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COMPUTER ALGORITHM FOR SOLVING OF THE CHAZY
EQUATION OF THE THIRD ORDER WITH SIX SINGULAR
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Abstract. The algorithm for calculating the coefficients of Chazy differential equation of the
third order with six constant poles with respect to the unknown function is given. For such
values of the poles a corresponding differential equation can be integrated in a symbolic form.
When solving this problem the computational-algebraic algorithm to the construction of five
non-linear differential equations of the third order, which are reduced to a linear inhomogeneous
equations of the second order with six singular points is built. The algorithm is demonstrated
on an example; five differential equations are obtained and their general solutions are found in
elliptic functions. The calculations are implemented using Mathematica system.
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1. INTRODUCTION

The problem of finding third-order differential equations which solutions define
new transcendental functions other than the Painleve transcendents [16], urged Chazy
[4] to study the differential equations of the form

y000 DR.y00; y0; y; x/; (1.1)

whereR a rational function of y00; y0; y with the analytic coefficients of x. The main
problem, which is considered in the Chazy’s fundamental paper [4], is the construc-
tion and study of new non-linear differential equations of the third order of P-type
and in the description of new classes of transcendental functions defined by these
equations. The study of the differential equations of the form (1.1), according to
the Painleve method [16], reduces to the study of so-called ”simplified” equations
(a maximum number of poles in these equations is equal to six). Among the most
interesting ”simplified” equations Chazy emphasized a differential equation of the
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form

y000 D
PQ00�P 00Q

PQ0�P 0Q
y0y00�

P 0Q00�P 00Q0

PQ0�P 0Q
y0
3
; (1.2)

where P; Q are fourth degree polynomials of y with constant coefficients. For equa-
tion (1.2) the corresponding complete equation, according to the Painleve method,
has the form [4]

y000 D

6X
kD1

..y0�a0k/.y
00
�a00k/CAk.y

0
�a0k/

3
C

Bk.y
0
�a0k/

2
CCk.y

0
�a0k//� .y�ak/

�1
C (1.3)

Dy00CEy0C

6Y
iD1

.y�ai /

6X
kD1

Fk

y�ak
;

32 coefficients ak; Ak; Bk; Ck , Fk .k D 1;6/, D, E satisfy the system, consisting
of 31 algebraic and differential equations [4] (Application, systems (5.1)-(5.6)).

Chazy has not completed integration of the system (5.1)-(5.6), and has not ob-
tained the equations of the form (1.3), that was primarily due to the necessity of car-
rying out cumbersome symbolic computations and transformations. He only showed
that some cases of degeneration of this equation are the canonical Painleve equations
[11].

Research in the system (5.1) was conducted in the works [13, 14], and its solution
has the form [8, 14]

Ak D
3ˇ3�6a

4
k
C4�1a

3
k
C3.˛2��2/a

2
k
�3ˇ2ak ��4

6a5
k
�5�1a

4
k
C4�2a

3
k
�3�3a

2
k
C2�4ak ��5

;

ˇ2 D
.3˛2��2/.2˛2�1�3�3/�2�1�4C6�5

�21 C18˛2�6�2
;

ˇ3 D
.�2�3˛2/

�
12˛22 �4�2˛2C�1�3�4�4

�
C2�1�5

2
�
�21 C18˛2�6�2

� ;

(1.4)
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where �k are basic symmetric polynomials, consisting of elements ak .k D 1;6/,
function ˛2 satisfies the equation of the fifth degree

1296˛52 �1296�2˛
4
2C .432�

2
2 C216�1�3�

432�4/˛
3
2 � .48�

3
2 C144�1�3�2�288�4�2�

24�21�4C216�1�5�1296�6/˛
2
2C

.9�23�
2
1 �4�5�

3
1 �8�2�4�

2
1 C144�6�

2
1C

.24�22�3�36�3�4C72�2�5/�1�48�
2
2�4C

108�3�5�864�2�6/˛2�3�
2
1�2�

2
3 �8�

2
1�

2
4�

72�25 C2�
3
1�3�4C12�1�2�3�4�6�

2
1�3�5�

36�2�3�5C48�1�4�5C4�
4
1�6C

144�22�6�48�
2
1�2�6 D 0

(1.5)

and the denominator in the relations (1.4) �21 C18˛2�6�2 is not equal to zero. If the
condition

�21 C18˛2�6�2 D 0 (1.6)

holds, then the values Ak have the form

Ak D�
6ak ��1

108
�

108a3
k
�54�1a

2
k
�6

�
�21 �6�2

�
ak ��

3
1 �108˛3C6�1�2�27�3

6a5
k
�5�1a

4
k
C4�2a

3
k
�3�3a

2
k
C2�4ak ��5

(1.7)

and the equality still preserves

�6 D
1

2
˛3 .4˛3C�3/C

�21 �6�2

5832
��

�1
�
�31 �6�2�1C108˛3C27�3

�
�108�4

�
:

(1.8)

If the coefficients ak are constants and D D 0, then equation (1.3) is simplified

y000 D

6X
kD1

y0y00CAky
03CCky0

y�ak
CEy0 : (1.9)

In the papers [5, 8, 9] by using solutions (1.4), (1.7) the new solutions of the equa-
tion (1.9) were found and properties of such solutions were also studied.
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Let us note that the coefficients ak; Ak; Ck; E of the equation (1.9) connected by
the relations [4, 8, 13]

6X
kD1
j¤k

Cj �Ck
ak �aj

D 2AkCE .k;j D 1;6/ : (1.10)

The number of equations of the kind (1.9) is equal five, since the equation (1.5)
has five, in the general case, complex roots. The essential fact is that for some sets of
values of coefficients ak the roots of the equation (1.5) in radicals can be found (this
case is implemented in the example).

In those cases where the roots of the equation (1.5) can’t be found in the radicals,
the coefficients Ak , Ck are calculated only approximately. It’s worthy to note that
computer algebra systems have built-in functions that allow saving the symbolic form
of the coefficients Ak , Ck and calculate them with a given accuracy (for example, the
function Root-object [1]). For the differential equations built with such approximated
coefficients the integration procedure used in this paper can be applied as well.

Note that the differential equation (1.3) can be studied by constructing an equi-
valent system of two differential equations. In paper [4] Chazy built such a system.
Other equivalent systems were built by N.A. Lukashevich [12]. For equation (1.9)
the equivalent systems were built in the papers [10, 18]. Here the coefficients of the
obtained systems have been found with the help of an analytical method, which was
implemented as a software module.

Study of the equation (1.3) can be carried out also by using the approximate
method proposed by V.N. Orlov [15]. This method is based on the separation of
the domain of construction solutions into a regular area and into neighborhoods of
movable critical points, and on the construction of a sequence of analytic continu-
ations.

The method of constructing one- and two-parameter families of solutions of the
equation (1.3) for certain values of coefficients is considered in [6, 7].

An important circumstance facilitating the study of the equation (1.9) is that by
substituting

dy

dx
D
p
´.y/; (1.11)

proposed by N.A.Lukashevich [13], this equation can be linearized. Indeed, as shown
in [8] equation (1.9) reduced to the linear equation of the second order with six dif-
ferent poles with respect to the independent variable

d2´

dy2
D

6X
iD1

1

y�ai

d´

dy
C2

6X
iD1

Ai

y�ai
´C2

6X
iD1

Ci
y�ai

CE: (1.12)

In the paper [8] proved that the solution of equation (1.9) with coefficients that
satisfy the relations (1.4) - (1.8) and the system (1.10), is constructed by means of the



COMPUTER ALGORITHM FOR SOLVING OF THE CHAZY EQUATION 705

quadrature with using the inverse value of the general solution of equation (1.12). For
the certain values of the coefficients ak the general solution is written by means of
elliptic functions, and in the simplest cases - even by means of elementary functions.

In this paper we propose a computational algorithm for constructing the Chazy
equation of the form (1.9) with coefficients satisfying the relations (1.4) - (1.8),
(1.10). This equation can be integrated in the symbolic form and depends on the
set values of the six coefficients ak ([8, 9, 17]). The integration of the obtained equa-
tions is demonstrated by the example. All analytical transformations and numerical
calculations are performed using computer algebra system Mathematica.

2. AN ALGORITHM FOR CONSTRUCTING EQUATIONS AND THEIR INTEGRATION

The proposed algorithm consists of several steps.
a) We determine values of the coefficients ak and calculate the values of the basic

symmetric polynomials �k , composed of them. After this we find five roots ˛2i
.i D 1;5/ of the equation (1.5).

b) Using formulas (1.4) or (1.7)-(1.8) with the condition (1.6) for the given values
ak and ˛2i we find the corresponding values of the coefficients Ak .k D 1;6/.

c) For each from the five found sets of values ak , Ak .k D 1;6/, we solve system
(1.10) with respect to unknowns Ck; system (1.10) is degenerate and therefore we
will solve it for the unknown Cj .j D 3;6/ , which will depend on the values of C1;
C2, E).

d) We substitute the obtained values ak , Ak .k D 1;6/ and values Cj .j D 3;6/
for each of the roots ˛2i .i D 1;5/ into equation (1.9). As a result, we obtain five
differential equations.

e) Using substitution (1.11) we linearize each of the five equations and write them
as equation (1.12). If the coefficient of E is constant, then the resulting linear equa-
tion can be integrated. Then, using the inverse of (1.11) substitution, we find a general
solution for each of the five equations in the form (1.9). As a result, we obtain fam-
ilies of functions defined in the implicit form; they contain three parameters C1; C2,
E and three arbitrary constants ci .i D 1;2;3/. If the coefficient of E is not constant,
it is required in each case to check the integrability of the resulting linear equation.
If the linear equation can be integrated, then we find a general solution of equation
(1.9) and use the inverse substitution for (1.11).

3. EXAMPLE

Algorithm for constructing equations presented above and their integration we
demonstrate by the example. We choose the values of ak .k D 1;6/ such that the
roots of the equation (1.5) can be found by using radicals.

Consider the equation (1.9) where E D const with coefficients of the form

a1 D 1; a2 D�1; a3 D 2;a4 D�2; a5 D
1

2
; a6 D�

1

2
: (3.1)
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Follow the step a) of algorithm, we obtain a polynomial

1296˛52C27216˛
4
2C154224˛

3
2 �146448˛

2
2 �2939328˛2�4064256: (3.2)

The roots of the polynomial (3.2) ˛2 have the form

1; �

p
57C11

8
;

p
57�11

8
;�
7

4
; (3.3)

and the root �7
4

is a double and satisfies the equation (1.6). Note that the first three
roots do not satisfy the equation (1.6), therefore, to calculate coefficients Ak .k D
1;6/ we use formulas (1.4).

For root ˛21 D 1 we find the following values of the coefficients:

A1 D�1; A2 D 1; A3 D�
13
20
;

A4 D
13
20
; A5 D�

7
5
; A6 D

7
5
;

C3 D
45C1C19C2C24E

40
; C4 D

19C1C45C2�24E
40

;

C5 D
18C1�10C2�3E

20
; C6 D

18C2�10C1C3E
20

;

(3.4)

where C1; C2; E are arbitrary constants. Equation (1.9) with coefficients (3.1), (3.4)
reduced by the substitution (1.11) to the equation (1.12) of the form

3C1.yC1/2.8y3�8y2�14yC11/C
3C2.y�1/2.8y3C8y2�14y�11/C
.8y6�24y4C24y2�8/E�

.48y4�150y2C66/´C

.24y5�84y3C42y/´0�

.4y6�21y4C21y2�4/´00 D 0:

(3.5)

Equation (3.5) is linear nonhomogeneous differential equation of the second order
with variable coefficients. Integration of this equation can be performed by the clas-
sical method. For this we integrate the first corresponding homogeneous equation,
then by using quadratures we find its solution. These calculations are implemented
by using computer algebra systems (for example, using the function DSolve [2, 17]
in Mathematica system). One can also use the search algorithm of rational solutions
of linear ordinary differential equations with polynomial coefficients presented in the
work [3]. The general solution of equation (3.5) has the form

´D 1
2
.C1.2yC1/CC2.2y�1/C

2.c1.2y
2�5yC2//2Cy.c2y

2C c2CEy///;
(3.6)

where c1; c2 are arbitrary constants. Substituting the expression (3.6) into formula
(1.11), and integrating the resulting equation, we find the general solution of equation



COMPUTER ALGORITHM FOR SOLVING OF THE CHAZY EQUATION 707

(1.9), (3.1), (3.4) implicitly

2F

�
arcsin

�r
. 2� 4/. 1�y.x//
. 1� 4/. 2�y.x//

�
j
. 2� 3/. 1� 4/
. 1� 3/. 2� 4/

�
. 1� 4/

p
´

�

. 1�y.x//

r
. 1� 2/. 3�y.x//

. 1� 3/. 2�y.x//
. 4�y.x//r

. 1� 2/. 2� 4/. 1�y.x//. 4�y.x//

. 1� 4/
2. 2�y.x//2

D
xp
2
C c3;

(3.7)

where  i � RootŒ8]14c1C ]13.2c2� 40c1/C ]12.66c1C 2E/C ]1.2C1C 2C2�
40c1C2c2/CC1�C2C8c1&; i � .i D 1;4/ [1]; ´ denotes the right part of equation
(3.6), c3 is an arbitrary constant, function F is an elliptic integral of the first kind.

Although the function (3.7) has a sufficiently complicated form, its visualization
is easily represented under a given set of parameters. For example, the plot of the
solution

x D
F
�

sin�1
�
2y
5

�
j
25
36

�p
25�4y2

p
9�y2

6
p
4y4�61y2C225

;

which was obtained from the general solution of (3.7) for the following parameters:

c1 D 1; c2 D 20; c3 D 0;C1 D 221;C2 D�221;E D�94;

has the simple form (Fig. 1, continuous curve). These values of the parameters
correspond to the initial condition y.0/ D 0 for the equation (1.11), where ´.y/ is
determined by the equation (3.6). We apply numerical integration to the Cauchy
problem formulated in such a way and plot the corresponding graph (Fig. 1, dashed
line). Figure 1 shows that the two curves (continuous and dashed) coincide.

Remark. Using the computer algebra systems for the analytical solutions (3.7)
gives us the possibility to easily visualize the dependence of the six parameters
c1; c2; c3; C1, C2; E. We choose the certain values of these parameters and then
can draw graph of the solution at the selected interval of variable x. For the root
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FIGURE 1. The graphs of the analytical and numerical solutions on
the interval [-1/2, 1/2].

˛22 D
1
8
.
p
57�11/ coefficients Ak , Ck have the form

A1 D�
1
6

�
6C
p
57
�
; A2 D

1
6

�
6C
p
57
�
;

A3 D
1
24

�p
57�27

�
; A4 D

1
24

�
27�
p
57
�
;

A5 D
1
6

�
3C
p
57
�
; A6 D

1
6

�
�3�

p
57
�
;

C3 D
9.7
p
57�27/C1C.133�9

p
57/C2C12.5

p
57�7/E

4.79C5
p
57/

;

C4 D
.133�9

p
57/C1C9.7

p
57�27/C2C12.7�5

p
57/E

4.79C5
p
57/

;

C5 D
�9.33C

p
57/C1C.127�17

p
57/C2C.45

p
57�321/E

4.79C5
p
57/

;

C6 D
.127�17

p
57/C1�9.33C

p
57/C2C.321�45

p
57/E

4.79C5
p
57/

;

(3.8)
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where C1; C2; E are arbitrary parameters. The general solution of the corresponding
linear equation (1.12) has the form

´D c1y
�
y2C

p
57�11
8

�
C c2.4

�
509C31

p
57
�
y4C�

4941C903
p
57
�
y2�425

p
57�3683/C

.3C4
p
57/.C1CC2/yC.7

p
57�27/.C1�C2/

79C5
p
57

CE
�
y2C 2

p
57�19
7

�
;

(3.9)

where c1; c2 are arbitrary constants. Substitute the relation (3.9) into formula (1.11).
After integration we find the general solution of equation (1.9), (3.1), (3.8) using
elliptic functions, similar to (3.7).

Under certain parameter sets the general solution can be expressed in the terms of
elementary functions. For example, if

E D�3
8

�
51C

p
57
�
; C1 D 80C32

q
19
3
;

C2 D�80�32
q
19
3
; c1 D 0; c2 D

1

2036C124
p
57
;

then we obtain the one-parameter family of solutions of the form

y D
3�3e6.c3Cx/

e6.c3Cx/C1
;

where c3 is arbitrary constant.
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For root ˛23 D�18.
p
57C11/ coefficients Ak , Ck have the form

A1 D�1C

p
57

6
; A2 D 1�

p
57

6
;

A3 D�

p
57C27

24
; A4 D

27C
p
57

24
;

A5 D
1

6

�
3�
p
57
�
; A6 D

1

6

�p
57�3

�
;

C3 D
9
�
7
p
57C27

�
C1�

�
133C9

p
57
�

C2C12
�
5
p
57C7

�
E

4
�
5
p
57�79

� ;

C4 D

�
133C9

p
57
�

C1�9
�
7
p
57C27

�
C2C12

�
7C5

p
57
�
E

4
�
79�5

p
57
� ;

C5 D
9
�p

57�33
�

C1C
�
127C17

p
57
�

C2�3
�
107C15

p
57
�
E

4
�
79�5

p
57
� ;

C6 D

�
127C17

p
57
�

C1�9
�
33�
p
57
�

C2C .321C45
p
57/E

4
�
79�5

p
57
� ;

(3.10)

where C1; C2; E are arbitrary parameters. The general solution of the corresponding
linear equation (1.12) has the form

´D c1y.y
2
�

p
57C11

8
/C c2.4.509�31

p
57/y4C

.4941�903
p
57/y2C425

p
57�3683/�

3C
p
57

16
.C1CC2/y�

6C
p
57

7
.C1�C2/CE

 
y2�

2
p
57C19

7

!
;

(3.11)

where c1; c2 are arbitrary constants. We substitute the relation (3.11) into formula
(1.11). After integration we find the general solution of equation (1.9), (3.1), (3.10)
using elliptic functions, similar to (3.7).

Let’s now turn to the study of the multiple root ˛24 D �74 . Since the condition
(1.6) for the root is performed, then to calculate coefficients Ak , Ck we use formulas
(1.7), (1.8). In this case, due to the multiplicity (is equal two) of the root, we will
build two of the differential equations of the form (1.9) for which the corresponding
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coefficients Ak have the form

A1 D�1C

r
11

6
; A2 D 1C

r
11

6
;

A3 D�
36C

p
66

30
; A4 D

36�
p
66

30
;

A5 D
12�2

p
66

15
; A6 D�

2

15

�
6C
p
66
�
; ˛3 D�

1

4

r
33

2

(3.12)

or

A1 D�1�

r
11

6
; A2 D 1�

r
11

6
;

A3 D

p
66�36

30
; A4 D

36C
p
66

30
;

A5 D
12C2

p
66

15
; A6 D

2

15

�p
66�6

�
; ˛3 D

1

4

r
33

2
:

(3.13)

Sets of coefficients (3.12) and (3.13) define the two different types of equations
(1.9).

Substituting coefficients (3.1), (3.12) into system (1.10) and solving it, we calcu-
late

C3 D
�9.6C

p
66/C1C .

p
66�14/C2�6.

p
66�4/E

40
;

C4 D
�.14C

p
66/C1C9.

p
66�6/C2�6.4C

p
66/E

40
;

C5 D
9.
p
66�6/C1� .14C

p
66/C2�6.4C

p
66/E

160
;

C6 D
.
p
66�14/C1�9.6C

p
66/C2�6.

p
66�4/E

160
;

(3.14)

where C1; C2; E are arbitrary parameters. The general solution of the corresponding
linear equation (1.12) has the form

´D c1.y
2
C1/.

p
11y2�

p
6y�

p
11/C

c2.11�
p
57�8y2/.y..

p
66C

p
418/y�44/C

p
418�

p
66/CC1.�

1

8

r
33

2
.yC1/�

3

16
.2yC1//C

1

16
C2..
p
66�6/y�

p
66C3/CE.y2�

1

8
.
p
66yC11//;

(3.15)

where c1; c2 are arbitrary constants. Substituting relation (3.15) into formula (1.11)
and integrating the obtained equation, we find the general solution of equation (1.9),
(3.1), (3.12), (3.14) using the elliptic functions in the implicit form, similar to (3.7).
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Set of coefficients (3.13) corresponds to the following values of the coefficients
Ck

C3 D
9.
p
66�6/C1� .

p
66C14/C2C6.

p
66C4/E

40
;

C4 D
.
p
66�14/C1�9.

p
66C6/C2C6.

p
66�4/E

40
;

C5 D
�9.
p
66C6/C1C .

p
66�14/C2C6.

p
66�4/E

160
;

C6 D
�.
p
66C14/C1C9.

p
66�6/C2C6.

p
66C4/E

160
and the corresponding differential equation is integrated in a similar way; its solution
is built in the implicit form, too.

4. CONCLUSIONS

The algorithm to determine the coefficients of the nonlinear third-order differential
equation with six constant poles with respect to the unknown function - that satisfy
the system of algebraic equations - is described. Five differential equations are in-
tegrated for the case when the roots of the corresponding algebraic equation of the
fifth degree are expressed in radicals. Their general solutions are obtained using the
elliptic functions and depend on three parameters and three arbitrary constants of
integration.

It should be noted that the computational algorithm for the construction of dif-
ferential equations and their integration procedure are connected with carrying out
of cumbersome calculations, which have been performed using a computer algebra
system Mathematica.

The results can be used in the study of the equation (1.3) in the case when the
coefficients ak are not constants.

The author is grateful to Professor A.N. Prokopenya for useful discussion and
valuable comments.
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5. APPLICATION

The system of algebraic and differential equations determines the coefficients of
the equation (1.3):

6X
kD1

Ak D 0;

6X
kD1

akAk D�6;

6X
kD1

ak
2Ak D�2

6X
kD1

ak;

2A2kC
X
j

Ak �Aj

ak �aj
D 0 .k;j D 1;6I k ¤ j /;

(5.1)

0@5
2
Ak �

X
j

1

ak �aj

1ABkCX
j

�
1

2
AkC

1

ak �aj

�
Bj D

�A0kCAk
X
j

a0
k
�a0j

ak �aj
�3

X
j

Aj
a0
k
�a0j

ak �aj
C
3

2
Ak

6X
iD1

a0iAi ;

(5.2)

2DC

6X
kD1

.Bk �3a
0
kAk/D 0; (5.3)

�

0@2AkCX
j

1

ak �aj

1ACkC
X
j

Cj
ak �aj

D B2k �B
0
k�

Bk
X
j

a0
k
�a0j

ak �aj
�

X
j

3Aj .a
0
k
�a0j /

2C2Bj .a
0
k
�a0j /

ak �aj
C

BkD�E�
X
j

a00
k
�a00j

ak �aj
;

(5.4)

�a000k �BkCkCC0kC
X
j

.a0
k
�a0j /.a

00
k
�a00j �Ck/

ak �aj
C

X
j

Aj .a
0
k
�a0j /

3CBj .a
0
k
�a0j /

2CCk/.a
0
k
�a0j /

ak �aj
C

Ea0kCD.a
00
k �Ck/CFk

Y
j

.ak �aj /D 0;

(5.5)
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6X
kD1

Fk D

6X
kD1

akFk D

6X
kD1

ak
2Fk D 0; (5.6)

where k;j D 1;6I k ¤ j .
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