
their rate of convergence with the help of the moduli of continuity and the K- func-
tional. Lastly, we introduce the associated GBS operators and discuss their degree of
approximation by means of the mixed modulus of smoothness.

(Lngf)(x) =

where

2. DIRECT RESULTS

Lemma 1 ([32]). For the operators given by (1.2), the following equalities hold:
) (LpgD(x)=1;

.. _ [n]q qlnlgx
i) (Lngh) () = 7 Hgln+2lg  n+2ly
["]q 4.2 q3x[n]q +q(1+ 2q)x[n]q

1ii) (Ln,qtz)(x) =

b+ 2gln +3lg bt-1la
[2]4[n]q
+ [2;:+1]5
Consequently,
_ ~ B [n]q qinlg—[n+2lq
D (Lngt=0)0) = 7= 1gln +2]4 TR
214[n]7

i) (Lng (1 =) () = £ — 120+ 2l + 3lq
q>[n)Z +q(1+2¢)[n]; —2[n]4[n + 3],
( [n+ 1]gn +2]g[n +3]q )
N (q4[n —1]4[nlg —2q[nlq[n +3)q + [n + 2)4[n + 3]q)x2‘
[n +2,0n + 3,
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Lemma 2. For the operators given by (1.2), the following equality holds

a0 ) = G+ 2lg i + 31l + 4lg i1 + 31g

—|—q9x3(1 —q)2(8xq6 - 1lxq5 —q4 + 3xq4 + 4q3 —4xq3 + 6q2 —6xq2 +4q—4xq + 1)[n];
—qsxz(—l —3q —{-qlzx3 + 3q11x3 + 3q10x3 + 12xq2 —36xq8 +4xq + 15xq3 + 8xq6

~{x4q14(1 —q)*[n1}

+ 6xq5 + 4xq4 - 19q5x2 - 17q6x2 + 74q10x2 + 53q8x2 - 26q11x2 —746]9x2 - 8q3x2
—6¢2x%2 +9¢*x? +2xq° —3x¢'% —7¢4% + 4¢® - 743 + 3¢ + 6¢4° —2¢* + 2q7)[n]2 + (9([11]2)} .

In what follows, let (¢»)x,0 < g» < 1 be a sequence satisfying the following con-
dition
i g = 1.
Remark 1. Let (g5 )n,0 < gn < 1 be a sequence satistying the following conditions
lim g, =1, lim ¢, =c, c €[0,1).
n—00 n—>oo

By simple computations, we have
lim [n]g, (Ln,g,( —x))(x) =1—(c+ 1)x,
n—>oo
lim [n]g, (Ln.g, (t —x)*)(x) = 2x(1 —x),
n—o00
lim [n]7 (Ln.g, (1 —x)")(x) = x*(1—x)(7x*> = 7x +5).
n—00 n ’

3. MAIN RESULTS

Next we assume that C [0, [n[i]lq]q] is the class of all real valued continuous func-
[n]q

, m] endowed with the norm |[|.|| defined as

1A= sup  |f(X)].

xE[O,%}

tions on [0

Lemma 3. For each f € C[0, ﬁ] we have ||Ln.o(£)]] < || £I.

Proof. Using the definition (1.2) and Lemma 1, the proof of this lemma easily
follows. Hence, the details are omitted. O

For f € C|0, %], the Steklov mean is defined as

h h
4 (2 (2
frn(x) = h_2/ / Rf(x4+u+v)— f(x+2(u+v))|dudv. (3.1
0 Jo
The first and second order modulus of continuity are respectively defined as

o(f.8) = sup | f(x+u)— f(x + )|

[n]
x,u,ve[o, [nil"]q },Iu—vlsS
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and
w2 (f.8) = sup | F(x+2u)=2f(x+u+v)+ f(x+2v)], §>0.
x,u,ve[O,%]Ju—vES

Lemma 4. The Steklov mean fy(x) satisfies the following properties:

D |[fa= Fll = w2(f. 1),

ii) If f is continuous, then f). f,/ € C [O’ %} and

5
1 fxll clo.pl ]_Ew(f,h)» e clopt]= wz(fh)

=92

Theorem 1. Let f € C|O0, [n[i]i’]”qn |. Then for each x € [0, [n[i]f]"qn |, we have

1 142x 1
|(Ln,g, )(x)— f(x)] _Sw(f, \/[n+2]qn)(\/[n+2]qn) +a)2(f, ,/[n+2]qn)

[z+q(%ﬂm4ummfo%mmm+ﬂ%+m+m%m+ﬂ%)#

2 [l’l + 3]‘1/1

+ (ql:"l)[n]?]n +qn(l +2Qn)[n]2n —2[”]qn [n +3](1n )X [2]‘111 [n]én §:|
[n+1lg,[n+3lq, [n+ 1]2,, [n +3]g,

Proof. Using the Steklov mean fj defined by (3.1), we may write

[(Ln.gn S)(x) = f(2)] =
< (Lngn (f = )|+ (L g, (fn = S (N )|+ [ fn(x) = f ()],

Using Lemma 3 and Lemma 4, we have

|(Lnga (f = )| = M1f = full < w2(f-h).

Now, by Taylor’s expansion, we have

(3.2)

fun=nuruwwwﬁm+LE—Mﬁﬂmw
(Lo i — SN ] = 1L g (¢ =) LGN
Ly g, (/xt(t —u)fh”(u)du) (x)
< I Lingy = )|
+nﬁﬂum%¢[v—mmmxm

= 1 /ulll(Ln.g,t =) (X)] + %HthH(Ln,qn (t —x)%)(x).
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Applying Lemma 4, Lemma 1 and choosing & = /[n_-}-Z]q , we get the required
result. U

Let us assume that §, 4, (x) = \/Ln,qn ((t—x)?)(x).

Theorem 2. If f has a continuous derivative [’ and w(f',8) is the modulus of

continuity of ' on [0, [n[i]l"]”q |, then

(L)) = F GO < M [tin gy (O] +0(F 52, (x))(l +ona, (x)),

where M is a positive constant such that | f'(x)| < M,x € [0, %} and

_ (nlnlg, —[n+2]q, [n]g,
Hman () = ( 1t 20g It g+ 2, ) G-

Proof. On applying the mean value theorem, we get

fO—=fx)=@—x)f"¢)
= (t=x)f'x)+ (=) (f'¢) — f(x)).

where £ lies between x and ¢. Using the definition (1.2) and the Cauchy-Schwarz
inequality, we have

|(Lng, 1)) = FOI = 1f (L g, (t = X))(X)|+ q"Zq Pn kg (X)

]Qn

[nlgn

1 1lgn , ,
x f Do (@Dt — x| 1) = £ (0)ldgy
0

< M“,Ln qn(x)l + [ ] qn Zq pn,k,qn(x)
dn

[nlgn

i ,(l=x]
S o pn,k,qn(‘]nt)w(f,‘g) 5 +1 |t_x|dqt

'8
a)(j; )(Lnﬂn(t_x)z)(x)

+0(f'8)y (Lng, (1 =) ().

On choosing § := 8,2,’ g, (%), we get the desired result. O

< M|pin.q, (x)| +

Szasz [36], considered the Lipschitz type space defined as:
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—v|&
Lipy(§) := fEC[O,OO)i|f(l)—f(x)|§Mf|t—x|§;Wherer
(t+x)2

is a constant which depends on f, ¢ € [0,00), x € (0,00)¢,

where 0 < § <1 and r € (0, 1], to establish the uniform convergence of the Szdsz
operators for functions in this space.

For r € (0,1] and M > 0, we define an analogue of this space in our case as
follows:

Lipigi= | £ e[o bl 70— r < e

S Ui U |

We observe that we get only pointwise approximation due to the presence of x in the
error estimate of (L, 4, f)(x)— f(x), while in the case of Szasz operators [36], it
turns out that this x gets cancelled leading to the uniform convergence of the operat-
ors.

lt—x|"
(t +x)r/2’

Theorem 3. Let f € Lipy,(r). Then, for all x € (0, [n[z_]—{’]”qn] we have

82 r
|(Ln,g, [)(x)— f(x)] = M(%(x))

Proof. Let r € (0, 1], applying the Holder’s inequality for integration and then for
summation with u =2/r and v =2/(2—r), and Lemma 1, we have,

|(Lng, /)X) = f(X)]

[n]
n+1 n dn
<

7 3" P (9 L ka0 = £, 0

qn
[I’l + 1 q" - [n[nllq]rc])n u %
= [n]q an Pn k,qn( ){(/ |f(t)_f()€)| pn,k,qn(QnI)dqnl‘)

[nlgn 1

[n+1lgy v
X pn,k,qn (an)dqnt
0
[”]QH

1/u
S(Zuq;"pnkqn(x) / G f(x>|“pnkqn(qnz)dan)

k=0 [ ]Qn
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[n+1]7, Gaim Ly
X (Z n—qqn Pn.k.qn (x)/ Pn.k.qn (Qnt)dqnt)

k=0 g,

[n ](In
M " [n+1]2n ZESW 1/u
( E qdn pn Jkqn (x)/ (t_x) Pn.k.qn (f]n[)dqnt)
k=0

= (x)r/Z [n]QM

:M{ ”q”(x)}

X

Hence, the proof is completed. O

4. THE CONSTRUCTION OF OPERATORS FOR THE BIVARIATE CASE

In this section, we introduce the bivariate case of the generalized Durrmeyer type

operators (1.2). Let /; = [0

(n)lan;
’ [n +1]qn ]
be sequences in (0, 1) such that 11rn qn = 1. For I = I x I, let C(I) denote

J = 1,2. Inwhat follows, let (¢»,). j = 1.2,

the space of all real valued contmuous functions on / with the norm || f||c (1) =
SUp(x,yyer |/ (x,y)|. For f € C(I), the bivariate case of the operators given by (1.2)
is defined as:
(Lnynasgn, an, (X, ¥) = 4.1)
2
[21+ 11, [2+ 1]%2

Z anl Dnk Py ks, (%) P ko, (V)

[nl]q;'[l [ qnz _Okz 0
n1lan, n2lgn,
i an, [ T2+ Tan,
X/t o / o Prykign, @nit) Prsko.gu, n28) S (2.5) dg,, 1 dg,,, s
= s=

Lemma 5. Let ¢;j(x,y) = x'y/, (i,j) € NU{0} x NU {0} withi + j <2. For
the operators given by (4.1), there hold the following equalities:

1) (Lnl;n2’%11’51n2€00)('x’y) = 1’

[nl]q f]nl[nl]q x
. L ’ _ ny ni :
11) ( ﬂl,n2,Qn1,anelo)(X y) [nl + 1]qn1 [nl —|—2]qn1 [l/ll +2]q”1

[nz]qn2 qn2 [nZ]qnz Yy .

5 (L y) = ;
iii) ( nl,”Z;an‘]nzeOl)(x y) [”2+1]qn2 [”2+2]qn2 [n2+2]qn2

[nl]qn] 4 2
ni—1 X

[n1+2]qnl [n1+3]qnl {[ 1 ]f1n1qnl

+Qr?l’]x[nl]qiql +QV!1(1+2qn1)x[nl]qn1 (1+Qn1)[”l]qn1 }

[n1+1]qnl [n1+1]qnl

iV) (L” 1,12:9n1s9n, ezo)('x’ y) =
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[”2]qn2
[n2+2lg,, [n12+3]g,,
N s Y [12) g, +Gny (14 2Gny) ¥ [12)g,, (14 qny)[n2lg,, }

[n2+ I]an [no + 1]2’12

2

V) (Lnlanquﬂl 7qn2602)(x’ y) = { [nz_l]qﬂ2q22y

Next, we state Korovkin type theorem, given by Volkov [37]. With the help of
this theorem we study the convergence of the sequence (Ln,,nz,q,,.q0, /) (¥, ) t0
the function f(x,y).

Theorem 4 ([37]). Let J1,J> C R be compact intervals of the real line and let
{Emnf} be asequence of linear positive operators applying the space C(Jy x J2)
into itself. Suppose that the following relations

i) Em,n(l;X,Y) =1 +am,n(x’y)»

ii) Em,n(l;X,Y) =X +bm,n(x7y),

iii) Em,n(S;xay) =)y +Cm,n(x7y),

iv) Em,n(t2 +S2§x’y) = x? +y2 +dm,n(x’y)a
hold, for each (x,y) € J1 X J3.
fthe sequence {amn (X, )} {bn (6, YD} {emn (. ¥) b A (x, )} converge to zero
uniformly on J1 x Ja, then the sequence {En, , [} converges to f, uniformly on
J1 X J, foreach f € C(J1 x J3).

Remark 2. In view of Theorem 4 and Lemma 5, it easily follows that for each
Jfec),
llm (Ln17n27qn]:q112f)(x7y) = f(x’y)

ny,n—>00
uniformly on /.

In the following we give some numerical results which show the rate of conver-
gence of the operator Ly n,,g,, .44, / to certain functions using Maple algorithms.

Example 1. Let us consider f : R> - R, f(x,y) = x2y% +2x%2y —3y2. The
convergence of the operator Ly, n,.g,,,4,, ./ to the function f is illustrated in Fig-
ure 1 and Figure 2, respectively for n1 = ny = 10,g5;, = gn, =0.5and ny =n, =
100,¢n, = qn, = 0.9, respectively. We remark that as the values of n; and ny in-
crease, the error in the approximation of the function by the operator becomes smal-
ler.
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0.3
=N o ({]'5{1.4
v 07 07"

1.8 -
0.9 po"F

FIGURE 1. The convergence of (Ln;,ns,g,,.,4n, /) (X, ¥) 0 f(x,y),
for gn, = qn, = 0.5 (red f, blue Lny 240, any)

FIGURE 2. The convergence of (Ln;,ns,g,,,4n, /) (X, ¥) 0 f(x,¥),
for gn, = qn, = 0.9 (red f, blue Ln; n;.,9,,.qn,)

If Jy,J> C R are compact intervals and f € R71</ 2, the modulus of continuity
w(81,87), for any 67 > 0,85 > 0 is defined as

(81,62) = sup | f(x1,y1) = f(x2, y2)| : [x1 = x2| <681,]y1 —y2| <82¢.
(x1,¥1),(x2,y2)€J1 xJ2
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In what follows, let
1/2 1/2
oy g, (1) = ((Lm,nz,qnl o —x)z)(x,w) _ ((Lm,qnl 0 —x>2>(x>) ,
and

1/2 1/2
b2 0) = (L 4 6300 ) = (Linany6=9D0)
Next, we recall the following Shisha-Mond theorem [33].

Theorem 5 ([33]). Let J1,J2 C R be compact intervals, B(J1 X J) = {f €
R7Y2: fis bounded on Jy x Jo} and let E : C(J1 x J2) — B(J1 x J2) be a linear
positive operator. For each f € C(J1 X J3), (x,y) € J1 x Jp and any §1 > 0,65 > 0,
the following inequality

[E(f:x, )= fO, ) 21 INEM:x, y)—1]

+FLEWx, ) + 8T VEWx, p)E((t —x)2x,9) + 8 ' VE(Lix, y) E((s — y)%: X, )

+8718 T E(Lix, p) VE((t —x)%:x, y)E((s — y)%:x, y) { 0(81.62)
holds.

Theorem 6. Let f € C(I) and (x,y) € I. Then the operator Ly, n,, sat-

isfies the following inequality
|(Lntnzgn, an, S 9) = f )| < 406y g, ()2 8020, (¥))-

Proof. Applying Theorem 5 and Lemma 5, and choosing 81 = 5,4, (x) and
82 = 6ns,q,, () We get

dn 1 ,an

|(Lnynagng any S 3) = f(x,9)] = { L+ 8, g, () \/(Lnl,nz,qn1 any (1= X)?)(x.y)

+ 8;21,‘012 (y) \/(Lnl SN2,qn1 9n, (S - y)Z)(x’ J’)

+ 8;11,%11 (X)S;zl,q:lz (y) \/(Lnl S12:4n 1 qny (l - X)Z)(x, y)(Lnl,nz,in no (S B y)Z)(x, y)}
X W8 y,gn, (X): 82,0, (¥))

Hence, we get the required result. U

For f € C(I) and 6 > 0, the first order complete modulus of continuity for the
bivariate case is defined as:

af:8) =sp {1109~ £ 3|09, (e, ) € 1 and =7+ (=2 <.
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Further, the partial moduli of continuity with respect to x and y are given by

01(/:5) =sup{|f(x1,y)—f(xz,y)|:y € I and |x1 —xa| 58},

and

w02(:5) =sup{|f<x,y1)—f(x,yz)| xeli and |y1—y| 58}.

Theorem 7. For f € C(I), there holds the inequality
|(Ln1,nz,qnl,qn2 N y)—fExnl= 2w (f;8n1,q;11 (x)) + wZ(f;‘gnz,qnz ().

Proof. Using the definition of partial moduli of continuity, Lemma 5 and the
Cauchy-Schwarz inequality, we have

I(Lny sz sany, S)Y) = S = (Lnynogny g, | (08) = F(x 9)D(x, )
= (Lnl,nz,qnl,qn2|f(t’s)_f(t?y)|)(x’y) +(Ln1,n2,qn1,qn2 |f(tvy)_f(xﬁy)|)(x’y)

1
= a)Z(f;‘snz,qnz |1+ —(Lnl,nz,qnl sy ls—yD(x.»)
8”2,Qn2 (y)

+01(f58n1,40, (X)) {1 + (Lnynz.any an, |t —xl)(x,y)]

8n1,qnl (x)

1 1/2
< 02(f:8nz,4n, (V) |:1 + m ((Lnl,nz,qm any (8 —y)2)(x,y)) :|

1 ’ 1/2
Ly »n _ ! 7
5’11,11"1 (X) (( 1:12,4n sqny ([ X) )(x y)) ]

from which the required result is immediate. U

+w1(f;8n1,t1n] (x)) |:1 +

4.1. Degree of approximation
In this section, let us assume that lim ¢g,; =1, j = 1,2. We study the degree of
nj—oo
approximation for the bivariate operators (4.1) by means of the Lipschitz class.
For 0 <« <1 and 0 < 8 <1, we define the Lipschitz class Lipps(«, ) for the
bivariate case as follows:

|f(t.5) = f(x.9)| < Mt =x|*|s = y|P, forevery (t,5), (x,y) € I.
Theorem 8. Let f € Lipys(a, B). Then, we have
[(Lnynagn, any )X 3) = Fx. ) = M8y, 4 ()C)éSffz,qn2 ).
Proof. By our hypothesis, we may write

|(Lnynagny sgny, J)X D) = F )] < (L nagnyan, | (05) = f(x, ) D(x,p)
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< M(Lnynzgn, an, 1t —x[¥s—ylP(x.y)

= MLy nsdn; sy [t =%V Ly nogn, g 15 = YP)Y ).

2 2
Now, using the Holder’s inequality with u; = —, v; = 3
o -«

d 2

ana Uy = —, vy =
p

, and Lemma 5, we have

I(Lnynaugn, an, S ¥) = f(x, )]
< M{(Lny oy any =2V (L gy gy D ()
<ALy iz, ny S = DO (Lns gy, DO
= M3, g, (3, 4 ().
Thus, we get the desired result. ([l

2
2-8

Let C1(I) be the space of functions f(x,y) whose first order partial derivatives
are continuous on /.

Theorem 9. Let f € C1(I). Then, we have
((Lnynasgnyany S 9) = LOD = fillengn, (4 + 5l e@ySna.gn, 0)-
Proof. For (t,s) € I, we have

t s
ft,s)— f(x,y) :[ f’(u,s)du—i—/ f(x,v)dv.
x y

Applying the operator (Ln;,ns,g,,.,qn,-)(X,y) on both sides of above equality and
using the Cauchy-Schwarz inequality, we get
)

t
I(Lnl,nz,qnl,qnzf)(x,y)—f(x,y)lS(Lnl,nz,qnl,qn2 / Ju(u,s)du
X

S
+(Ln1,n2,q,11,qn2 / fJ(m)dv)(x,y)
y

< felle@(Lnygn, 1t =xD) + | 51l (Lnzgn, Is =YD ()

1/2 1/2
<11/ ((Lm,q,,l ( —x)z)(x)) A e ((an,qnz (s - y)z)(y))
Hence, we get the required result. ([l

Let C2(I) denote the space of functions f(x,y) whose second order partial de-
rivatives are continuous on /, endowed with the norm
cu ))

2 . B

af af

Ul = N1 f llea + . +"+
C2(I) ) Z 9xi o dy!

i=1
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The Peetre’s K-functional of the function f € C([) is defined by
K(f;86)= inf — +4 ,6>0.
(f:6) gecz(z){Hf glleay +8lIgllc2ay

Also, from [12, pp.192] it is known that

K(f:8) 5M{osz(f;ﬂ)+min(1,8)||f||cm}, 42)

holds for all § > 0. The constant M in the above inequality is independent of § and
fand @, (f; V/8) is the second order modulus of continuity for the bivariate case.

Theorem 10. Let f € C(I). Then for all ny,n, € N and each (x,y) € I there
exists a constant € > 0 such that

_ 1
Lo g D =1 €82 15 o a0 )

Cninzqn, i, (x,y)
4

+min (1, )Hf”C(I)% +a)(f’ \/Wm,nz,qnl,q@ (X,y)),

where

[nl]qn,(l‘i‘inx[nl+1]qn,) 2
Wnl,nz,qnl 4 7= ( [n1+ 1]qn1 [n1+ 2]4111 - )
[n2]qn2 (14 gn,y[n2 + 1]qn2) 2
( [n2+1]g,, 12 +2q,, - ) ’

and

oy sny 2 ¥) = 83, g, () +80, 0 (V) + Vi magu, gy (X 7).

Proof. First, we define the auxiliary operator
(L:;l 7n2aqnl aqn2 f)(x7 y) = f(x’ y) + (Lnl 5n2aql’l1 9q’12 f)(x’ y)

[nl + 1]‘1/11 [nl + Z]in ' [n2 + I]an [n2 + 2]%12

Applying Lemma 4 it is obvious that
(L;';lanZaqnl sdny 1)(x’ y) = 1’ (L;I,nZaqnl ,ant)(x’ y) =X, (L:IanZaqnl ,qnzs)(x’y) = y’
and hence
(L:;l ,nz,in ,¢1n2 (t - x))(x’ y) = O = (L;:l Jl25f1n1 ,llnz (S - y))(x’ y)
Further, for f € C(I), we have (see also Lemma 3)

L7 magny amy I Nlea) =311 ew)-
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Let g € C2(1) be arbitrary. By Taylor’s theorem, we have

32
g(t.9) —g(x.y) = B8 )+/(r— ) PB4y

2
3g(x y) y)+[ (5— )3 g(x V) .
dy

Applying the operator L dnydny O0 both sides of the above equation, we get

82
(L"] nzqnlqnzg)( y) g(X y) ( nisn2.q9n qnz(/ (t g( y) ))(X»J’)

9%g(x,v
+( n102,4n an([ (s—v)——>— g( ) ))(X,J’)
For simplicity, we set

7y = [nl]qm (1+ [n —Jrl] X)
1 [n1+1]qm[n1+2]%1 qni 1M1 qny

and

[nz]‘Inz

7y = 1+ n +1 n .
2 [n2+1]qn2 [n2+2]qn2( Gny[n2+1]g 2)’)

Then,

|(Ln1 nzqnl qn2 (t’s))(x’y)_g(x’y)l
! Pgu.y)
SL"l,nz,in,an( / (I_M)szdu‘)(x’y)"'

22 82
y

2
Ly g samy (€~ 02 3) + (1 —x)z} lelleza

“ Pgu,y)
/x (Zl —M) T

K} 32 ,
y

|

+ (z2—v) dv

IA

+

{(Lnl,nz,qnl oy (5= ) + (m—y)z} lelle2e)

82y ()48, (y)+wnl,nz,qnl,qn2<x,y>)||g||czm

= Cnl,nz,qnl,qn2 . nlglle2ay-

Hence, we have

((Lnynoany sy S (€)X 3) = f D S Ly s g, g, — 8D D)
g V)= F e DNHILry g, 00, &) Y)= 8V H]f(21.22) = f(x. )]
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< (17 =811+ Cnp o s eV lellc2aty ) + 0 5 Vi 7))

Taking the infimum on the right side over all g € C2(I), we get

Cn sN2,9n49n (x’y)
|(Ln],n2,q,,l,qnzf(r,s))(x,y)—f(x,y)|f41<2(f, 112t iy )

4

+w (f, \/Wnl,nz,qnl Ao (X’Y))-

Now, using the relation (4.2), we get the desired result. g

5. CONSTRUCTION OF GBS OPERATORS OF
¢-BERNSTEIN-SCHURER-DURMEYER TYPE

Bogel was the first person who proposed the concepts of B-continuous and B-
differentiable functions in his papers [9] and [10]. After that Dobrescu and Matei
[17] showed that any B-continuous function on a bounded interval can be uniformly
approximated by the boolean sum of bivariate generalization of Bernstein polynomi-
als. For detailed history of the work in this direction we refer the reader to some of
the papers in this direction (cf. [3], [6], [7], [19], [34] and [35] etc.).

Next, we recall some definitions which will be used in this section.

A function f : I — R is called a B-continuous (Bdgel continuous) at
(x0,y0) € I if

lim  Af[(x,y):(x0.y0)] =0,
(x,y)—>(x0,y0)

where Af[(x,y);(xo0,yo)] denotes the mixed difference defined by
Af[(x, )i (x0, yo)l = f(x,y)— f(x,y0) — f(x0.¥) + f(x0. yo)-

The space of all B-continuous functions is denoted by Cj (/).
A function f : I —> R is called a B-differentiable (Bogel differentiable) function
at (xo, yo) € [ if the limit
Af(x,y): (x0. 0]
(x,)—=(x0,50) (X —x0)(¥ — yo)

exists finitely.

The limit is called the B-differential of f at the point (x¢, y¢) and is denoted by
Dp f(x0, yo) and the space of all B-differentiable functions is denoted by Dy (1) i.e
Dyp(I)={f:1 — R|Dp f exists}. The function f : I — R is called B-bounded on
[ if there exists M > 0 such that|Af [(z,s); (x, y)]| < M, for every (x,y),(¢,s) € I.

Throughout this paper By, (1), denotes all B-bounded functions on / — R equipped
with the norm

Ifllp=""sup [Af[(.5):(x. 9]l

(x,»),(,5)el
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The mixed modulus of smoothness of f € Cp (1) is a function w,,;xeq : [0,00) X
[0,00) — R defined as

Omixed (f:01,82) := sup{|Af [(t.5): (x, ]| : |x =] < b1.|y —s| <82,

for all (x,y),(t,s) € I and for any (§1,62) € (0,00) x (0,00).
Let us assume that lim ¢n,;, =1, j = 1,2. For f € Cp(I), the GBS operator

n;—>0o0
Tnl,nz,qn1 dn, associated to Lnl,nz,qnl n, 18 defined as:
(Tnl s12,qnq9ny f)(x’ y)

[y +10G, I2+117, 2 72
: “ky —k
= - DD dny s Pry ke, ) Pra kg, (V)X

n n
idan,  I2lan, 220500
[Hllqnl [”2](1n2
[ny+1gn [na+1gp
L s iy 61) Pk s L6504 £ 0. )= 0250 g a5

G.D

1 1 :
_ = 1 — —, the comparison
1 I ny d
f (green) and its GBS type function
Th1n2ugn, san, | (yellow) to f(x,y) =x2y2 +2x%y —3y? (red) is illustrated in Fig-
ure 3. We remark that the operator Ty, n5,4,,,4,, 81Ves a better approximatipn tk.lan
the operator Ly, 5,9, 44, 10 the Table 1 we computed the error of approximation
for Ly, 2oy s and Tp, 2.y Sy A certain points.

Example 2. For n1 = ny =10, gy, =

of convergence of the function Ln,,ns,q,, ,qn,
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FIGURE 3. The convergence
Tn1,nz,qnl,qn2f to f (red f, green Ln\n2,n, .40, and yellow
Tnl,n2,Qn1;Qn2)

of  Lnynzgn,.an, f and

TABLE 1. Error of approximation for L, ,ns.4,, ¢, @04 Tny,n2.4, an,

X 1Y | Enynsgng g, ) Y) = S| Ty npgng an, ) 9) = f(x )]
0.9 0.1 | 1.0104585870 0.0811695820
0.8 | 0.1 | 0.7228289936 0.0026123070
0.7 | 0.1 | 0.4853680787 0.0472137716
0.6 | 0.1 | 0.2931805555 0.0732162679
0.9 ] 0.2 0.7971775100 0.0721465470
0.8 | 0.2 | 0.5423273555 0.0022888760
0.7 ] 0.2 | 0.3335672866 0.0406177704
0.6 | 0.2 | 0.1660020136 0.0614810095
0.4 ] 0.4 | 0.1556621432 0.0204867702
0.5]0.5|0.1116013761 0.0147209150
0.6 | 0.6 | 0.0665209683 0.0077961258
0.2 0.9 | 0.1925811440 0.1020977850
0.1 0.9 0.1899526260 0.0854533490

Theorem 11. For every f € Cp (1), at each point (x,y) € I, we have

|(Tn1,n2,qn1,qn2 f)(x’y)_f(x7y)| = 4wmixed(f;8n1,qn1 (x)a8n2,4n2 (y))
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Proof. By the definition of wpixeq(f:6n,,0n,) and using the elementary
inequality

wmixed(f;kl&ll ,128,,2) = (1 +A1)(1 +AZ) wmixed(f;&ﬂ ’8’12)7

where 41,42 > 0 and 8,,,8,, > 0, we may write

|AS(@.5): (x. ] = Omixea (f: ]t —x[.]s = y])

f(1+|t_X|)(1+|S_y|)wmixed(f;51a82)a (52)
51 82

for every (x,y),(t,s) € I and for any 61,62 > 0. From the definition of
Af[(z.5): (x, y)] we get
fCes)+ f@.y)=ft.s) = f(x,y) = Af[(.9): (x, y)].

On applying the linear positive operator (Lm,nz,qnl Ay J(x,y) to this equality and
taking into account the definition of operator Ty, 15,4, ,4., given by (5.1) we can
write

(Tnl,nz,qnl,anf)(x’y)
= f(x’y) (Ln1,n2,qnl,qn2€00)(an’)_ (Lnl,nz,qnl,qnzAf[(t»S)Q(x»y)]) (x,y).

Since  (Lny,nz,qn,,4n,€00)(x,y) = 1, considering the inequality (5.2) and
applying the Cauchy-Schwarz inequality we obtain,

|(Tny.naugny sany, ) Y) = F = (Lnyna.gny an, |AF[(2.5): (6, 0)]D (. 9)

= (Lm,nz,qnl dnsy eoo)(x,y) + 5;11 \/(Lm N2,qn 1 qny (t=x)?)(x,y)

S A Lz, sy (5 = DY) 06 ) 485 80 (Lo s gy sy (£ = 9D, 3)

s =9 ) e (F i )

from which the desired result is immediate, on choosing 8,, = &p, g, (x) and 8,, =
Sndn, (V)- O

For f € Cy (1), the Lipschitz class Lipps (§,y) with M > 0 and &,y € (0,1] is
defined as

Lipy (€y) ={f € Co (1) :1Af (1) 0] = M= s =y
for(t,s),(x,y)el}.

Our next theorem gives the degree of approximation for the operators Ty 15,1, .,
by means of the Lipschitz class of Bogel continuous functions.
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Theorem 12. Ler f € Lipy (€,y) then we have
(Tnl;nZ’in sdny f)(x’ y) - f (.X, y) = M8$1,qn1 (X)S}J':z,qnz (y)?

for M >0, &,y €(0,1].

Proof. By the definition of the operator (T, n5.,g,, ,qn, /) (X, y) and Lemma 4, we
may write

(Tny.n2uqny sty S )X Y) = (Lnynagn, san, F (6,8) + f(2.9) = f(2.9)(x, y)
= (Lnynagn, an, U (6 9) = AL [(2.8): (x, )]} (x. y)
= f (%, y) (Lny.n2.qn, an, €00) (X, Y)
— (Lny,naugn san, AF [(2,9):(x, D) (x, ).

By the hypothesis, we get
(Tm,nz,qnl,qnzf)(x,y)—f(x,y)) < (Lnynzsgn,sany 1A [(2,9): (5, )N (x, ¥)
< M (Lny oy ang 1= 3 s =317 (5. )
= M(Lny g, 1t = X)) Ly gy 15 = Y1)

Now, using the Holder’s inequality withuy =2/&,v1 =2/ (2—§&)anduy =2/y,vp =
2/(2—y), we have

(Lo rnin,any D)~ £ )| = M (L, € -52) 0) 7 (L, e0))

X ((an,qnz (s — )’)2) )2 ((an,qm2 eo)()’))(z_y)/z.

(2-8)/2

Now, applying Lemma 1, we obtain the degree of local approximation for B-
continuous functions belonging to Lipys (§,y). U

Theorem 13. Let the function f € Dy (1) with Dg f € B(I) and lim an) =
n; —00
aj €[0,1),j =1,2. Then, there exists M > 0 such that for each (x,y) € I, we have

|(Tny.n2sgny sany S Y) = f (2.

M B )
- 1/2 1/2 (||DBf||°°+wmixed(DBf§[nl]qnll/z,[nz]qn12/2 )
[nl]qnl nz]q}’lz

Proof. We need the following mean value theorem for B-differentiable functions
[11, Proposition 17¢]

Af[(.8):(x. p)] = (1 =x)(s=y)Dp f(§.n). [ € Dp(I),

with £ between x and ¢ and 71 between y and s.
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It is also evident that

Dp f(§.n)=ADp f(§.n)+ Dp f(§.y)+ Dp f(x.n)—Dp f(x.y).

Since Dp f € B(I), by above relations, we can write

[(Lny 12y gy A 1(2,8); Ce, D (3, )]

= |(Lnyn2,qn gy ¢ = X)(s = ¥)Dp f(E,m)(x, )

< (Ln1.n2,gnyan, |t = XI|s =Y [|1ADB f(E, ) (x, )

+ (Lnynasgn, an, |t = XIS =¥ DB f (€, )]

+|Dp f(x,m|+|Dp f(x,y))(x,y)

< (Lnyn2.gny g, ([t = X5 = Y|Omixea (DB [ & — x|, [n—y])
+311DB flloo (Lnynzugn, an, It = XI5 =y (x,»).

Using the property (5.2) of wpixeq, and applying the Cauchy-Schwarz
inequality we obtain

(T, ny )@Y = LG = Ly nyag g, AFLE9): (2 )D ()]
<3115 £ llooy/ Ly na gy any (0 = X)2(5 = )2 (. )

+ (Lnl’nZaqnl 7ql‘12 |t _xlls_yl)(x’y) +8;11(Ln1,n2511n1 aqn2 (t _x)2|s _y|)(x?y)

+8;21 (Lnl’”2’q"1"1"2 |t —x|(s —J’)z)(x,y)

85, 85t Ly sy sy (r—x)z(s—y)2)<x,y))wml~xed<DBf:8m«Snz)

< 31105 £ lloo )/ L nady any ((E = ¥)%(s = p)2) (x. )

(Y Carmman =026y )

87 Ly 2y (0= )25 = 9))(x. )
8 L sy iy (£ = P25 = V) (0, 7) (5.3)

+ 5;118;21 (Ln1,n2,qnl dny (t _x)Z(s - y)z)(x’y))wmixed (DBf§5n1 ,(Snz)-

We observe that for (x, y), (¢,s) € IZ and i, j € {1,2}

(Lnynygn, an, @ —%)* (s = y)*)(x.y) (5.4)
= (Lny gn, (1 =X)*)(X) (Lny.gn, (s = )*) ().
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If (gn;), j = 1,2, are sequences in (0, 1) such that g, — 1 and qu —aj(0=<a; <
1), as n; — oo, using Remark 1, it follows

M,
(Lnjgn, (t —x)?)(x) < ——— (5.5)
! [nj]qn]
M>
(Lnjgn, (t =) (x) < ———, (5.6)
! [nj]qnj
for some constants My, M, > 0.
Lets, = ———, and §,, = —L .
o = Gz A€ On2 = i
Then, combining (5.3)-(5.6), we obtain the desired result. ]
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