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Abstract. We study a new class of boundary value problems of Caputo type fractional differential
inclusions supplemented with nonlocal integro-multipoint boundary conditions. An existence
result for the problem with convex valued (multivalued) map is obtained via nonlinear alternative
of Leray-Schauder type, while the existence of solutions for the problem involving nonconvex
valued map is established by means of Wegrzyk’s fixed point theorem. Our results are well
illustrated with examples.
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1. INTRODUCTION

In this paper, we obtain sufficient criteria for the existence of solutions for a Caputo
type fractional differential inclusion

cDqx.t/ 2 F.t;x.t//; n�1 < q � n; t 2 Œ0;1�; (1.1)

equipped with the boundary conditions8̂̂<̂
:̂
x.0/D 0; x0.0/D 0; x00.0/D 0; : : : ; x.n�2/.0/D 0;

x.1/D a

Z �

0

x.s/dsCb

m�2X
iD1

˛ix.�i /; 0 < � < �1 < �2 < :: : < �m�2 < 1;

(1.2)
where cDq denotes the Caputo fractional derivative of order q, F W Œ0;1��R!P .R/
is a multi-valued map, P .R/ is a family of all nonempty subsets of R, a and b are
real constants and ˛i ; i D 1; : : : ;m�2; are positive real constants.

Here we remark that the last condition in (1.2) connecting the nonlocal multi-point
and strip conditions can be interpreted as the linear combination of the values of the
unknown function at nonlocal points �i 2 .0;1/ together with the strip contribution
of the unknown function on an arbitrary segment .0;�/ � Œ0;1� is proportional to
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the value of the unknown function at t D 1: The multi-point-strip boundary data,
occurring in certain problems of thermodynamics, elasticity and wave propagation
[3, 8, 27], correspond to the situation when the controllers at the end points of the
interval dissipate or add energy according to censors located at interior positions
(finite many points and strip) of the domain.

In recent years, the topic of initial and boundary value problems involving frac-
tional differential equations and inclusions has received great attention and many au-
thors have contributed to its advancement by producing a variety of results [2,4–7,9,
15,18,23,25,28,34]. The interest in this topic owes to its extensive applications in the
mathematical modeling of scientific and applied problems occurring in various dis-
ciplines such as ecology, acoustics, viscoelasticity, electromagnetics, control theory
and material sciences. An important characteristic, distinguishing fractional order
operators from their classical counterparts, is their nonlocal nature that can take care
of the past history of the processes and phenomena involved in the problem. For some
specific examples, we refer the reader to the works [20, 35] and the references cited
therein. In [29], the authors studied the existence of solutions for one-dimensional
higher-order semi-linear Caputo type fractional differential equations supplemented
with nonlocal multi-point discrete and integral boundary conditions.

Differential inclusions (generalization of differential equations and inequalities)
are found to be of great utility in studying dynamical systems and stochastic pro-
cesses. An important application of differential inclusions can be found in the area
of sweeping processes. In fact, evolution differential inclusions appear in the math-
ematical modelling of sweeping processes. For a detailed account of this subject, we
refer the reader to the monograph [26] and research articles [1, 16]. In [31], it has
been shown that the existence and uniqueness of BV continuous sweeping processes
can be easily reduced to the Lipschitz continuous case by means of a suitable repara-
metrization of the associated moving convex set. Differential inclusions also play a
key role in the study of granular systems [30, 32], nonlinear dynamics of wheeled
vehicles [10], control problems [21], etc. In [24], one can find a detailed description
of pressing issues in stochastic processes, control, differential games, optimization
and their application in finance, manufacturing, queueing networks, and climate con-
trol. For application of fractional differential inclusions in synchronization processes,
we refer the reader to the paper [13].

The aim of the present work is to develop the existence theory for a multivalued
analog of the problem addressed in [29]. The first result dealing with the convex
valued maps involved in the given problem is obtained via nonlinear alternative of
Leray-Schauder type, while the existence of solutions for the nonconvex valued maps
is shown by applying Wegrzyk’s fixed point theorem. The main results are presented
in Section 3. The preliminary material needed to execute the main work is outlined
in Section 2.
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2. PRELIMINARIES

First of all, we recall some definitions of fractional calculus [20, 35].

Definition 1. The Riemann-Liouville fractional integral of order ˛ > 0 of a func-
tion g W .0;1/! R is defined by

J ˛g.t/D

Z t

0

.t � s/˛�1

� .˛/
g.s/ds;

provided the right-hand side is point-wise defined on .0;1/, where � is the Gamma
function.

Definition 2. The Riemann-Liouville fractional derivative of order ˛ > 0 of a
continuous function g W .0;1/! R is defined by

D˛g.t/D
1

� .n�˛/

� d
dt

�nZ t

0

g.s/

.t � s/˛�nC1
ds; n�1 < ˛ < n;

where nD Œ˛�C1, Œ˛� denotes the integer part of real number ˛, provided the right-
hand side is point-wise defined on .0;1/.

Definition 3. The Caputo derivative of order q for a function f W Œ0;1/! R can
be written as

cDqf .t/DDq

 
f .t/�

n�1X
kD0

tk

kŠ
f .k/.0/

!
; t > 0; n�1 < q < n:

Remark 1. If f .t/ 2 C nŒ0;1/; then

cDqf .t/D
1

� .n�q/

Z t

0

f .n/.s/

.t � s/qC1�n
ds D In�qf .n/.t/; t > 0; n�1 < q < n:

In order to define a solution of the given problem, we need the following known
result [29].

Lemma 1. Let ! 2 C.Œ0;1�;R/ and

�D 1�
a�n

n
�b

m�2X
iD1

˛i�
n�1
i ¤ 0: (2.1)

The boundary value problem8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

cDqx.t/D !.t/; t 2 Œ0;1�;

x.0/D 0; x0.0/D 0; x00.0/D 0; : : : ; x.n�2/.0/D 0;

x.1/D a

Z �

0

x.s/dsCb

m�2X
iD1

˛ix.�i /; 0 < � < �1 < �2 < :: : < �m�2 < 1;

(2.2)
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is equivalent to the following integral equation

x.t/D

Z t

0

.t � s/q�1

� .q/
!.s/dsC

tn�1

�

 
a

Z �

0

.�� s/q

� .qC1/
!.s/ds

Cb

m�2X
iD1

˛i

Z �i

0

.�i � s/
q�1

� .q/
!.s/ds�

Z 1

0

.1� s/q�1

� .q/
!.s/ds

!
: (2.3)

Next we fix our terminology and outline some basic concepts of multivalued ana-
lysis [14, 19].

Denote byC.Œ0;1�;R/ the Banach space of all continuous functions from Œ0;1� into
R endowed with the norm kxk D supfjx.t/j; t 2 Œ0;1�g: By L1.Œ0;1�;R/ we denote
the space of Lebesgue measurable and integrable functions x W Œ0;1�! R such that
kxkL1 D

R 1
0 jx.t/jdt:

For a normed space .X;k � k/, let Pcl.X/D fY 2 P .X/ W Y is closedg; Pb.X/D

fY 2 P .X/ W Y is boundedg; Pcl;b.X/ D fY 2 P .X/ W Y is closed and boundedg;
Pcp.X/DfY 2P .X/ WY is compactg; and Pcp;c.X/DfY 2P .X/ WY is compact and
convexg:

A multi-valued map H WX !P .X/ W

(i) is convex (closed) valued if H .x/ is convex (closed) for all x 2X:
(ii) is bounded on bounded sets if H .Y /D [x2YH .x/ is bounded in X for all

Y 2Pb.X/ (i.e. supx2Y fsupfjyj W y 2H .x/gg<1/:

(iii) is called upper semi-continuous (u.s.c.) on X if for each x0 2 X; the set
H .x0/ is a nonempty closed subset of X , and if for each open set N of X
containing H .x0/; there exists an open neighborhood N0 of x0 such that
H .N0/�N:

(iv) G is lower semi-continuous (l.s.c.) if the set fy 2X WH .y/\Y ¤¿g is open
for any open set Y in X:

(v) is said to be completely continuous if H .B/ is relatively compact for every
B2Pb.X/I If the multi-valued map H is completely continuous with nonempty
compact values, then H is u.s.c. if and only if H has a closed graph, i.e.,
xn! x�; yn! y�; yn 2H .xn/ imply y� 2H .x�/:

(vi) is said to be measurable if for every y 2X , the function

t 7�! d.y;H .t//D inffjy�´j W ´ 2H .t/g

is measurable.
(vii) has a fixed point if there is x 2X such that x 2H .x/: The fixed point set of

the multivalued operator H will be denoted by FixH :

3. EXISTENCE RESULTS

By Lemma 1, we can define a solution of problem (1.1)-(1.2) as follows.
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Definition 4. A function x 2 C n.Œ0;1�;R/ is a solution of problem (1.1)-(1.2) if
there exists a function f 2 L1.Œ0;1�;R/ such that f .t/ 2 F.t;x.t// a.e. on Œ0;1� and

x.t/D

Z t

0

.t � s/q�1

� .q/
f .s/dsC

tn�1

�

 
a

Z �

0

.�� s/q

� .qC1/
f .s/ds

Cb

m�2X
iD1

˛i

Z �i

0

.�i � s/
q�1

� .q/
f .s/ds�

Z 1

0

.1� s/q�1

� .q/
f .s/ds

!
: (3.1)

Next, we define an operator K W C.Œ0;1�;R/!P .C.Œ0;1�;R// by

K.x/D

(
´ 2 C.Œ0;1�;R/ W ´.t/D

Z t

0

.t � s/q�1

� .q/
f .s/ds

C
tn�1

�

 
a

Z �

0

.�� s/q

� .qC1/
f .s/dsCb

m�2X
iD1

˛i

Z �i

0

.�i � s/
q�1

� .q/
f .s/ds

�

Z 1

0

.1� s/q�1

� .q/
f .s/ds

!
;f 2 SF;x

)
: (3.2)

Definition 5. A multi-valued mapF W Œ0;1��R!P .R/ is said to be Carathéodory
if

(i) t 7! F.t;x/ is measurable for each x 2 R and
(ii) x 7! F.t;x/ is upper semicontinuous for almost all t 2 Œ0;1�.

Further, a Caratheodory function F is called L1�Carathéodory if
(iii) for each a > 0; there exists 'a 2 L1.Œ0;1�;RC/ such that

kF.t;x/k D supfjvj W v 2 F.t;x/g � 'a.t/

for all kxk � a and for a.e t 2 Œ0;1�:

For each y 2 C.Œ0;1�;R/; we define the set of selections of F by

SF;y WD fv 2 L
1.Œ0;1�;R/ W v.t/ 2 F.t;y.t// for a:e: t 2 Œ0;1�g:

3.1. The convex-valued (Carathéodory) case

In this subsection, we prove an existence result for problem (1.1)-(1.2), assuming
that F is Carathéodory (F has convex values).

Before presenting the main result, let us state the auxiliary lemmas.

Lemma 2 (Nonlinear alternative of Leray-Schauder type [17]). Let C be a convex
set in a normed space, and E � C be open subset with 0 2 E: Then each upper
semicontinuous and compact mapping G W E ! P.C/ with compact convex values
that is fixed point free on @E has at least one of the following two properties:
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(a) G has a fixed point in E; or
(b) there exist x 2 @E and � 2 .0;1/ such that x 2 �G .x/:

Lemma 3 ([22]). Let X be a separable Banach space. Let F W Œ0;1�� R !
Pcp;c.X/ be an L1� Caratheodory multi-valued map, and let � be a linear con-
tinuous mapping from L1.Œ0;1�;X/ to C.Œ0;1�;X/: Then the operator

� ıSF W C.Œ0;1�;X/ �!Pcp;c.C.Œ0;1�;X//; x 7! .� ıSF /.x/D �.SF;x/;

is a closed graph operator in C.Œ0;1�;X/�C.Œ0;1�;X/:

Theorem 1. Assume that
.H1/ F W Œ0;1��R! P .R/ is L1�Carathéodory and has compact and convex

values;
.H2/ there exist a continuous nondecreasing function � W Œ0;1/! .0;1/ and a

function k 2 C.Œ0;1�;RC/ such that

kF.t;x/kP WD supfjyj W y 2 F.t;x/g � k.t/�.kxk/ for al l .t;x/ 2 Œ0;1��RI

.H3/ There exists a number N > 0 such that

N

�.N/kkk

(
1

� .qC1/

"
1C

1

j�j

 
1Cjaj

�qC1

.qC1/
Cjbj

m�2X
iD1

˛i�i
q

!#)�1
> 1;

where � is given by (2.1).
Then the problem (1.1)-(1.2) has at least one solution on Œ0;1�.

Proof. We transform the problem (1.1)-(1.2) into a fixed point theorem by consid-
ering the operator K defined by (3.2). It is obvious that the fixed points of K are
solutions of the boundary value problem (1.1)-(1.2). We will show that K satisfies
the assumptions of Leray-Schauder nonlinear alternative. In the first step, we will
show that K.x/ is convex for each x 2 C.Œ0;1�;R/: Let ´1;´2 2K.x/, then there
exist f1;f2 2 SF;x such that for each t 2 Œ0;1�, we have

´i .t/D

Z t

0

.t � s/q�1

� .q/
fi .s/dsC

tn�1

�

 
a

Z �

0

.�� s/q

� .qC1/
fi .s/ds

Cb

m�2X
iD1

˛i

Z �i

0

.�i � s/
q�1

� .q/
fi .s/ds�

Z 1

0

.1� s/q�1

� .q/
fi .s/ds

!
; i D 1;2:

Set 0� ı � 1, then for each t 2 Œ0;1�; we have

Œı´1C .1� ı/´2�.t/D

Z t

0

.t � s/q�1

� .q/
Œıf1.s/C .1� ı/f2.s/�ds

C
tn�1

�

 
a

Z �

0

.�� s/q

� .qC1/
Œıf1.s/C .1� ı/f2.s/�ds
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Cb

m�2X
iD1

˛i

Z �i

0

.�i � s/
q�1

� .q/
Œıf1.s/C .1� ı/f2.s/�ds

�

Z 1

0

.1� s/q�1

� .q/
Œıf1.s/C .1� ı/f2.s/�ds

!
:

Hence, by the convexity of SF;x , it follows that ı´1C .1� ı/´2 2K.x/:

Now, we show that K maps bounded sets into bounded sets in C.Œ0;1�;R/: For
� > 0; let B� D fx 2 C.Œ0;1�;R/ W kxk � �g be a bounded set in C.Œ0;1�;R/: Thus,
for each ´ 2K.x/; x 2 B�; there exists f 2 SF;x such that

´.t/D

Z t

0

.t � s/q�1

� .q/
f .s/dsC

tn�1

�

 
a

Z �

0

.�� s/q

� .qC1/
f .s/ds

Cb

m�2X
iD1

˛i

Z �i

0

.�i � s/
q�1

� .q/
f .s/ds�

Z 1

0

.1� s/q�1

� .q/
f .s/ds

!
: (3.3)

Then, for x 2 B�; in view of .H2/; we obtain

j´.t/j

�

Z t

0

.t � s/q�1

� .q/
k.s/�.kxk/dsC

tn�1

j�j

 
jaj

Z �

0

.�� s/q

� .qC1/
k.s/�.kxk/ds

Cjbj

m�2X
iD1

˛i

Z �i

0

.�i � s/
q�1

� .q/
k.s/�.kxk/dsC

Z 1

0

.1� s/q�1

� .q/
k.s/�.kxk/ds

!
;

which implies that

k´k �
�.�/kkk

� .qC1/

 
1C

1

j�j

"
1Cjaj

�qC1

.qC1/
Cjbj

m�2X
iD1

˛i�i
q

#!
:

Next, we show that K maps bounded sets into equicontinuous sets in C.Œ0;1�; R/:
Let t1; t2 2 Œ0;1� with t1 < t2 and x 2 B�; then, we obtain for each ´ 2K.x/

j´.t2/�´.t1/j

D

ˇ̌̌̌
ˇ
Z t2

0

.t2� s/
q�1

� .q/
f .s/ds�

Z t1

0

.t1� s/
q�1

� .q/
f .s/dsC

.tn�12 � tn�11 /

�
�

�

"
a

Z �

0

.�� s/q

� .qC1/
f .s/dsCb

m�2X
iD1

˛i

Z �i

0

.�i � s/
q�1

� .q/
f .s/ds
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�

Z 1

0

.1� s/q�1

� .q/
f .s/ds

#ˇ̌̌̌
ˇ

�

ˇ̌̌̌
ˇ
Z t1

0

.t2� s/
q�1� .t1� s/

q�1

� .q/
f .s/dsC

Z t2

t1

.t2� s/
q�1

� .q/
f .s/ds

ˇ̌̌̌
ˇ

C

ˇ̌̌̌
ˇ tn�12 � tn�11

�

ˇ̌̌̌
ˇ
"
jaj

Z �

0

.�� s/q

� .qC1/
jf .s/jds

Cjbj

m�2X
iD1

˛i

Z �i

0

.�i � s/
q�1

� .q/
jf .s/jdsC

Z 1

0

.1� s/q�1

� .q/
jf .s/jds

#

� �.�/kkk

"
jt
q
2 � t

q
1 jC2.t2� t1/

q

� .qC1/

C
jtn�12 � tn�11 j

� .qC1/j�j

 
1Cjaj

�qC1

.qC1/
Cjbj

m�2X
iD1

˛i�i
q

!#
;

which tends to zero independent of x 2 B� as .t2� t1/! 0: Consequently, by the
Arzelá-Ascoli theorem, the operator K is completely continuous.

Since K is completely continuous, in order to prove that it is u.s.c. it is enough
to prove that it has a closed graph. Thus, now, we want to show that K has a closed
graph. Let xn! Ox, ´n 2K.xn/; and ´n! Ó . We have to show that Ó 2K. Ox/: So,
for ´n 2K.xn/; there exists fn 2 SF;xn

such that for all t 2 Œ0;1�, we have

´n.t/D

Z t

0

.t � s/q�1

� .q/
fn.s/dsC

tn�1

�

 
a

Z �

0

.�� s/q

� .qC1/
fn.s/ds

Cb

m�2X
iD1

˛i

Z �i

0

.�i � s/
q�1

� .q/
fn.s/ds�

Z 1

0

.1� s/q�1

� .q/
fn.s/ds

!
:

Thus, we have to show that there exists Of 2 SF; Ox such that for each t 2 Œ0;1�;

Ó.t/D

Z t

0

.t � s/q�1

� .q/
Of .s/dsC

tn�1

�

 
a

Z �

0

.�� s/q

� .qC1/
Of .s/ds

Cb

m�2X
iD1

˛i

Z �i

0

.�i � s/
q�1

� .q/
Of .s/ds�

Z 1

0

.1� s/q�1

� .q/
Of .s/ds

!
:
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Consider the continuous linear operator ˚ W L1.Œ0;1�;R/! C.Œ0;1�;R/ given by

f 7! ˚.f /.t/D

Z t

0

.t � s/q�1

� .q/
f .s/dsC

tn�1

�

 
a

Z �

0

.�� s/q

� .qC1/
f .s/ds

Cb

m�2X
iD1

˛i

Z �i

0

.�i � s/
q�1

� .q/
f .s/ds�

Z 1

0

.1� s/q�1

� .q/
f .s/ds

!
:

Observe that

k´n.t/� Ó.t/k

D







Z t

0

.t � s/q�1

� .q/
.fn.s/� Of .s//dsC

tn�1

�

 
a

Z �

0

.�� s/q

� .qC1/
.fn.s/� Of .s//ds

Cb

m�2X
iD1

˛i

Z �i

0

.�i � s/
q�1

� .q/
.fn.s/� Of .s//ds

�

Z 1

0

.1� s/q�1

� .q/
.fn.s/� Of .s//ds

!





tends to 0 as n!1. Thus, it follows by Lemma 3 that ˚ ıSF is a closed graph
operator. Moreover, we have ´n.t/ 2 ˚.SF;xn

/: Since xn! Ox; we have then

Ó.t/D

Z t

0

.t � s/q�1

� .q/
Of .s/dsC

tn�1

�

 
a

Z �

0

.�� s/q

� .qC1/
Of .s/ds

Cb

m�2X
iD1

˛i

Z �i

0

.�i � s/
q�1

� .q/
Of .s/ds�

Z 1

0

.1� s/q�1

� .q/
Of .s/ds

!
;

for some Of 2 SF; Ox :
Finally, we show there exists an open set V � C.Œ0;1�;R/ with x … �K.x/ for

any � 2 .0;1/ and all x 2 @V : Let x be a solution of (1.1)-(1.2). Then there exists
f 2 L1.Œ0;1�;R/ with f 2 SF;x such that for t 2 Œ0;1�, we have

x.t/D �

Z t

0

.t � s/q�1

� .q/
f .s/dsC�

tn�1

�

 
a

Z �

0

.�� s/q

� .qC1/
f .s/ds

Cb

m�2X
iD1

˛i

Z �i

0

.�i � s/
q�1

� .q/
f .s/ds�

Z 1

0

.1� s/q�1

� .q/
f .s/ds

!
:
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Using .H2/, we obtain

jx.t/j �
�.kxk/kkk

� .qC1/

 
1C

1

j�j

"
1Cjaj

�qC1

.qC1/
Cjbj

m�2X
iD1

˛i�i
q

#!
;

which implies

kxk

�.kxk/kkk

"
1

� .qC1/

(
1C

1

j�j

 
1Cjaj

�qC1

.qC1/
Cjbj

m�2X
iD1

˛i�i
q

!)#�1
� 1:

By the assumption .H3/; there exists N > 0 such that kxk ¤ N . Let us take V D

fx 2 C.Œ0;1�;R/ W kxk < N C 1g: Note that the operator K W V ! P .C.Œ0;1�;R//
is upper semicontinuous and completely continuous. From the choice of V ; there is
no x 2 @V such that x 2 �K.x/ for some � 2 .0;1/. Therefore, by Leray-Schauder
alternative, it follows that the operator K has a fixed point x 2V , which is a solution
of the problem (1.1)-(1.2). This completes the proof. �

3.2. Nonconvex-valued (Lipschitz) case

In this part, we discuss the existence of solutions for the inclusion problem (1.1)-
(1.2) with the right-hand side being nonconvex set-valued map by applying Wegrzyk’s
fixed point theorem.

Let .X;d/ be a metric space induced from the normed space .X Ik � k/. Consider
Qd WP .X/�P .X/! R

S
f1g given by

Qd .A;B/Dmaxfsup
a2A

d.a;B/; sup
b2B

d.b;A/g;

where d.a;B/D infb2B d.a;b/: The mapQd is the (generalized) Pompeiu-Hausdorff
functional. Clearly, .Pb;cl.X/;Qd / is a metric space and .Pd .X/;Qd / is a general-
ized metric space.

Definition 6. A function ˝ W RC! RC is said to be a strict comparison function
if it is continuous strictly increasing and

P1
nD1˝

n.t/ <1 for all t > 0.

Definition 7. A multi-valued operator A WX !Pcl.X/is called
(a) �-Lipchitz if and only if there exists � > 0 such that Qd .A.X/;A.Y // �

�d.x;y/ for each x;y 2X:
(b) a contraction if and only if it is ��Lipschitz with � < 1I
(c) a generalized contraction if and only if there is a strict comparison function

˝ W RC! RC such that Qd .A.x/;A.y//�˝.d.x;y// for each x;y 2X:

Lemma 4 (Wegrzyk’s fixed point theorem [33]). Let .X;d/ be a complete metric
space. If A W X ! Pcl.X/ is a generalized contraction, then the operator A has at
least one fixed point.
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Theorem 2. Assume that the following conditions hold:

.H4/ F W Œ0;1��R!Pcp.R/ is such that F.:;x/ W Œ0;1�!Pcp.R/ is measurable
for each x 2 R:

.H5/ Qd .F.t;x/;F.t; Nx//� 
.t/˝.kx� Nxk/ for almost all t 2 Œ0;1� and x; Nx 2 R
with a function 
 2 C.Œ0;1�;RC/ and d.0;F.t;0// � 
.t/ for almost all t 2
Œ0;1�; where ˝ W RC! RC is strictly increasing.

Then the problem (1.1)-(1.2) has at least one solution on Œ0;1� if �˝ W RC! RC is
a strict comparison function, where

� D
k
k

� .qC1/

 
1C

1

j�j

"
1Cjaj

�qC1

.qC1/
Cjbj

m�2X
iD1

˛i�i
q

#!
:

Proof. Assume that �˝ WRC!RC is a strict comparison function. Then, in view
of .H4/ and .H5/, F.�;x.�// is measurable and has a measurable selection �.�/ (see
Theorem III.6 [11]). Also, 
 2 C.Œ0;1�;RC/ and we have

j�.t/j � d.0;F.t;0//CQd .F.t;0/;F.t;x.t///

� 
.t/C
.t/˝.jx.t/j/� .1C˝.kxk//
.t/:

Hence, the set SF;x is nonempty for each x 2C.Œ0;1�;R/:Now, we will show that the
operator K which is given by (3.2), satisfies the assumptions of Wegrzyk’s fixed point
Theorem. First, we show that K.x/ 2 Pcl.C.Œ0;1�;R// for each x 2 C.Œ0;1�;R/.
So, let, fgngn�0 2K.x/ be such that gn! g as n!1 in C.Œ0;1�;R/: Thus g 2
C.Œ0;1�;R/; and there exists �n 2 SF;xn

; such that, for all t 2 Œ0;1�; we have

gn.t/D

Z t

0

.t � s/q�1

� .q/
�n.s/dsC

tn�1

�

 
a

Z �

0

.�� s/q

� .qC1/
�n.s/ds

Cb

m�2X
iD1

˛i

Z �i

0

.�i � s/
q�1

� .q/
�n.s/ds�

Z 1

0

.1� s/q�1

� .q/
�n.s/ds

!
:

Since F has compact values, we take a subsequence to obtain that �n converges to �
in L1.Œ0;1�;R/: Hence, � 2 SF;x; and for each t 2 Œ0;1�; we have,

gn.t/! g.t/D

Z t

0

.t � s/q�1

� .q/
�.s/dsC

tn�1

�

 
a

Z �

0

.�� s/q

� .qC1/
�.s/ds

Cb

m�2X
iD1

˛i

Z �i

0

.�i � s/
q�1

� .q/
�.s/ds�

Z 1

0

.1� s/q�1

� .q/
�.s/ds

!
:

Thus, g 2K.x/:
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Now, we show that Qd .K.x/;K. Nx// � �˝.kx� Nxk/; for all x; Nx 2 C.Œ0;1�;R/:
Let x; Nx 2 C.Œ0;1�;R/ and ´1 2K.x/; then, there exists �1.t/ 2 SF;x such that, for
all t 2 Œ0;1�; we have

´1.t/D

Z t

0

.t � s/q�1

� .q/
�1.s/dsC

tn�1

�

 
a

Z �

0

.�� s/q

� .qC1/
�1.s/ds

Cb

m�2X
iD1

˛i

Z �i

0

.�i � s/
q�1

� .q/
�1.s/ds�

Z 1

0

.1� s/q�1

� .q/
�1.s/ds

!
:

In view of the assumption .H5/; we have Qd .F.t;x/;F.t; Nx// � 
.t/˝.jx.t/�
Nx.t/j/: Thus, there exists � 2 F.t; Nx.t//such that

j�1.t/��j � 
.t/˝.jx.t/� Nx.t/j/; t 2 Œ0;1�:

Let us define the map, W W Œ0;1�!P .R/ by

W.t/D f� 2 R W j�1.t/��j � 
.t/˝.jx.t/� Nx.t/j/g:

Because the nonempty closed set-valued operator W.t/
T
F.t; Nx.t// is measurable

(Proposition III.4 [11]), there exists a function �2.t/ which is a measurable selection
forW.t/

T
F.t; Nx.t//:Hence, �2.t/2F.t; Nx.t//; and j�1.t/��2.t/j � 
.t/˝.jx.t/�

Nx.t/j/ for each t 2 Œ0;1�:
Define for each t 2 Œ0;1�;

´2.t/D

Z t

0

.t � s/q�1

� .q/
�2.s/dsC

tn�1

�

 
a

Z �

0

.�� s/q

� .qC1/
�2.s/ds

Cb

m�2X
iD1

˛i

Z �i

0

.�i � s/
q�1

� .q/
�2.s/ds�

Z 1

0

.1� s/q�1

� .q/
�2.s/ds

!
:

So, by the assumption .H5/, we obtain

j´1.t/�´2.t/j

�

Z t

0

.t � s/q�1

� .q/
j�1.t/� �2.t/jdsC

tn�1

j�j

 
jaj

Z �

0

.�� s/q

� .qC1/
j�1.t/� �2.t/jds

Cjbj

m�2X
iD1

˛i

Z �i

0

.�i � s/
q�1

� .q/
j�1.t/� �2.t/jds

C

Z 1

0

.1� s/q�1

� .q/
j�1.t/� �2.t/jds

!
;
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which implies that

k´1�´2k �
k
k˝.kx� Nxk/

� .qC1/

 
1C

1

j�j

"
1Cjaj

�qC1

.qC1/
Cjbj

m�2X
iD1

˛i�i
q

#!
:

Interchanging the roles of x and Nx; we obtain

Qd .K.x/;K. Nx//� �˝.kx� Nxk/

D
k
k˝.kx� Nxk/

� .qC1/

 
1C

1

j�j

"
1Cjaj

�qC1

.qC1/
Cjbj

m�2X
iD1

˛i�i
q

#!
;

for all x; Nx 2 C.Œ0;1�;R/: Thus, the operator K is a generalized contraction. There-
fore, by Wegrzyk’s fixed point Theorem, the operator K has at least one fixed point
x, which is a solution of the problem (1.1)-(1.2). This completes the proof. �

Remark 2. We emphasize that the existence result (Theorem 2) obtained by apply-
ing Wegrzyk’s theorem holds for several choices of the strictly increasing function
˝ involved in its hypothesis. For instance, by taking ˝.x/D x; we obtain a special
case which is usually obtained by applying a fixed point theorem due to Covitz and
Nadler [12].

3.3. Examples

Example 1. (Convex-valued case) Consider the following multi-valued fractional
boundary value problem:8̂<̂

:
cD5=4 2 F.t;x.t//; t 2 Œ0;1�;

x.0/D 0; x.1/D

Z 1=8

0

x.s/dsC

4X
iD1

˛ix.�i /;
(3.4)

where qD 5=4; aD bD 1; �D 1=8; �1D 1=6; �2D 1=3; �3D 1=2; �4D 2=3; ˛1D
1=7; ˛2 D 2=7; ˛3 D 3=7; ˛4 D 4=7 and

F.t;x.t//D

"
jxj

9.jxjC5/
C
1

18
cos2 t ;

1

2
e�t sinx

#
: (3.5)

Using the given data, we get

j�j D

ˇ̌̌̌
ˇ1� a�22 �b

4X
iD1

˛i�i

ˇ̌̌̌
ˇD 0:2779;

1

� .qC1/

(
1C

1

j�j

 
1Cjaj

�qC1

qC1
Cjbj

m�2X
iD1

˛i�i
q

!)
D 6:0155:
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Moreover, for f 2 F , we have

jf j �max
n
jxj

9.jxjC5/
C
1

18
cos2 t ;

1

2
e�t sinx

o
; x 2 R; t 2 Œ0;1�:

Thus

kF.t;x/kP WD supfjyj W y 2 F.t;x/g �
1

2
; x 2 R;

with k.t/ D 1; �.kxk/ D 1=2. Next, using the condition .H3/, we find that N >

N1 ' 3:0078: Thus, all the conditions of Theorem 1 are satisfied and consequently,
the problem (3.4) with F.t;x/ given by (3.5), has at least one solution on Œ0;1�:

Example 2. (Nonconvex-valued case) Consider the problem (3.4) that is given in
Example 1, with

F.t;x.t//D

"
1

p
625C t2

;
sinxC 2

�
tan�1x

2.4C t .1� t //2
C
4

81

#
: (3.6)

So, we find that

supfjgj W g 2 F.t;x/g �
1

.4C t .1� t //2
C
4

81
;

Qd .F.t;x/;F.t; Nx//�
1

.4C t .1� t //2

h.2C�/
2�

kx� Nxk
i
:

Put 
.t/D
1

.4C t .1� t //2
, so, k
k D 1=16: Thus, we get

� D 6:0155k
k D 6:0155=16' 0:37597;

and Qd .F.t;x/;F.t; Nx//� 
.t/˝.kx� Nxk/; where ˝.kx� Nxk/D
.2C�/

2�
kx� Nxk.

Hence, all the conditions of Theorem 2 are satisfied. Therefore, the problem (3.4)
with F.t;x/ given by (3.6), has at least one solution on Œ0;1�:
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