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Abstract. In this paper, we investigate the complex oscillation of the nonhomogeneous linear
differential polynomial gf D d1f

0
C d0f C b. Here d0 .´/ ; d1 .´/, b .´/ are meromorphic

functions such that at least one of d0 .´/ and d1 .´/ does not vanish identically with �p
�
dj
�
<1

.j D 0;1/ ;�p .b/ <1, and f is a solution of the differential equation f
00
CA.´/f D 0; where

A.´/ is a transcendental meromorphic function with finite iterated order �p .A/D � > 0.
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1. INTRODUCTION AND MAIN RESULT

For the definition of the iterated order of a meromorphic function, we use the same
definition as in [3]([2], p. 317), ([4], p. 129). For all r 2 R, we define exp1 r WD e

r

and exppC1 r WD exp
�
expp r

�
; p 2N. We also define for all sufficiently large r the

functions log1 r WD logr and logpC1 r WD log
�
logp r

�
; p 2N. Moreover, we denote

by exp0 r WD r; log0 r WD r; log�1 r WD exp1 r and exp�1 r WD log1 r:

Definition 1 ([3,4]). Let f be a meromorphic function. Then the iterated p�order
�p .f / of f is defined by

�p .f /D lim
r!C1

logpT .r; f /

log r
.p � 1 is an integer/ ; (1.1)

where T .r; f / is the Nevanlinna characteristic function of f . For p D 1, this nota-
tion is called order and for p D 2 hyper-order (see [7]).
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Definition 2 ([3]). The finiteness degree of the order of a meromorphic function
f is defined by

i .f /D

8̂̂<̂
:̂

0; if f is rational;
min

˚
j 2N W �j .f / <C1

	
; if f is transcendental such that

some j 2N with �j .f / <C1 exists,
C1; for f with �j .f /DC1 for all j 2N:

Definition 3 ([3,5]). Let f be a meromorphic function. Then the iterated exponent
of convergence of the sequence of distinct zeros of f .´/ is defined by

�p .f /D lim
r!C1

logpN
�
r; 1
f

�
logr

.p � 1 is an integer/ ; (1.2)

where N
�
r; 1
f

�
is the counting function of distinct zeros of f .´/ in f´ W j´j< rg.

For p D 1, this notation is called the exponent of convergence of the sequence of
distinct zeros and for p D 2 the hyper-exponent of convergence of the sequence of
distinct zeros (see [6]).

Definition 4 ([5]). Let f be a meromorphic function. Then the iterated exponent
of convergence of the sequence of distinct fixed points of f .´/ is defined by

�p .f /D �p .f �´/D lim
r!C1

logpN
�
r; 1
f �´

�
logr

.p � 1 is an integer/ : (1.3)

For pD 1, this notation is called the exponent of convergence of the sequence of dis-
tinct fixed points and for pD 2 the hyper-exponent of convergence of the sequence of
distinct fixed points (see [6]). Thus �p .f /D�p .f �´/ is an indication of oscillation
of distinct fixed points of f .´/ :

Let L.G/ denote a differential subfield of the field M .G/ of meromorphic func-
tions in a domain G�C: If GDC; we simply use L instead of L.C/ : A special
case of such differential subfields is

LpC1;� D
˚
g meromorphic: �pC1 .g/ < �

	
; (1.4)

where � is a positive constant.
Consider the linear differential equation

f
00

CA.´/f D 0; (1.5)

where A.´/ is a transcendental meromorphic function with finite iterated order
�p .A/D � > 0: Since the beginning of the last four decades, a substantial number of
research articles have been written to describe the fixed points of general transcend-
ental meromorphic functions (see [8]). However, there are few studies on the fixed
points of solutions of general differential equations. In [5] Laine and Rieppo have
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investigated the fixed points and iterated order of equation (1.5) and have obtained
the following result:

Theorem 1 ([5]). Let A.´/ be a transcendental meromorphic function of finite
iterated order �p .A/D � > 0 such that ı .1;A/D lim

r!C1

m.r;A/
T .r;A/

D ı > 0, and let f

be a transcendental meromorphic solution of equation (1.5). Suppose, moreover, that
either:

(i) all poles of f are of uniformly bounded multiplicity or
(ii) ı .1;f / > 0.

Then �pC1 .f /D �p .A/D �. Moreover, let

P Œf �D P
�
f;f

0

; : : : ;f .m/
�
D

mX
jD0

pjf
.j / (1.6)

be a linear differential polynomial with coefficients pj 2 LpC1;�, assuming that at
least one of the coefficients pj does not vanish identically. Then for the fixed points of
P Œf �, we have �pC1 .P Œf �/D �, provided that neither P Œf � nor P Œf ��´ vanishes
identically.

Remark 1 ([5], p. 904). In Theorem 1; in order to studyP Œf � ; the authors consider
m� 1: Indeed, if m� 2; we obtain, by repeated differentiation of .1:5/; that f .k/ D
qk;0f Cqk;1f

0

; qk;0; qk;1 2LpC1;� for k D 2; : : : ;m: Substitution into .1:6/ yields
the required reduction.

The main purpose of this paper is to investigate the fixed points of the nonhomo-
geneous linear differential polynomial gf D d1f

0

Cd0f C b; where d0 .´/, d1 .´/,
b .´/ are meromorphic functions generated by solutions of equation .1:5/. Instead of
looking at the zeros of gf �´; we proceed to a slight generalization by considering
zeros of gf �' .´/, where ' is a meromorphic function of finite iterated p�order,
while the solution of respective differential equation is of infinite iterated p�order.

Let us denote by

˛0 D d
0

0�d1A; ˛1 D d0Cd
0

1; (1.7)

hD d1˛0�d0˛1; (1.8)

where A; dj .j D 0;1/ are meromorphic functions. We obtain:

Theorem 2. Let A.´/ be a transcendental meromorphic function of finite iterated
order �p .A/D � > 0 such that ı .1;A/D ı > 0, let d0 .´/ ; d1 .´/ ; b .´/ be mero-
morphic functions such that at least one of d0 .´/ ; d1 .´/ does not vanish identically
with �p

�
dj
�
<1 .j D 0;1/ ; �p .b/ <1 such that h 6� 0. Let ' .´/. 6� 0/ be a mero-

morphic function of finite iterated p� order such that d1
�
'

0

�b
0
�
�˛1 .'�b/ 6� 0:

Suppose, moreover, that either:
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(i) all poles of f are of uniformly bounded multiplicity or
(ii) ı .1;f / > 0.

If f .´/ 6� 0 is a meromorphic solution of .1:5/; then the differential polynomial
gf D d1f

0

Cd0f Cb satisfies �p
�
gf �'

�
D �p .f /DC1 and �pC1

�
gf �'

�
D

�pC1 .f /D �p .A/D �.

Setting p D 1 and ' .´/D ´ in Theorem 2, we obtain the following corollary:

Corollary 1. Let A.´/ be a transcendental meromorphic function of finite order
�.A/ D � > 0 such that ı .1;A/ D ı > 0, let d0 .´/ ;d1 .´/ ;b .´/ be meromorphic
functions such that at least one of d0 .´/ ;d1 .´/ does not vanish identically with
�
�
dj
�
<1 .j D 0;1/ ;� .b/ <1 such that h 6� 0 and d1

�
1�b

0
�
� ˛1 .´�b/ 6�

0: Suppose, moreover, that either:
(i) all poles of f are of uniformly bounded multiplicity or

(ii) ı .1;f / > 0.
If f .´/ 6� 0 is a meromorphic solution of (1.5), then the differential polynomial gf D
d1f

0

Cd0f Cb has infinitely many fixed points and satisfies �
�
gf
�
D �.f /DC1,

�2
�
gf
�
D �2 .f /D �.A/D �.

2. SOME LEMMAS

We need the following lemmas in the proofs of our theorem.

Lemma 1 (see Remark 1.3 of [3]). If f is a meromorphic function with i .f /D
p � 1, then �p .f /D �p

�
f

0
�

.

Lemma 2 ([5]). If f is a meromorphic function with 0< �p .f / < � .p � 1/ ; then
�pC1 .f /D 0.

Lemma 3 ([1]). Let k � 2 and A.´/ be a transcendental meromorphic function of
finite iterated order �p .A/D � > 0 such that ı .1;A/D ı > 0. Suppose, moreover,
that either:

(i) all poles of f are of uniformly bounded multiplicity or
(ii) ı .1;f / > 0.

Then every meromorphic solution f .´/ 6� 0 of

f .k/CA.´/f D 0; (2.1)

satisfies i .f /D pC1; �p .f /DC1 and �pC1 .f /D �p .A/D �.

Lemma 4 ([1]). Let A0;A1; : : : ;Ak�1; F 6� 0 be finite iterated p-order mero-
morphic functions. If f is a meromorphic solution with �p .f /DC1 and �pC1 .f /D
� <C1 of the equation

f .k/CAk�1f
.k�1/

C�� �CA1f
0

CA0f D F; (2.2)
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then �p .f /D �p .f /DC1 and �pC1 .f /D �pC1 .f /D �.

Lemma 5. LetA.´/ be a transcendental meromorphic function with finite iterated
order �p .A/D � > 0 such that ı .1;A/D ı > 0. Let d0 .´/, d1 .´/ ; b .´/ be mero-
morphic functions such that at least one of d0 .´/ ; d1 .´/ does not vanish identically
with �p

�
dj
�
<1 .j D 0;1/ ; �p .b/ <1 such that h 6� 0. Suppose, moreover, that

either:
(i) all poles of f are of uniformly bounded multiplicity or

(ii) ı .1;f / > 0.
If f .´/ 6� 0 is a meromorphic solution of (1.5), then the differential polynomial

gf D d1f
0

Cd0f Cb (2.3)

satisfies i
�
gf
�
D pC 1; �p

�
gf
�
D �p .f / D C1 and �pC1

�
gf
�
D �pC1 .f / D

�p .A/D �.

Proof. Suppose that f . 6� 0/ is a meromorphic solution of equation .1:5/: Then
by Lemma 3, we have �p .f / D C1 and �pC1 .f / D �p .A/ D �: Differentiating
both sides of equation .2:3/ and replacing f

00

with f
00

D�Af; we obtain

g
0

f �b
0

D .d0Cd
0

1/f
0

C .d
0

0�d1A/f: (2.4)

Then by .1:7/; .2:3/ and .2:4/; we have

d1f
0

Cd0f D gf �b; (2.5)

˛1f
0

C˛0f D g
0

f �b
0

: (2.6)

Set
hD d1˛0�˛1d0 D d1

�
d

0

0�d1A
�
�d0.d0Cd

0

1/: (2.7)

By the condition h 6� 0 and .2:5/� .2:7/, we get

f D
d1

�
g

0

f
�b

0
�
�˛1

�
gf �b

�
h

: (2.8)

If �p
�
gf
�
<C1; then by .2:8/ and Lemma 1 we obtain �p .f / <C1, and this is a

contradiction. Hence �p
�
gf
�
D �p .f /DC1:

Now, we prove that �pC1
�
gf
�
D �pC1 .f /D �: By .2:3/, Lemma 1 and Lemma

2, we get �pC1
�
gf
�
� �pC1 .f / and by .2:8/ we have �pC1 .f / � �pC1

�
gf
�
. This

yield �pC1
�
gf
�
D �pC1 .f /D �: □

Remark 2. In Lemma 5, if we don’t have the condition h 6� 0; then the differential
polynomial can be of finite iterated p-order. For example, if d

0

0�d1A� 0 and d
0

1C

d0 � 0; then h� 0 and g
0

f
�b

0

� 0: It follows that �p
�
gf
�
D �p

�
g

0

f

�
D �p

�
b

0
�
D

�p .b/ <C1. Hence, the condition h 6� 0 is necessary in Theorem 2.
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3. PROOF OF THEOREM 2

Suppose that f .´/ 6� 0 is a meromorphic solution of .1:5/: Then by Lemma 3,
we have �p .f / D C1 and �pC1 .f / D �p .A/ D �: By Lemma 5, it is clear that
gf 6� 0 and gf 6� ': Set w.´/D d1f

0

Cd0f Cb�'; since �p .'/ <C1; then by
Lemma 5 we have �p .w/D �p

�
gf
�
D �p .f /DC1 and �pC1 .w/D �pC1

�
gf
�
D

�pC1 .f /D �p .A/D �. In order to prove �p
�
gf �'

�
DC1 and �pC1

�
gf �'

�
D

�p .A/D �, we need to prove only �p .w/DC1 and �pC1 .w/D �p .A/D �: Sub-
stituting gf D wC' into .2:8/

f D
d1w

0

�˛1w

h
C ; (3.1)

where

 D
d1

�
'

0

�b
0
�
�˛1 .'�b/

h
: (3.2)

Substituting .3:1/ into equation .1:5/; we obtain
d1

h
w

000

C�2w
00

C�1w
0

C�0w D�
�
 

00

CA.´/ 
�
DW; (3.3)

where �j .j D 0;1;2/ are meromorphic functions with �p
�
�j
�
<1 .j D 0;1;2/.

By �p . / <C1 and the condition  6� 0, it follows by Lemma 3 that W 6� 0: By
Lemma 4, we obtain �p .w/ D �p .w/ D C1 and �pC1 .w/ D �pC1 .w/ D �; i.e.,
�p
�
gf �'

�
D �p .f /DC1 and �pC1

�
gf �'

�
D �pC1 .f /D �p .A/D �:

Remark 3. From the proof of Theorem 2, we see that the condition d1
�
'

0

�b
0
�
�

˛1 .'�b/ 6� 0 is necessary because if d1
�
'

0

�b
0
�
�˛1 .'�b/� 0; then  � 0 and

W � 0:
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