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Abstract. We establish some mean value theorems involving n-simple functionals in the sense

of Popoviciu. In particular, we obtain the Kowalewski mean value formula.
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1. PRELIMINARIES AND AUXILIARY RESULTS

Throughout the paper n > 1 denotes an integer. Let [a,b] be a real interval and
a<xg<--<xp=<bh.

1.1. The divided difference

In most books on numerical analysis, the divided differences of a function
f:{x0,...,Xn} = R are defined recursively:

[xi; f1:= f(xi), i=0,...,n,

_xnxks f1=1[x0, - Xk f]

[x0,....xk; f] = , k=1,...,n,
Xk — X0
but can be written also in terms of determinants,
Ioxo - xib flxo)
[ 1 1 Loxp o X0 f(x)
b T Sl B e — . . . )
Uoxn o xph f)
where V(xo,...,x,) denotes the Vandermonde determinant
1 X0 e xg
1 X1 e x’f
1 Xy Xy
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1.2. Convexity of high order

The standard definition of n-convex functions is that through divided differences
(see, e.g., [0]). A function f:[a,b] — R is said to be n-convex if
[x0,...,xXn; f] >0,
for any pairwise distinct points xg, ..., X, € [a,b].

1.3. Simple form functionals

Let ¢;:[a,b] — R, ¢;(x) = x', i =0,1,...,n. The definition and the theorem
rewritten below belong to Popoviciu.

Definition 1 ([7,9]). A linear functional A:C|[a,b] — R is said to be n-simple in
the sense of Popoviciu if:
(i) A(eo) = A(er) =+ = A(en—1) =0,
(i) A(f) # 0 for any n-convex function f € Cla,b].
In particular, A(e,) # 0.

A connection between divided differences and n-simple functionals is supplied by
the following celebrated result of Popoviciu.

Theorem 1 ([7,9, Popoviciul). A linear functional A:C|a,b] — R is n-simple if
and only if for any f € C|a,b), there exist distinct points &, ...,&, € (a,b) such that

A(f) = Alen)[§o.--..8n: /1. (1.1)

1.4. The finite difference operator

The finite difference with step & (0 < h < (b—a)/n) of the function f:[a,b] - R
at the point x € [a,b) is defined by
n
HIOED IS (Z) f(x+@=kon).
k=0
Recall that finite difference can be written as a divided difference on equidistant
points:
A f(x) =nh"[x,x+h,....x+nh; f].
Let f possess a derivative of order n on the interval (a,b) and x, x +nh € [a, b].
By using the Lagrange mean value theorem, one can prove, step by step, that there
exist cx € (x,x +nh),k =1,2,...,n, such that:

A F)=h A f(er) == R ATF f B ey = o = 1" A F D (cn), (12)
where A9 £ @ (c,) = £ (cy)

One connection between the divided difference and the n-th derivative of a func-
tion is given by a classical result of Cauchy (see, e.g., [11, Theorem 2.10]):
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Proposition 1 (Cauchy). Let f € C"[a,b] and xy, ..., X, be pairwise distinct
points in [a,b]. Then there exists at least one point € € [a,b] such that
VARG)
[X0,.--,Xn: f]= Tt

A much deeper mean value property for divided differences is provided by the
following theorem of Popoviciu.

Proposition 2 ([8, Popoviciu (1954)]). If the function f is continuous on an in-
terval [a,b] containing the distinct points Xy, ..., Xn, then there exists ¢ € (a,b) and
h >0 such that

Ay ()

n!h?
The following result is a generalization of Cauchy’s mean-value theorem:
Theorem 2 ([3, Kowalewski (1932), p. 16] and [10, Raikov (1939)]). If

1. g:[a,b] — R are continuous and n times differentiable on (a;b), and g™ (x) # 0
for any x € (a,b), then there exists a point ¢ € (a,b) such that

[x0.- - xns f] _ f™(e)
[x0,....xn: €] g™(c)’

For the purpose of simplicity, and without loss of generality, we will drop out
the condition g™ (x) # 0 for any x € (a,b) and consider the following form of the
previous equation,

[X0,- o x5 F12™(¢) = [x0, ..., xn: 8] £ (). (1.4)

[x0,....xn: f]= (1.3)

2. MAIN RESULTS

We give a simple elementary self-contained proof of Kowalewski’s mean value for-
mula (1.4) (see also [4]). Furthermore, we generalize (1.4) in two directions. Firstly,
the divided differences are replaced with an n-simple functional. Secondly, we take
a combination of forward differences and derivatives in place of the n-th derivatives
in (1.4).

Consider the auxiliary function H : [a,b] — R,

1 xo -+ xB7' f(xo) g(x0)

Loxr - X0 f(x) g(x)
Hx)=|:@ + - : : :

Xn x,’f_l S(xn) g(xn)

x e X" fx) g(x)
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Itis obvious that H(x;) =0,i =0,1,...,n. By using the Generalized Rolle Theorem,
we deduce that there exists a point ¢ € (xg, x,) such that H™ (¢) =0, i.e.,

I xo = xg7'  f(xo) g(xo)
Loxp o X7t fa) glx)
O=|: :+ "~ : :
I xp - x}r;—l Sfxn)  g(xn)
0o 0 - 0 fMe) g™()
By expanding the previous determinant in terms of the last row, and dividing the
result by the Vandermonde determinant V(xg,...,x,), the proof is complete. O

The following result is a generalization of Kowalewski’s mean value formula (1.4).

Theorem 3. Let A:Cla,b] — R be an n-simple functional. and suppose that
f, g:la,b] — R are continuous and possess derivatives of suitable order on (a,b).
Then there exist points cy € (a,b), k =0,...,n, such that

A 857 8O () = A(g) A57F f O (). 2.1

In the particular cases of k = n, and k = 0, Eq. (2.1) gives:
A(S) 8 (en) = A(8) £ ™ (cn). (22)
A(f) Apg(co) = A(g) A}, f(co). (2.3)

Proof. We consider the auxiliary function % : [a,b] — R,

h=A(f)g—A@) /.
It follows that A(h) = 0. Since A(e,) # 0, using (1.1) we deduce that there exist
distinct points &g, ...,&, € (a,b) such that

[SO”snvh] =O

By using Popoviciu’s mean value formula (1.3), we deduce that there exists a point
¢ € (a,b) such that
Aph(c) =0.
Next, by using (1.2), we obtain that there exist ¢ € (a,b) such that
Ak ® ey =0, k=1,2,...,n,
and the proof is complete. 0

Remark 1. Since the functional A(f) := [xo,...,X,; f] is obviously of simple
form, from Theorem 3, Eq. (2.2), we deduce the Kowalevski result (1.4).
A variant of the Kowalevski result (1.4) in the case of non-differentiable functions,
ie.,
[X0, ..., Xn; f1 AQg(co) = [xo,....xn: 8] A} f(co),
follows from (2.3).
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We end the paper with an application of Peano’s representation formula for con-
tinuous linear functionals. For ¢ € [a, b], let ¢;:[a,b] — R,

n—1
gr(x):=(x—0)""1:= (%lx—ﬂ) , X € [a,b].

If A:C"[a,b] — R is a continuous linear functional with the property that
A(e;j) =0, i=0,...,n—1,

then the following representation formula (see, e.g., [1,2,5]),

L[ )
A = =57 |, A0 10w @4

holds true.

Remark 2. Let A:Cla,b] — R be a continuous n-simple functional and suppose
that f, g € C"[a,b]. Then there exist points ¢ € (a,b), k =0,...,n, such that

1
Ak g® () /0 A(C—07Y) £ 0y ds

1
=27 1O [ A=) g
Proof. In (2.1) we replace A by its Peano representation (2.4). O
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