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NONOSCILLATION OF EVEN ORDER EULER TYPE
HALF-LINEAR DIFFERENCE EQUATIONS
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Abstract. We establish nonoscillation criteria for the even order half-linear difference equation
of Euler type
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where ˚.t/ WD jt jp�1 sgn t , p 2 .1;1/, n 2 N, k.ˇ/ denotes the falling factorial power (for
ˇ 2 R) and ˛;ˇ0;ˇ1; : : : ;ˇn�1 are real constants. For the two-term equation
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we establish the constant n;p;˛ such that the two-term equation is nonoscillatory if
ˇ0 > �n;p;˛ . The criteria are derived using the variational technique and they are further
extended via the theory of regularly varying sequences.
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1. INTRODUCTION

We consider the 2n-th order half-linear difference equation
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where n 2 N, ˚.t/ WD jt jp�1 sgn t is the odd power function, the real number p is

such that p > 1,
n
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is real-valued sequence for every j 2 f0;1; : : : ;ng and

r
Œn�

k
¤ 0 for k 2N. The phrase “half-linear” reflects the fact that the solution space
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is homogenous, but not additive. Further we consider the energy functional
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associated with equation (1.1), where N 2 N and a sequence fykg is from the set
Dn.N / (definition of this set will be recalled later). We focus on a special cases
of (1.1), namely on Euler type equation (1.2) and its extension (3.27). Consider the
Euler type half-linear difference equation
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where ˇ0;ˇ1; : : : ;ˇn�1 are real numbers and ˛ 2 Rn fp�1;2p�1; : : : ;np�1g. For
k 2 N and ˇ 2 R the symbol k.ˇ/ denotes so-called falling factorial power (see
[14, Definition 2.3]), which can be expressed as

k.ˇ/ D
� .kC1/

� .kC1�ˇ/

for k 2Nn fˇ� i j i 2Ng and ˇ 2 R, where � denotes the Gamma function defined
for t 2 Rn f0;�1;�2; : : :g. Recall that for t 2 .0;1/ we have

� .t/ WD

Z 1
0

e�sst�1 ds:

Furthermore, recall that for sequences fakg and fbkg of non-zero real numbers, we
write ak Ï bk as k!1 and say that the sequences fakg and fbkg are asymptotically
equivalent, if limk!1ak=bk D 1. Now, from Stirling’s formula

lim
t!1

� .tC1/�
t
e

�tp
2�t
D 1

we get the known relation � .kCˇ/
� .k/

Ï kˇ as k!1 (for ˇ 2 R), hence,

kˇ Ï k.ˇ/ as k!1: (1.3)

In this article, we focus on getting conditions (for the coeficients ˇ0;ˇ1; : : : ;ˇn�1)
which guarantee the nonoscillation of equation (1.2). We use the variational tech-
nique which is at disposal for general equation (1.1) by the results of article [3]. The
main result of [3] is formulated (in a slightly different form) in Theorem 3 in this
paper.

Our motivation comes mainly from the results for the continuous version of equa-
tion (1.2), i.e., for the differential equation

nX
lD0

.�1/n�lˇn�l

�
t˛�lp˚

�
x.n�l/

��.n�l/
D 0; ˇn WD 1; (1.4)



NONOSCILLATION OF HALF-LINEAR DIFFERENCE EQUATIONS 1139

where ˛ 2 Rn fp�1;2p�1; : : : ;np�1g. Denote

n;p;˛ WD
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Consider also the special cases

p;˛ WD 1;p;˛ D
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and n;2;˛ D
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The following results are known criteria for special cases of equation (1.4). In
[7, Theorem 1.4.4] it is shown that the second order equation
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˚.x/D 0 (1.5)

is nonoscillatory if and only if C1;p;˛ � 0 (for ˛ D 0 see the older result in [9]).
For equation (1.5) the number�1;p;˛ is the critical constant, i.e., the constant which
is the “borderline” (as for the parameter  ) between oscillation and nonoscillation of
equation (1.5). For the two-term 2n-th order equation
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C t˛�np˚ .x/D 0 (1.6)

we have so far only the following implication. Equation (1.6) is nonoscillatory if
Cn;p;˛ > 0 (for general ˛ see [4, Theorem 3.2], for ˛ D 0 see the older result in
[7, Theorem 9.4.5]).

If p D 2 then ˚.t/ D jt jsgn t D t . Therefore, equation (1.4) with p D 2 is the
linear differential equation. As a special case we get the two-term linear equation

.�1/n
�
t˛x.n/

�.n/
C t˛�npx D 0: (1.7)

In [13, page 132] (for ˛ D 0 see [11, pages 97-98]) it is shown that equation (1.7) is
nonoscillatory if and only if  C n;2;˛ � 0, i.e., the number �n;2;˛ is the critical
constant for equation (1.7).

The variational technique is at disposal (see [7, Theorem 9.4.4]) also for the con-
tinuous version of equation (1.1), i.e., for the differential equation
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In [4], we use the variational principle together with the Wirtinger inequality, which
enables us to show positivity of the energy functional associated with equation (1.8).
In the discrete case (in this article), to show positivity of the energy functional as-
sociated with equation (1.2) we use inequalities obtained by using Lemma 5. This
approach is different from the one in the continuous case, because we do not use any
discrete Wirtinger type inequality.
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In the linear discrete case it is known the following nonoscillation criterion (see
[8, Theorem 9]). The two-term linear difference equation
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k.2n�˛/
xkCn D 0 (1.9)

is nonoscillatory if n;2;˛C > 0. In (1.9) if we take k.˛�2n/ instead of 1
.
k.2n�˛/

then the proof from [8] of this criterion still works (by using (1.3)) with the same
result. Note that the constant �n;2;˛ is optimal (critical) for a slightly different type
of Euler linear difference equation, namely for equation (4.5) with � instead of
�n;2;˛ (see [10, Corollary 4.2]).

This paper is organized as follows. In the second section we rewrite equation (1.1)
into a difference system and then we define the concept of generalized zero for the
difference system and for equation (1.1) respectively. Further we define the concept
of nonoscillation of equation (1.1) and we give two variational lemmas. The second
section also contains two nonoscillation criteria, which plays important role in our
later proofs. The end of the section is devoted to recalling basic concepts from the
theory of regularly varying sequences. Section 3 presents two new nonoscillation
criteria for equation (1.2) and is supplemented by remarks on a generalization via the
concept of regularly varying sequence.

2. PRELIMINARIES

In order to define the concept of nonoscillation for general half-linear equation
(1.1), we need to define the concept of generalized zero for this equation. Further,
in order to define the concept of generalized zero for equation (1.1), we transform
equation (1.1) into a Hamiltonian type difference system.

Similar observations as in the previous paragraph hold also for the continuous case,
i.e. for equation (1.8) (instead of the concept of generalized zero we get the concept
of zero point of multiplicity n from the transformation of (1.8) into a Hamiltonian
type differential system; see [5]).

The following paragraphs (which lead as to the definition of generalized zero) are
modeled according to the article [3]. Let fxkg be a solution of equation (1.1). Set

u
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for k 2N, and note that the number vŒi�
k

can be expressed as
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for k 2 N and i D 1;2; : : : ;n. Then the sequence f.uk;vk/g is a solution of the
Hamiltonian type difference system
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where fBkg and fCkg are square matrix sequences of order n such that
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(
1 for j D iC1;
0 elsewhere.

For vector aD .ai /niD1, denote ˚.a/ WD .˚.ai //niD1 and ˚�1.a/ WD
�
˚�1.ai /

�n
iD1

,
where ˚�1.t/ WD jt jq�2 t is the inverse function of ˚.t/. The constant q is the con-
jugate number of p, i.e., q WD p

p�1
.

Now, we consider the general matrix difference system

�uk D AkukC1CBk˚
�1.vk/; �vk D Ck˚.ukC1/�A

T
k vk; (2.3)

where fBkg and fCkg are symmetric matrix sequences and fI �Akg is an invertible
matrix sequence (symbol I denotes the identity matrix). Let m 2 N, then we say
that an interval .m;mC 1� contains the generalized zero of a solution f.uk;vk/g of
system (2.3) if

um ¤ 0; umC1 2 Im.I �Am/�1Bm and uTmB
�
m.I �Am/umC1 � 0;

where B�m denotes the Moore-Penrose pseudoinverse of matrix Bm and Im denotes
the image.

In order to define generalized zero for equation (1.1) we proceed as follows. Let
m 2 N and m � n. We say that a nontrivial solution fxkg of equation (1.1) has
a generalized zero in the interval .m;mC 1� if the solution f.u�

k
;v�
k
/g1
kDn

of cor-
responding system (2.2) has a generalized zero in .m;mC 1�, where .u�

k
;v�
k
/ WD

.uk�nC1;vk�nC1/ for every k 2 N such that k � n; and the sequences fukg and
fvkg are given by relations (2.1). The shift ensures that our definition will be the
same as the one in article [3] (the same shift is used for the linear case in [1, Re-
mark 5 (ii)]), where it is considered equation (1.1) with xkC1�nCl instead of xkCl
(such equation is equivalent to our equation (1.1)).
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Now we rewrite this procedure explicitly in terms of equation (1.1). For a real
vector d D .di /niD1, we have d 2 Im.I �Am/�1Bm if and only if there exists the
vector c D .ci /niD1 such that

d D .I �A/�1Bmc or equivalently (by a direct computation) di D cn
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which is the i -th component of u�m. For i 2 f1;2; : : : ;n� 1g we have xm�.i�1/ D
xm�.i�2/ D : : :D xm D 0, hence,

u�m D
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�T
:

Therefore the relation u�m ¤ 0 is equivalent with the relation xm�.n�1/ ¤ 0. Finally,
it can be shown that

B�m.I �A/D diag
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Hence,
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Definition 1. Letm2N andm� n. We say that a nontrivial solution fxkg of equa-
tion (1.1) has a generalized zero in the interval .m;mC1� if xm�.n�2/D xm�.n�3/D
: : :D xm D 0 (for n > 1),

xm�.n�1/ ¤ 0 and .�1/n�1r Œn�m xm�.n�1/xmC1 � 0: (2.4)

Note that in relation (2.4) the constant r Œn�m appears, but only the sign of r Œn�m is
important. This definition agrees with Hartman’s one in [12] and it also matches the
definition in [1] for the linear case.
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Definition 2. We say that equation (1.1) is nonoscillatory (at infinity) if there
exists N 2N such that N � n and no nontrivial solution of equation (1.1) has two or
more generalized zeros in .N;1/. Otherwise, equation (1.1) is called oscillatory.

Note that Definition 1 and Definition 2 agree with the definitions in [15] for the
second order equation (equation (1.1) with nD 1).

Before we formulate variational lemmas, we make another note on the linear case
(equation (1.1) with p D 2). System (2.3) with p D 2 reduces to the general lin-
ear Hamiltonian system. For linear Hamiltonian systems we have the Reid type
roundabout theorem (see [1]) which guarantees equivalence between nonoscillation
of equation (1.1) with pD 2, positivity of the energy functional associated with equa-
tion (1.1) with p D 2 and solvability of the so-called Riccati matrix equation associ-
ated with equation (1.1) with p D 2.

Similar remarks as in the previous paragraph hold also in the continuous case, i.e.,
for the equation
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lD0
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�
rn�l.t/x

.n�l/
�.n�l/

D 0

(see [18]).
Nonoscillation of an equation is equivalent to positivity of its energy functional

also for equations (1.1) and (1.8) if nD 1, i.e., for the second order half-linear equa-
tions (the proof for (1.1) with nD 1 is given in [15]).

Next, we formulate the variational lemma for the second order equation
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which is a special case of equation (1.1). Denote
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1
kD1 jyk D 0 for k �N Cn�1;

9m 2N such that m>N Cn�1 and yk D 0 for k �mg

for N 2N. Note that Dn.N /DD1.N Cn�1/ for N 2N, and Dn.N2/�Dn.N1/

for N1;N2 2N such that N1 �N2.

Lemma 1 ([15]). Equation (2.5) is nonoscillatory if and only if there existsN 2N
such that

F1.fykgIN;1/D
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k
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p
i

is positive for every nontrivial sequence fykg 2D1.N /.

For second order equation (2.5) we have the following two nonoscillation criteria,
which will be applied to equation (1.2) with nD 1.
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Theorem 1 (O. Došlý, P. Řehák [6]). Suppose that
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then equation (2.5) is nonoscillatory.
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equation (2.5) is oscillatory (see [15, Theorem 4] or [7, Theorem 8.2.14]).

Further note that if r Œ0�
k
� 0 for large k, then the constant� 1

p
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is critical.

Indeed, the condition
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implies that equation (2.5) is oscillatory (see [7, Theorem 8.2.15]).

Theorem 2 (O. Došlý, P. Řehák [6]). Suppose that r Œ1�
k

> 0 for large k,P1�
r
Œ1�

k

�1�q
<1 and

lim
k!1

�
r
Œ1�

k

�1�q
P1
jDk

�
r
Œ1�
j

�1�q D 0: (2.7)

Denote

Bk WD

0@ 1X
jDk

�
r
Œ1�
j

�1�q1Ap�10@k�1X
r
Œ0�
j

1A :



NONOSCILLATION OF HALF-LINEAR DIFFERENCE EQUATIONS 1145

If

liminf
k!1

Bk > �
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�
p�1

p

�p�1
and limsup

k!1

Bk <
2p�1

p

�
p�1

p

�p�1
;

then equation (2.5) is nonoscillatory.

In case of general (even order) equation (1.1), the variational relation presented
later in Lemma 2 is obtained from the following theorem.

Theorem 3 (O. Došlý [3]). Let N0 2 N be such that N0 � n and let N1 2 N be
such that N1 � N0C nC 1. If the interval .N0;N1C 1� contains two generalized
zeros of a solution fxkg of equation (1.1), then there exists a nontrivial sequence
fykg 2D1.N0/ such that yk D 0 for k �N1�nC2 and

Fn.fykgIN0�nC1;N1�nC1/D

N1�nC1X
kDN0�nC1

"
nX
lD0

r
Œn�l�

k

ˇ̌̌
�n�lykCl

ˇ̌̌p#
� 0:

Theorem 3 can be reformulated as follows. If we set N D N0�nC 1 and X D
N1�nC 1, then the condition N0 � n means that N 2 N and the condition N1 �
N0CnC1 is reduced to X � N CnC1. If we rewrite Theorem 3 in terms of such
N and X then we can easily obtain the following variational lemma (in Definition 2
we take N Cn�1 (instead of N ), which is obviously greater than or equal to n).

Lemma 2. Equation (1.1) is nonoscillatory if there exists N 2N such that

Fn.fykgIN;1/D

1X
kDN

"
nX
lD0

r
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k

ˇ̌̌
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ˇ̌̌p#
is positive for any nontrivial sequence fykg 2Dn.N /.

Next we recall the definition of regularly varying sequences and some of their
selected properties (see [2, 17]).

Definition 3. Let # 2 R. A positive sequence fakg is said to be regularly varying
(at infinity) of index # , if

lim
k!1

aŒ�k�

ak
D �#

for every positive real �, where Œt � denotes the integer part of t . The set of all regularly
varying sequences of index # is denoted by RV.#/. Further RV WD

S
#2R RV.#/

and SV WDRV.0/. Sequences from the set SV are called slowly varying.

Lemma 3. The following statements hold.
.a/ A sequence fakg belongs to RV.#/ if and only if there exists fLkg 2 SV

such that ak D k#Lk for k 2N.
.b/ If fLkg 2 SV and fKkg is such that Kk Ï Lk as k!1, then fKkg 2 SV .
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.c/ A sequence fakg 2RV.#/ if and only if there exists fLkg 2 SV such that
ak D k

.#/Lk for k 2N.
.d/ If fakg 2RV.#/, then fbkg 2RV.#ˇ/ for every ˇ 2 R, where bk D a

ˇ

k
for

k 2N.
.e/ Let fakg 2RV.#1/ and fbkg 2RV.#2/. Then fakbkg 2RV.#1C#2/.

Now, we give a few examples of the slowly varying sequences. Trivial examples
are positive constant sequences. A typical example is the sequence flnkg. Further
the sequences fKkg, fLkg and fMkg are slowly varying, where

Kk D

nY
iD1

.lni k/�i for k 2N; where ln1k WD lnk; lniC1k WD ln.lni k/

and �i 2 R for i 2NI

Lk D exp

(
nY
iD1

.lni k/�i
)

for k 2N; where �i 2 .0;1/ for i 2 f1;2; : : : ;ngI

Mk D
ln� .k/
k

for k 2N:

The next statement is very important for the extension of our results (Theorem 5
and Theorem 6) from the next section via the theory of regularly varying sequences.

Theorem 4 (Karamata type theorem [2, 17]). Let fLkg 2 SV . Then
k�1X
jD1

j #Lj Ï
k#C1

#C1
Lk as k!1

for every real # such that # > �1; and
1X
jDk

j #Lj Ï �
k#C1

#C1
Lk as k!1

for every real # such that # < �1.

3. NONOSCILLATION CRITERIA

Consider equation (1.2) with nD 1 and ˇ0 D  , i.e., the equation

��
�
k.˛/˚ .�xk/

�
Ck.˛�p/˚ .xkC1/D 0: (3.1)

Lemma 4. Let ˛¤ p�1 and Cp;˛ > 0. Then equation (3.1) is nonoscillatory.

Proof. If  � 0, then nonoscillation of equation (3.1) immediately follows from
Lemma 1. Alternatively, we can use the Sturm comparison theorem (see [6, 15]) for
equation (2.5). By this theorem, from nonoscillation of the equation
��

�
k.˛/˚ .�xk/

�
D 0 it follows nonoscillation of equation (3.1) for  � 0.
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Let  2
�
�p;˛;0

�
. We often use relation (1.3) without referring to it. We prove

the cases ˛ < p�1 and ˛ > p�1 separately. In the both cases we have
�
k.˛/

�1�q
Ï

k˛.1�q/ as k!1, because

lim
k!1

�
k.˛/

�1�q
k˛.1�q/

D lim
k!1

 
k.˛/

k˛

!1�q
D 1:

Furthermore we have k˛.1�q/Ï k.˛.1�q// for k!1. Hence,
�
k.˛/

�1�q
Ï k.˛.1�q//

for k!1. It holds that ˛.1�q/D� ˛
p�1

, hence, ˛.1�q/ > �1 for ˛ < p�1 and
˛.1�q/ < �1 for ˛ > p�1.

Let ˛ < p� 1. We verify the assumptions of Theorem 1 for equation (3.1). We
have

lim
k!1

�
k.˛/

�1�q
Pk�1 �

j .˛/
�1�q D lim

k!1

k.˛.1�q//Pk�1
j ˛.1�q/

D ˛.1�q/ lim
k!1

k.˛.1�q/�1/

k˛.1�q/
D 0:

(3.2)

Indeed, from the discrete l’Hospital rule we get
Pk�1

�
j .˛/

�1�q
Ï
Pk�1

j ˛.1�q/

as k!1, because limk!1
Pk�1

j ˛.1�q/ D1 for ˛.1�q/ > �1.
Further, from the limit comparison test,

1X�
k.˛/

�1�q
D1 and

1X
k.˛�p/ is convergent. (3.3)

Now we compute limk!1Ak . We have
1X
jDk

j .˛�p/ D�
k.˛�pC1/

˛�pC1
and

k�1X�
j .˛/

�1�q
Ï
k.˛.1�q/C1/

˛.1�q/C1
as k!1;

where the latter relation is obtained using the discrete l’Hospital rule. Hence,

lim
k!1

Ak D lim
k!1

24 k.˛.1�q/C1/
˛.1�q/C1

!p�135.�/k.˛�pC1/
˛�pC1

D
.p�1/p�1

.p�1�˛/p
: (3.4)

The inequalities

.p�1/p�1

.p�1�˛/p
> �

1

p

�
p�1

p

�p�1
and

.p�1/p�1

.p�1�˛/p
<
2p�1

p

�
p�1

p

�p�1
are equivalent (for ˛ < p�1) with the inequalities  >�p;˛ and  < .2p�1/p;˛,
respectively, and the inequality  < .2p�1/p;˛ holds for an arbitrary  2 .�1;0/.
Hence, by Theorem 1, equation (3.1) is nonoscillatory for  2

�
�p;˛;0

�
and ˛ <

p�1.
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Let ˛ > p� 1. Similarly as in the previous case, we verify the assumptions of
Theorem 2 for equation (3.1). By the limit comparison test we get

1X�
k.˛/

�1�q
<1;

and by the l’Hospital rule we have

lim
k!1

�
k.˛/

�1�q
P1
jDk

�
j .˛/

�1�q D lim
k!1

k.˛.1�q//P1
jDk j

˛.1�q/
D�˛.1�q/ lim

k!1

k.˛.1�q/�1/

k˛.1�q/
D 0:

Now we compute limk!1Bk . By the l’Hospital rule, we can verify that
1X
jDk

�
j .˛/

�1�q
Ï �

k.˛.1�q/C1/

˛.1�q/C1
and

k�1X
j .˛�p/ Ï 

k.˛�pC1/

˛�pC1

as k!1. Hence,

lim
k!1

Bk D lim
k!1

24 �k.˛.1�q/C1/
˛.1�q/C1

!p�135 k.˛�pC1/
˛�pC1

D
.p�1/p�1

.˛�pC1/p
:

The inequalities

.p�1/p�1

.˛�pC1/p
> �

1

p

�
p�1

p

�p�1
and

.p�1/p�1

.˛�pC1/p
<
2p�1

p

�
p�1

p

�p�1
are equivalent (for ˛ > p�1) with the inequalities  >�p;˛ and  < .2p�1/p;˛,
respectively. Hence, by Theorem 2, equation (3.1) is nonoscillatory for  2

�
�p;˛;0

�
and ˛ > p�1. The proof is completed. �

Note that we can prove also the following oscillation complement of Lemma 4
(see the text after Theorem 1). If ˛ ¤ p�1 and Cp;˛ < 0, then equation (3.1) is
oscillatory. We will not present the proof of this result in details since we do not need
it.

Remark 1. The previous lemma can be generalized in the following sense. Con-
sider the equation

��.fk˚ .�xk//Cgk˚ .xkC1/D 0; (3.5)

where ffkg 2RV.˛/, fgkg 2RV.˛�p/, ˛ ¤ p�1,  2 R and the sequences ffkg
and fgkg take the forms

fk D k
˛Kk; k 2N and gk D k

˛�pLk; k 2N (3.6)

where fKkg;fLkg 2 SV (see Lemma 3). We show that if Cp;˛ > 0 andKk ÏLk
as k !1, then equation (3.5) is nonoscillatory. We use the proof of Lemma 4
with the following modifications. The paragraphs with relations (3.2), (3.3), (3.4) are
replaced by the paragraphs with relations (3.7), (3.8), (3.9) below, respectively.
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Let  2
�
�p;˛;0

�
and ˛ < p�1. It holds that

lim
k!1

k˛.1�q/K
1�q

kPk�1
j ˛.1�q/K

1�q
j

D .˛.1�q/C1/ lim
k!1

k˛.1�q/K
1�q

k

k˛.1�q/C1K
1�q

k

D 0: (3.7)

Indeed, we have
n
K
1�q

k

o
2 SV and ˛.1� q/ > �1 for ˛ < p� 1, hence, by The-

orem 4, we get
Pk�1

j ˛.1�q/K
1�q
j Ï .˛.1�q/C1/�1k˛.1�q/C1K

1�q

k
as k!1.

Further, by Theorem 4,
1X
k˛.1�q/K

1�q

k
D1;

1X
k˛�pLk is convergent (3.8)

and
P1
jDk j

˛�pLj Ï � k˛�pC1
˛�pC1

Lk as k!1 for ˛�p < �1.
Now we compute limk!1Ak . We have

lim
k!1

Ak D lim
k!1

24 k˛.1�q/C1K1�qk

˛.1�q/C1

!p�135.�/ k˛�pC1
˛�pC1

Lk D
.p�1/p�1

.p�1�˛/p
:

(3.9)
Similarly in the case  2

�
�p;˛;0

�
and ˛ > p�1.

Now we formulate the lemma, which help us to estimate the summands from the
energy functional associated with equation (1.2).

Lemma 5. Letm 2N, ˛ 2 Rnfp�1;2p�1; : : : ;mp�1g and "0; "1; : : : ; "m�1 be
arbitrary positive real numbers. Then there exists N 2N such that
1X
kDN

h
k.˛�jp/

ˇ̌̌
�m�jykCj

ˇ̌̌p
C
�
"j �p;˛�jp

�
k.˛�.jC1/p/

ˇ̌̌
�m�j�1ykCjC1

ˇ̌̌pi
(3.10)

is positive for every nontrivial sequence fykg 2Dm.N / and for every j 2 f0;1; : : : ;
m�1g.

Proof. First, consider the equation

��
�
k.ˇ/˚ .�xk/

�
Ck.ˇ�p/˚ .xkC1/D 0; (3.11)

where ˇ 2 R, p 2 .1;1/ and  2 R.
By Lemma 4, equation (3.11) is nonoscillatory if  C p;ˇ > 0 and ˇ ¤ p� 1.

Choose an arbitrary " 2 .0;1/, j 2 N[f0g and ˛ 2 R n fp.j C 1/� 1g. Set ˇ D
˛�jp and  D "�p;˛�jp, then equation (3.11) becomes the equation

��
�
k.˛�jp/˚ .�xk/

�
C ."�p;˛�jp/k

.˛�.jC1/p/˚ .xkC1/D 0 (3.12)

and we have

Cp;ˇ D "�p;˛�jpCp;˛�jp D " > 0 and ˇ D ˛�jp ¤ p�1:
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Hence, by Lemma 4, equation (3.12) is nonoscillatory.
Now, let m 2N, ˛ 2 Rn fp� 1;2p� 1; : : : ;mp� 1g and "0; "1; : : : ; "m�1 be pos-

itive real numbers. Equation (3.11) with ˇ D ˛� jp and  D "j �p;˛�jp, i.e., the
equation

��
�
k.˛�jp/˚ .�xk/

�
C ."j �p;˛�jp/k

.˛�.jC1/p/˚ .xkC1/D 0

is nonoscillatory for any j 2 f0;1; : : : ;m�1g. By Lemma 1, for every j 2 f0;1; : : : ;
m�1g there exists Nj 2N such that the energy functional

1X
kDNj

h
k.˛�jp/ j�´kj

p
C
�
"j �p;˛�jp

�
k.˛�.jC1/p/ j´kC1j

p
i

is positive for every nontrivial f´kg 2D1.Nj /.
Denote N D maxfN0;N1; : : : ;Nm�1g, then we have D1.N / �D1.Nj / for j D

0;1; : : : ;m� 1. Note that for f´kg 2D1.N / we have ´k D 0 for k 2 f1;2; : : : ;N g.
Hence,

N�1X
kDNj

h
k.˛�jp/ j�´kj

p
C
�
"j �p;˛�jp

�
k.˛�.jC1/p/ j´kC1j

p
i
D 0

for every f´kg 2D1.N / and for every j 2 f0;1; : : : ;m� 1g such that Nj � N � 1,
i.e.,

1X
kDN

h
k.˛�jp/ j�´kj

p
C
�
"j �p;˛�jp

�
k.˛�.jC1/p/ j´kC1j

p
i
> 0

for every nontrivial f´kg 2D1.N / and for every j 2 f0;1; : : : ;m�1g.
Choose an arbitrary j 2 f0;1; : : : ;m�1g and an arbitrary nontrivial fykg 2Dm.N /.

Note that y1 D y2 D : : : D yNCj D : : : D yNCm�1 D 0. Then the sequence f´kg,
defined by the relation ´k D�m�j�1ykCj for k 2N, is nontrivial and it belongs to
the set D1.N /. Hence,
1X
kDN

h
k.˛�jp/

ˇ̌̌
�m�jykCj

ˇ̌̌p
C
�
"j �p;˛�jp

�
k.˛�.jC1/p/

ˇ̌̌
�m�j�1ykCjC1

ˇ̌̌pi
> 0

for every nontrivial fykg 2Dm.N / and for every j 2 f0;1; : : : ;m�1g. �

Remark 2. Due to Remark 1, Lemma 5 can be generalized in the following way.
Expression (3.10) is replaced by

1X
kDN

h
k.˛�jp/L

Œm�j �

k

ˇ̌̌
�m�jykCj

ˇ̌̌p
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C
�
"j �p;˛�jp

�
k.˛�.jC1/p/L

Œm�.jC1/�

k

ˇ̌̌
�m�j�1ykCjC1

ˇ̌̌p i
;

where
n
L
Œi�

k

o
2 SV for i D 0;1; : : : ;m and LŒm�j �

k
Ï L

Œm�.jC1/�

k
as k !1 for

j D 0;1; : : : ;m�1.
In the proof, equation (3.11) is replaced by

��
�
k.ˇ/Kk˚ .�xk/

�
Ck.ˇ�p/Lk˚ .xkC1/D 0; (3.13)

where ˇ 2 R, p 2 .1;1/,  2 R and the sequences fKkg and fLkg are from the set
SV such that Kk Ï Lk as k!1. Then it is easy to rewrite the rest of the proof.
Note that equation (3.13) is equation (3.5), where the sequences(

k.˛/

k˛
Kk

)1
nD1

and

(
k.˛�p/

k˛�p
Lk

)1
nD1

are slowly varying components of ffkg and fgkg (see Lemma 3), respectively.

Consider equation (1.2) with ˇ1 D ˇ2 D : : : D ˇn�1 D 0 and ˇ0 D  , i.e., the
two-term equation

.�1/n�n
�
k.˛/˚

�
�nxk

��
Ck.˛�np/˚.xkCn/D 0: (3.14)

Theorem 5. If
Cn;p;˛ > 0

and ˛ 2 Rn fp�1;2p�1; : : : ;np�1g, then equation (3.14) is nonoscillatory.

Proof. By Lemma 2 it is sufficient to prove that there exists N 2N such that
1X
kDN

h
k.˛/ j�nykj

p
Ck.˛�np/ jykCnj

p
i
> 0 (3.15)

for every nontrival fykg 2Dn.N /.
To prove inequality (3.15) we use inequalities obtained via Lemma 5. Therefore,

first we determine a set of n�1 positive real numbers. Recall that we have

p;˛ D

�
jp�1�˛j

p

�p
; p;˛�lp D

�
j.lC1/p�1�˛j

p

�p
and

n;p;˛ D

n�1Y
lD0

p;˛�lp

for l D 0;1; : : : ;n�1. Let " 2 .0;1/ be such that

" <min
˚
n;p;˛;Cn;p;˛

	
: (3.16)
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Define real numbers "1; "2; : : : ; "2n�2 by the recurrence relations

"2l�1 D
"2lC1

2p;˛�lp
; "2l D

"2lC1p;˛�lp

2lC1;p;˛� "2lC1
;

"2.n�1/�1 D
"

2p;˛�.n�1/p
; "2.n�1/ D

"p;˛�.n�1/p

2n;p;˛� "

for l D 1;2; : : : ;n�2. Condition (3.16) guarantees that the inequalities

p;˛�lp > "2l > 0; l;p;˛ > "2l�1 > 0

hold for l D 1;2; : : : ;n�1. Indeed, we have

n;p;˛ > " > 0 implies p;˛�.n�1/p > "2.n�1/ > 0 and
n�1;p;˛ > "2.n�1/�1 > 0I

n�1;p;˛ > "2n�3 > 0 implies p;˛�.n�2/p > "2.n�2/ > 0 and
n�2;p;˛ > "2.n�2/�1 > 0I

:::

3;p;˛ > "5 > 0 implies p;˛�2p > "4 > 0 and
2;p;˛ > "3 > 0I

2;p;˛ > "3 > 0 implies p;˛�p > "2 > 0 and
1;p;˛ D p;˛ > "1 > 0:

Now we use Lemma 5. We have ˛ 2 R n fp � 1;2p � 1; : : : ;np � 1g. Denote
H D f"1g[ f"2i j i D 1;2; : : : ;n� 1g. By Lemma 5, for the elements of the set H
there exists N 2N such that for every nontrivial fykg 2Dn.N / we have

1X
kDN

h
k.˛/ j�nykj

p
C
�
"1�p;˛

�
k.˛�p/

ˇ̌
�n�1ykC1

ˇ̌pi
> 0 (3.17)

and
1X
kDN

h
k.˛�jp/

ˇ̌̌
�n�jykCj

ˇ̌̌p
C
�
"2j �p;˛�jp

�
k.˛�.jC1/p/

ˇ̌̌
�n�j�1ykCjC1

ˇ̌̌pi
> 0 (3.18)

for j D 1;2; : : : ;n�1.
By a direct computation we can easily verify that for l D 1;2; : : : ;n�2 we have

.l;p;˛� "2l�1/.p;˛�lp� "2l/D lC1;p;˛� "2.lC1/�1 (3.19)

and
.n�1;p;˛� "2n�3/.p;˛�.n�1/p� "2n�2/D n;p;˛� ": (3.20)

Now we are ready to prove inequality (3.15). Among others, we use the relations

l;p;˛ > "2l�1 and n;p;˛� " > � (3.21)
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for l D 1;2; : : : ;n�1. We have
1X
kDN

k.˛/ j�nykj
p (3.17)
>

�
p;˛� "1

� 1X
kDN

k.˛�p/
ˇ̌
�n�1ykC1

ˇ̌p
(3.18);(3.21)

>
�
p;˛� "1

��
p;˛�p� "2

� 1X
kDN

k.˛�2p/
ˇ̌
�n�2ykC2

ˇ̌p
(3.19)
D

�
2;p;˛� "3

� 1X
kDN

k.˛�2p/
ˇ̌
�n�2ykC2

ˇ̌p
(3.18);(3.21)

>
�
2;p;˛� "3

��
p;˛�2p� "4

� 1X
kDN

k.˛�3p/
ˇ̌
�n�3ykC3

ˇ̌p
(3.19)
D

�
3;p;˛� "5

� 1X
kDN

k.˛�3p/
ˇ̌
�n�3ykC3

ˇ̌p
:::

(3.18);(3.21)
>

�
n�1;p;˛� "2n�3

��
p;˛�.n�1/p� "2n�2

� 1X
kDN

k.˛�np/ jykCnj
p

(3.20)
D

�
n;p;˛� "

� 1X
kDN

k.˛�np/ jykCnj
p

(3.21)
> �

1X
kDN

k.˛�np/ jykCnj
p

for every nontrivial fykg 2Dn.N /. �

Note that the constant �n;p;˛ is optimal in the case nD 1 of equation (3.14) (see
the paragraph below the proof of Lemma 4).

Consider equation (1.2), i.e., the full-term equation

.�1/n�n
�
k.˛/˚

�
�nxk

��
C .�1/n�1ˇn�1�

n�1
�
k.˛�p/˚

�
�n�1xkC1

��
C : : :

: : :�ˇ1�
�
k.˛�.n�1/p/˚ .�xkCn�1/

�
Cˇ0k

.˛�np/˚ .xkCn/D 0:

The technique of the previous proof can be also used to obtain a criterion for equa-
tion (1.2). In fact, the criterion for the two-term equation is a special case of the
criterion for the full-term equation.

The following notation greatly simplifies the formulation of the next theorem. De-
note

.1/ WD p;˛Cˇn�1 and .kC1/ WD .k/p;˛�kpCˇn�1�k
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for k D 1;2; : : : ;n�1. Then

.2/D p;˛p;˛�pCˇn�1p;˛�pCˇn�2;

.3/D p;˛p;˛�pp;˛�2pCˇn�1p;˛�pp;˛�2pCˇn�2p;˛�2pCˇn�3;

:::

.n/D n;p;˛C

n�1X
kD1

"
n�1Y
lDk

p;˛�lp

#
ˇn�kCˇ0:

Theorem 6. If
.k/ > 0

for every k 2 f1;2; : : : ;ng and ˛ 2 Rnfp�1;2p�1; : : : ;np�1g, then equation (1.2)
is nonoscillatory.

Proof. By Lemma 2 it is sufficient to prove that there exists N 2N such that the
energy functionaleF n.fykg;N;1/

WD

1X
kDN

h
k.˛/ j�nykj

p
Cˇn�1k

.˛�p/
ˇ̌
�n�1ykC1

ˇ̌p
C : : :Cˇ0k

.˛�np/
jykCnj

p
i

(3.22)

associated with equation (1.2) is positive for every nontrivial fykg 2Dn.N /.
Similarly as in the proof of Theorem 5 we use Lemma 5 here. Let " 2 .0;1/ be

such that

" < .n/ and " < 2n�l�1.l/

n�1Y
jDl

p;˛�jp (3.23)

for every l D 1;2; : : : ;n�1. Define real numbers "1; "2; : : : ; "2n�2 by the relations

"2l�1 D
"

2n�l
Qn�1
jDl p;˛�jp

and "2l D
"p;˛�lp

2n�l.l/
hQn�1

jDl p;˛�jp

i
� "

for l D 1;2; : : : ;n� 1. Note that if ˇ1 D ˇ2 D : : : D ˇn�1 D 0, then the constants
"2l�1 and "2l are the same as in the previous proof for each l 2 f1;2; : : : ;n� 1g.
From conditions (3.23) we have the inequalities

p;˛�lp > "2l > 0 and .l/ > "2l�1 > 0

for l D 1;2; : : : ;n�1.
Denote H D f"1g[ f"2i j i D 1;2; : : : ;n� 1g. By Lemma 5, for the elements of

the set H there exists N 2N such that the relations (3.17) and (3.18) hold for every
nontrivial fykg 2Dn.N / and for every j D 1;2; : : : ;n�1.
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By direct computation we can easily verify that for l D 1;2; : : : ;n�2 we have

..l/� "2l�1/
�
p;˛�lp� "2l

�
D Œ.lC1/�ˇn�1�l �� "2.lC1/�1 (3.24)

and
..n�1/� "2n�3/

�
p;˛�.n�1/p� "2n�2

�
D Œ.n/�ˇ0�� ": (3.25)

Now we prove positivity of functional (3.22). Among others, we use the relations

.l/ > "2l�1 and .n/� " > 0 (3.26)

for l D 1;2; : : : ;n�1. We have
1X
kDN

h
k.˛/ j�nykj

p
Cˇn�1k

.˛�p/
ˇ̌
�n�1ykC1

ˇ̌pi
(3.17)
>

��
p;˛� "1

�
Cˇn�1

� 1X
kDN

k.˛�p/
ˇ̌
�n�1ykC1

ˇ̌p
D ..1/� "1/

1X
kDN

k.˛�p/
ˇ̌
�n�1ykC1

ˇ̌p
(3.18);(3.26)

> ..1/� "1/
�
p;˛�p� "2

� 1X
kDN

k.˛�2p/
ˇ̌
�n�2ykC2

ˇ̌p
(3.24)
D ..2/�ˇn�2� "3/

1X
kDN

k.˛�2p/
ˇ̌
�n�2ykC2

ˇ̌p
:

for every nontrivial fykg 2Dn.N /. Therefore,
1X
kDN

h
k.˛/ j�nykj

p
Cˇn�1k

.˛�p/
ˇ̌
�n�1ykC1

ˇ̌p
Cˇn�2k

.˛�2p/
ˇ̌
�n�2ykC2

ˇ̌pi
> Œ..2/�ˇn�2� "3/Cˇn�2�

1X
kDN

k.˛�2p/
ˇ̌
�n�2ykC2

ˇ̌p
(3.18);(3.26)

> ..2/� "3/
�
p;˛�2p� "4

� 1X
kDN

k.˛�3p/
ˇ̌
�n�3ykC3

ˇ̌p
(3.24)
D ..3/�ˇn�3� "5/

1X
kDN

k.˛�3p/
ˇ̌
�n�3ykC3

ˇ̌p
:

for every nontrivial fykg 2Dn.N /. Continuing similarly step by step, we obtain
1X
kDN

h
k.˛/ j�nykj

p
C : : :Cˇ2k

.˛�.n�2/p/
ˇ̌
�2ykCn�2

ˇ̌p
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Cˇ1k
.˛�.n�1/p/

j�ykCn�1j
p
i

> Œ..n�1/�ˇ1� "2n�3/Cˇ1�

1X
kDN

k.˛�.n�1/p/ j�ykCn�1j
p

(3.18);(3.26)
> ..n�1/� "2n�3/

�
p;˛�.n�1/p� "2n�2

� 1X
kDN

k.˛�np/ jykCnj
p

(3.25)
D ..n/�ˇ0� "/

1X
kDN

k.˛�np/ jykCnj
p :

for every nontrivial fykg 2Dn.N /. Hence, the functional eF n.fykg;N;1/ is greater
than the expression

Œ..n/�ˇ0� "/Cˇ0�

1X
kDN

k.˛�np/ jykCnj
p ;

which is positive (see (3.26)) for every nontrivial fykg 2Dn.N /, i.e., eF n.fykg;N;1/

is positive for every nontrivial sequence fykg 2Dn.N /. �

Remark 3. In view of Remark 1 and Remark 2, Theorem 5 and Theorem 6 can be
generalized for the equation

nX
lD0

.�1/n�lˇn�l�
n�l

�
f
Œn�l�

k
˚
�
�n�lxkCl

��
D 0; ˇn WD 1; (3.27)

where ˇ0;ˇ1; : : : ;ˇn�1 are real numbers, p 2 .1;1/, ˛ 2Rnfp�1;2p�1; : : : ;np�

1g and for every l 2 f0;1; : : : ;ng the sequence
n
f
Œn�l�

k

o
2RV.˛� lp/ and it has the

form
f
Œn�l�

k
D k.˛�lp/L

Œn�l�

k
; k 2N;

where
n
L
Œn�l�

k

o
2 SV .

Now we can formulate the following nonoscillation criterion. If

L
Œ0�

k
Ï L

Œ1�

k
Ï � � �Ï L

Œn�

k
as k!1

and .k/ > 0 for every k 2 f1;2; : : : ;ng, then equation (3.27) is nonoscillatory. In
particular, if LŒ0�

k
Ï L

Œn�

k
as k!1 and  C n;p;˛ > 0, then equation (3.27) with

ˇ1 D ˇ2 D : : :D ˇn�1 D 0 and ˇ0 D  , i.e., the two-term equation

.�1/n�n
�
f
Œn�

k
˚
�
�nxk

��
Cf

Œ0�

k
˚ .xkCn/D 0 (3.28)

is nonoscillatory.
As far as we know our method of the proof is new even in the linear case (p D

2). Moreover, the above criterion is new in the linear case. Here it is worthy of
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note that equation (4.5) with � instead of n;2;˛ is a special case of (3.28). Thus,
equation (3.28) has the higher order special (linear type) case for which the constant
�n;p;˛ is critical.

Note that if we wanted to give a proof directly for (3.28), then (according to Re-
mark 2) we would have the following possibilities for replacing inequalities (3.17)
and (3.18). We can take arbitrary sequencesn

f
Œ1�

k

o
;
n
f
Œ2�

k

o
; : : : ;

n
f
Œn�1�

k

o
such that for every l 2 f1;2; : : : ;n�1g we haven

f
Œn�l�

k

o
2RV.˛� lp/

and f Œn�l�
k

has a slowly varying component asymptotically equivalent to
n
L
Œn�

k

o
.

Then, inequality (3.17) is replaced by inequality (3.29); and the inequalities contained
in (3.18) (for each j 2 f1;2; : : : ;n� 1g we have one inequality) are replaced by the
inequalities contained in (3.30) and by inequality (3.31), where

1X
kDN

h
k.˛/L

Œn�

k
j�nykj

p
C
�
"1�p;˛

�
f
Œn�1�

k

ˇ̌
�n�1ykC1

ˇ̌pi
> 0; (3.29)

1X
kDN

h
f
Œn�j �

k

ˇ̌̌
�n�jykCj

ˇ̌̌p
C
�
"2j �p;˛�jp

�
f
Œn�.jC1/�

k

ˇ̌̌
�n�j�1ykCjC1

ˇ̌̌pi
> 0

(3.30)
for j D 1;2; : : : ;n�2, and

1X
kDN

h
f
Œ1�

k
j�ykCn�1j

p
C
�
"2.n�1/�p;˛�.n�1/p

�
k.˛�np/L

Œ0�

k
jykCnj

p
i
> 0:

(3.31)

Example 1. Consider the second order equation

��.fk˚ .�xk//Cˇ0gk˚ .xkC1/D 0; (3.32)

where ffkg 2RV.�2/ and fgkg 2RV.�7/ have asymptotically equivalent slowly
varying components, i.e., equation (3.27) with n D 1, ˛ D �2 and p D 5. By Re-
mark 3, equation (3.32) is nonoscillatory if ˇ0 > �8. Indeed, we have 1;5;�2 D

5;�2 D
�
j5�1�.�2/j

3

�3
D 8. For more specific example we can take, in addition,

fk D
lnk
k2

and gk D lnk
k.7/
C

1
k7 lnk for k 2N.

Example 2. If nD 3 then the assumptions of Theorem 6 read as

p;˛Cˇ2 > 0;

p;˛p;˛�pCˇ2p;˛�pCˇ1 > 0;
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p;˛p;˛�pp;˛�2pCˇ2p;˛�pp;˛�2pCˇ1p;˛�2pCˇ0 > 0

and ˛ 2 R n fp� 1;2p� 1;3p� 1g. Hence, ˇ2 2 .�p;˛;1/. Assume that ˇ2 D
."1� 1/p;˛ for some "1 2 .0;1/. Then from the second assumption we have ˇ1 2
.�"1p;˛p;˛�p;1/. Note that if ˇ2 D 0, then ˇ1 2 .�2;p;˛;1/. Choose ˇ1 D
"1."2�1/p;˛p;˛�p for some "2 2 .0;1/. Then from the third assumption we have
ˇ0 2 .�"1"23;p;˛;1/. Note that if ˇ1 D ˇ2 D 0, then ˇ0 2 .�3;p;˛;1/.

Consider the sixth order equation

��3
�
ak˚

�
�3xk

��
C8."1�1/�

2
�
bk˚

�
�2xkC1

��
�192"1."2�1/�.ck˚ .�xkC2//Cˇ0dk˚ .xkC3/D 0; (3.33)

where "1; "2 2 .0;1/ and fakg 2RV.�4/, fbkg 2RV.�7/, fckg 2RV.�10/ and
fdkg 2 RV.�13/ have asymptotically equivalent slowly varying components, i.e.,
equation (3.27) with nD 3, ˛ D�2, p D 3, ˇ2 D 8."1�1/ and ˇ1 D 192"1."2�1/.

Then

3;�4 D 8; 3;�7 D 27; 3;�43;�7 D 192; 3;�10 D 64;

3;�43;�73;�10 D 3;3;�4 D 13824;

and equation (3.33) is nonoscillatory if ˇ0 2 .�13824"1"2;1/.

4. OPEN PROBLEMS

.i/ In the article [16, Theorem 2.2 and Theorem 3.1], which is considered in a more
general setting of dynamic equations on time scales, one can found the following
generalization of Theorem 1 and Theorem 2. Assume that the limits

lim
k!1

�
r
Œ1�

k

�1�q
Pk�1
jDa

�
r
Œ1�
j

�1�q DM and lim
k!1

�
r
Œ1�

k

�1�q
P1
jDk

�
r
Œ1�
j

�1�q DN (4.1)

exist (less restrictive compare to conditions (2.6) and (2.7)). Denote

D.M/ WD

8̂̂̂̂
<̂
ˆ̂̂:
1
p

�
p�1
p

�p�1
if M D 0;�

.MC1/
p�1
p �1

M

�˛
M

.MC1/p�1�1
if M 2 .0;1/;

0 if M D1

(4.2)

and

C .N / WD

8̂̂̂<̂
ˆ̂:
�
p�1
p

�p
D q�p if N D 0;

.1�N/

�
1�.1�N/

p�1
p

N

�p
if N 2 .0;1/;

0 if N D 1:

(4.3)
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Let
nP1

jDk r
Œ0�
j

o1
kD1

exist and be nonpositive and nontrivial for large k, r Œ1�
k
> 0 for

large k,
P1
jDa

�
r
Œ1�
j

�1�q
D 1, and M be given by (4.1). Then equation (2.5) is

nonoscillatory provided

liminf
k!1

0@k�1X
jDa

�
r
Œ1�
j

�1�q1Ap�10@ 1X
jDk

r
Œ0�
j

1A> �D.M/:

Let r Œ1�
k
> 0 for large k,

P1
jDa

�
r
Œ1�
j

�1�q
<1,8<:

1X
jDk

24 1X
iDjC1

�
r
Œ1�
i

�1�q35p r Œ0�j
9=;
1

kD1

exist and be nonpositive for large k, and N given by (4.1). Then equation (2.5) is
nonoscillatory provided

liminf
k!1

0@ 1X
jDk

�
r
Œ1�
j

�1�q1A�10@ 1X
jDk

24 1X
iDjC1

�
r
Œ1�
i

�1�q35p r Œ0�j
1A> �C .N /: (4.4)

IfM D 0, then the constant�D.0/ is the same as the estimate for liminfk!1Ak

in Theorem 1. IfN D 0, r Œ1�
k
D k.˛/, r Œ0�

k
D k.˛�p/ for k 2N,  < 0 and ˛ > p�1,

then the left side of inequality (4.4) takes the form

liminf
k!1

0@ 1X
jDk

�
j .˛/

�1�q1A�10@ 1X
jDk

24 1X
iDjC1

�
i .˛/

�1�q35p j .˛�p/
1AD .p�1/p

.˛�pC1/p

and it holds that

.p�1/p

.˛�pC1/p
> �C .0/ if and only if  > �p;˛:

Hence, for N D 0 and ˛ > p � 1 we obtained the same result as in the proof of
Lemma 4 in the case ˛ > p�1, where Theorem 2 is used. Therefore, we believe that
for M ¤ 0 and N ¤ 0 our criteria can be extended via the results from [16].
.ii/All our results are obtained under the restriction ˛ 2Rnfp�1;2p�1; : : : ;np�

1g, which is the condition required in our technique. We can try to deal with the cases
˛ D ip�1, i D 1;2; : : : ;n in the further research.
.iii/ Note that Theorem 1 and Theorem 2 do not require existence of the limits

lim
k!1

Ak and lim
k!1

Bk;
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but in this article we work only with the coeficients of (3.1), for which these limits
exist. Thus, other extension of our results may involve such sequences

n
r
Œ0�

k

o
andn

r
Œ1�

k

o
that the limits limk!1Ak and limk!1Bk do not exist.

.iv/ Oscillation behavior of two-term equation (3.14) in the critical case  D
�n;p;˛ is still unknown. We believe that we will be able to prove a half-linear
extension of the following result. In [10] it is proved that the linear two-term equa-
tion

.�1/n�n
�
k.˛/�nxk

�
�n;2;˛.kCn�2c.˛//

.˛�2n/xkCn D 0 (4.5)

with

c.˛/ WD n�.2n�1;1/.˛/C

n�1X
lD1

l�.2l�1;2lC1/.˛/ and ˛ 2 Rn f1;3;5; : : : ;2n�1g

is nonoscillatory (for t 2 R the symbol �M .t/ denotes the indicator function for the
set M of real numbers).
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[3] O. Došlý, “Generalized zeros and nonpositivity of energy functionals associated with half-linear
even-order difference equations.” in Difference equations, discrete dynamical systems and applic-
ations. Proceedings of the 20th international conference on difference equations and applications,
ICDEA, Wuhan, China, July 21–25, 2014. Cham: Springer, 2015, pp. 83–94, doi: 10.1007/978-
3-319-24747-2-6.
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