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Abstract. In this paper we prove some new results on near-vector spaces and near domains and
give a first application of the nearring of quotients with respect to a multiplicative set, namely we
construct a new class of near-vector spaces from near domains.
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1. INTRODUCTION

André [1] first generalised the concept of a vector space, i.e., a linear space, to a
structure comprising a bit more non-linearity, the so-called near-vector space. In
[12] van der Walt showed how to construct an arbitrary finite-dimensional near-
vector space, using a finite number of near-fields, all having isomorphic multiplic-
ative semigroups. This construction was used in [7] to characterise all finite dimen-
sional near-vector spaces over Zp, for p a prime. These results were extended in [8]
to all finite dimensional near-vector spaces over arbitrary finite fields. In [6] homo-
geneous and linear mappings and subspaces were investigated.

Recently, near-vector spaces have been used in several applications, including in
secret sharing schemes in cryptography [4] and to construct interesting examples of
families of planar nearrings [3]. In addition, they have proved interesting from a
model theory perspective too [2].

In this paper we begin with some preliminary material in section 2.1. on near-
vector spaces and prove some properties of isomorphisms of near-vector spaces. In
section 2.2. we generalise a construction that was first considered in [6] and in sec-
tion 2.3. we focus on nearrings of quotients, giving some new results that allow for
alternative proofs of some of the main known results. In section 2.4. we focus on
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integral nearrings and near domains and prove that if a nearring N is integral, then
the nearring of quotients, NS will be integral and that if N is a near domain and S
the set of all cancellable elements ofN , thenNS will be a nearfield. Finally, as a first
application of nearrings of quotients, in section 2.5. we use the results from section
2.4. to construct a new class of near-vector spaces from near domains.

2. RESULTS

2.1. Preliminary considerations

Definition 1 ([1]). A pair .V;A/ is called a near-vector space if:
(1) .V;C/ is a group and A is a set of endomorphisms of V ;
(2) A contains the endomorphisms 0, id and �id;
(3) A� D An f0g is a subgroup of the group Aut.V /;
(4) A acts fixed point free (fpf) on V , i.e., for x 2 V;˛;ˇ 2 A, x˛ D xˇ implies

that x D 0 or ˛ D ˇ;
(5) the quasi-kernel Q.V / of V , generates V as a group. Here, Q.V / D fx 2

V j8˛;ˇ 2 A;9 2 A such that x˛Cxˇ D xg.

We sometimes refer to V as a near-vector space over A. The elements of V
are called vectors and the members of A scalars. The action of A on V is called
scalar multiplication. Note that �id 2 A implies that .V;C/ is an abelian group.
Also, the dimension of the near-vector space, dim.V /, is uniquely determined by the
cardinality of an independent generating set for Q.V /. See [1] for further details.

In [12] van der Walt proved the following theorem,

Theorem 1 ([12] Theorem 3.4, p.301). Let V be a group and let A WDD [ f0g,
where D is a fix point free group of automorphisms of V . Then .V;A/ is a finite
dimensional near-vector space if and only if there exists a finite number of nearfields,
F1;F2; : : : ;Fn, semigroup isomorphisms  i W A! Fi and a group isomorphism ˚ W

V ! F1˚F2˚�� �˚Fn such that if

˚.v/D .x1;x2; � � � ;xn/; .xi 2 Fi /

then
˚.v˛/D .x1 1.˛/;x2 2.˛/; � � � ;xn n.˛//;

for all v 2 V and ˛ 2 A.

According to this theorem we can specify a finite dimensional near-vector space
by taking n nearfields F1;F2; : : : ;Fn for which there are semigroup isomorphisms
#ij W .Fj ; �/! .Fi ; �/ with #ij#jk D #ik for 1 � i;j;k � n. We can then take V WD
F1˚F2˚�� �˚Fn as the additive group of the near-vector space and any one of the
semigroups (Fio , �) as the semigroup of endomorphisms by defining

.x1;x2; : : : ;xn/˛ WD .x1#1io.˛/;x2#2io.˛/; � � � ;xn#nio.˛//;

for all xj 2 Fj and all ˛ 2 Fio .
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Definition 2 ([8] Definition 3.2, p.4). We say that two near-vector spaces .V1;A1/
and .V2;A2/ are isomorphic (written .V1;A1/ Š .V2;A2/ if there are group iso-
morphisms � W .V1;C/! .V2;C/ and � W .A�1; �/! .A�2; �/ such that �.x˛/D �.x/�.˛/
for all x 2 V1 and ˛ 2 A�1 .

We denote this pair by .�;�/. Isomorphisms map quasi-kernels to quasi-kernels:

Proposition 1. If the near-vector spaces .V1;A1/ and .V2;A2/ are isomorphic,
then Q.V1/ is mapped to Q.V2/:

Proof. Let v 2Q.V1/. If v D 0, then �.v/ 2Q.V2/, so suppose that v ¤ 0. Let
˛;ˇ 2 A2, then

�.v/˛C�.v/ˇ D �.v/�.˛1/C�.v/�.ˇ1/ for some ˛1;ˇ1 2 A1;

D �.v˛1/C�.vˇ1/

D �.v˛1Cvˇ1/

D �.v1/ for some 1 2 A1;

D �.v/�.1/:

Thus �.v/ 2Q.V2/. �

It is not difficult to show that

Lemma 1. If .�;�/ is an isomorphism of .V1;A1/ onto .V2;A2/, then � is uniquely
determined on any basis of .V1;A1/.

In [1], the concept of regularity is introduced as a central notion. A near-vector
space is regular if any two vectors of Q.V /nf0g are compatible, i.e. if for any
two vectors u and v of Q.V / there exists a � 2 Anf0g such that uC v� 2 Q.V /.
Every near-vector space can be uniquely decomposed into a direct sum of regular
near-vector spaces Vj (j 2 J ) ([1], Theorem 4.13, p.12) and there is a unique direct
decomposition into maximal regular near-vector spaces, called the canonical decom-
position of V . Thus the theory of near-vector spaces is largely reduced to the theory
of regular near-vector spaces.

Theorem 2. If the near-vector spaces .V1;A1/ and .V2;A2/ are isomorphic and
.V1;A1/ is regular, .V2;A2/ will be regular too, i.e. isomorphisms preserve regular-
ity.

Proof. By definition there exist group isomorphisms � W .V1;C/! .V2;C/ and
� W .A1

�; �/! .A2
�; �/ such that �.x˛/D �.x/�.˛/ for all x 2 V1 and ˛ 2 A1�. Let

w1;w2 2Q.V2/nf0g. Then there exist v1;v2 2Q.V1/ (by Proposition 1), such that
w1 D �.v1/ and w2 D �.v2/. Since V1 is regular there exists a � 2 A1� such that
v1Cv2� 2Q.V1/. Thus

�.v1Cv2�/D �.v1/C�.v2/�.�/
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D w1Cw2�.�/ with �.�/¤ 0:

Thus .V2;A2/ is regular. �

We also have that

Lemma 2. Let .V1;A1/ and .V2;A2/ be near-vector spaces and .�;�/ an iso-
morphism. If V1 D

L
j2J Vj is the canonical direct decomposition of V1, then

V2 D
L
j2J �.Vj / is the canonical direct decomposition of V2.

The proof is similar to that of Lemma 5.5, p.2537 in [6].

2.2. Near-vector spaces of the form F n where F is a nearfield

In [6] van der Walt’s characterisation was used to discuss several constructions of
near-vector spaces. In particular, the case where we let V DF n, n 2N, F a nearfield
and we take all the isomorphisms to be identical, so that

.x1;x2; : : : ;xn/˛ D .x1˛;x2˛; : : : ;xn˛/

was considered.
This is the case closest to the normal vector space setting. Let us denote it by

.V;F /. In fact, when F is a field, .V;F / is a vector space. We will denote the set of
all distributive elements of F by Fd (as in [10]), i.e.

Fd D fd 2 F jd.xCy/D dxCdy8x;y 2 F g:

It is not difficult to check that Fd is a subfield of F . Note that 0;12Fd . It was shown
in [6] that Q.V /D[Vi , with Vi D .d1;d2; : : : ;1;diC1; : : : ;dn/F , with 1 in position
i and di 2 Fd , i 2 f1; : : : ;ng and that .V;F / is a regular near-vector space (Lemma
3.5., p.2531).

We now generalise,

Theorem 3. Let F be a near-field and V D F n, n 2 N be a near-vector space
with the scalar multiplication defined by

.x1; : : : ;xn/˛ D .x1�.˛/; : : : ;xn�.˛//

where � is an automorphism of .F; �/ and ˛ 2 F: Then

Q.V /D f.di /�j� 2 F;di 2 Fd for all i 2 I g;

where I D f1;2; : : : ;ng:

Proof. Let di 2 Fd for i 2 f1; : : : ;ng and ˛;ˇ 2 F . We have

.di /˛C .di /ˇ D .di�.˛/Cdi�.ˇ//

D .di .�.˛/C �.ˇ/// since di is distributive,

D .di�.// with  D ��1.�.˛/C �.ˇ//,

D .di /:
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Hence .di / 2 Q.V /. Since Q.V / is closed under scalar multiplication we have
Q.V / � f.di /�j� 2 F;di 2 Fd for all i 2 I g: Now suppose that .xi / 2 Q.V /. If
.xi / D 0 then .xi / 2 f.di /�j� 2 F;di 2 Fd for all i 2 I g. Suppose that .xi / ¤ 0.
Then there is i0 2 f1; : : : ;ng such that xi0 ¤ 0: Let di D xix�1i0 for i 2 f1; : : : ;ng: Then
.di /D .xi /�

�1.x�1i0 /. Since .xi / 2Q.V / andQ.V / is closed under scalar multiplic-
ation, .di / 2Q.V /. Then for all ˛;ˇ 2 F there is  2 F such that .di /˛C .di /ˇ D
.di /: It follows that di�.˛/C di�.ˇ/ D di�./ for all i 2 f1: : : ;ng: Since � is an
automorphism, there are ˛1;ˇ1 2 F such that ˛ D ��1.˛1/ and ˇ D ��1.ˇ1/. So
di˛1Cdiˇ1 D di�./ for all i 2 f1: : : ;ng: But di0 D 1. So ˛1Cˇ1 D �./: Hence
di˛1C diˇ1 D di .˛1Cˇ1/, and this is verified for all ˛1;ˇ1 2 F because � is an
automorphism of .F; �/. Therefore di is distributive and Q.V /D f.di /�j� 2 F;di 2
Fd for all i 2 I g: �

In fact, if we take V D F n, n 2N with F a near-field and denote the near-vector
space in the above theorem by .V;F

0

/, we can show that

Proposition 2. The near-vector spaces .V;F / and .V;F
0

/ are isomorphic for the
same nearfield F .

Proof. Using Definition 2, consider � the identity isomorphism and � W .F �; �/!
.F �; �/ the mapping �.˛/D ��1.˛/. Since � is an isomorphism, ��1 exists and � is
an isomorphism. Thus �.x˛/D �.x/�.˛/ for all x 2 V and ˛ 2 F �. �

Finally, since by Theorem 2 isomorphisms preserve regularity, we have that

Lemma 3. .V;F 0/ is a regular near-vector space.

We end off the section with an example,

Example 1. Consider the field (GF.32/,C, �) with

GF.32/ WD f0;1;2;;1C;2C;2;1C2;2C2g;

where  is a zero of x2C1 2Z3Œx�.
The operations on GF.32/ can be defined as follows:

C W .aCb/C .cCd/D .aC c/mod3 C ..bCd/mod3 /;

� 0 1 2  1C 2C 2 1C2 2C2

0 0 0 0 0 0 0 0 0 0

1 0 1 2  1C 2C 2 1C2 2C2

2 0 2 1 2 2C2 1C2  2C 1C

 0  2 2 2C 2C2 1 1C 1C2

1C 0 1C 2C2 2C 2 1 1C2 2 

2C 0 2C 1C2 2C2 1  1C 2 2

2 0 2  1 1C2 1C 2 2C2 2C

1C2 0 1C2 2C 1C 2 2 2C2  1

2C2 0 2C2 1C 1C2  2 2C 1 2
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In [11], p.257, it is observed that (GF.32/,C, ı), with

x ıy WD

�
x �y if y is a square in (GF.32/,C, �)
x3 �y otherwise

is a (right) nearfield, but not a field.

ı 0 1 2  1C 2C 2 1C2 2C2

0 0 0 0 0 0 0 0 0 0

1 0 1 2  1C 2C 2 1C2 2C2

2 0 2 1 2 2C2 1C2  2C 1C

 0  2 2 1C2 1C 1 2C2 2C

1C 0 1C 2C2 2C 2 2 1C2  1

2C 0 2C 1C2 2C2  2 1C 1 2

2 0 2  1 2C 2C2 2 1C 1C2

1C2 0 1C2 2C 1C 2 1 2C2 2 

2C2 0 2C2 1C 1C2 1  2C 2 2

It is not difficult to see that the the distributive elements of (GF.32/, C, ı), de-
noted by (GF.32/, C, ı/d are the elements 0;1;2. Consider the near-field F D
.GF.32;C;ı/, put V D F 3 with ˛ 2 F acting as an endomorphism of V by defining
.x1;x2;x3/˛ D .x1˛

3;x2˛
3;x3˛

3/: Thus we have that Q.V /D f.d1;d2;d3/�j� 2
F;di 2 f0;1;2gg and this near-vector space is regular.

2.3. Nearrings of quotients

The concept of nearrings of quotients was first defined by Maxson [9] and he
stated conditions for a nearring to have a nearring of quotients. Graves and Malone
[5] subsequently generalised this to the case of nearrings of quotients with respect to
a multiplicative set.

We consider the case where N is a non-commutative nearring and begin with the
basic results as found in [5,11]. Corollary 1 and 2 are new results that we use to give
alternative proofs to the known results of Theorem 4 and Theorem 5 (See [11]). For
more on nearrings we refer the reader to [10, 11].

Definition 3 ([11] Definition 6.3, p.26). LetN be a nearring and S a subsemigroup
of .N; �/. A nearring Ns is called a nearring of right quotients of N with respect to S
if

(1) Ns is a nearring with identity,
(2) N is embeddable in Ns , by a homomorphism, say h,
(3) 8s 2 S , h.s/ is invertible in .Ns; �/,
(4) for all q 2Ns , there exists s 2 S and n 2N such that q D h.n/h.s/�1:

We can also define a nearring of left quotients of N with respect to S , which has the
same definition as above, except property 4 which becomes :

4’. for all q 2Ns , there exists s 2 S and n 2N such that q D h.s/�1h.n/:
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It is not difficult to see that any element ofNs can be written as h.n/h.s/�1, for s 2 S
and n 2N .

Definition 4 ([11] Definition 6.4, p.26). LetN be a nearring and S a subsemigroup
of .N; �/. N is said to fulfill the right Ore condition with respect to S , if for all
.n;s/ 2 N �S , there exists .n1; s1/ 2 N �S such that ns1 D sn1. Likewise, N is
said to fulfill the left Ore condition with respect to S if for all .n;s/ 2 N �S , there
exists .n1; s1/ 2N �S such that s1nD n1s.

If N is a nearring and S , a subsemigroup of .N; �/ and if for all s 2 S , s is can-
cellable (both sides) and N satisfies the right Ore condition with respect to S , then
the relation � defined on N �S by

.n;s/� .n0; s0/ if 9.n1; s1/ 2N such that ss1 D s0n1 implies that ns1 D n0n1

is an equivalence relation. Moreover, on the equivalence class of .n;s/ 2 N � S ,
denoted by n

s
, we define the operations ”C ” and ” � ” by

n

s
C
n0

s0
D
ns1Cn

0n1

ss1
and

n

s
�
n0

s0
D
nn2

s0s2
;

where .n1; s1/2N �S and .n2; s2/2N �S fulfill s0n1D ss1 and n0s2D sn2. These
operations are well-defined and .Ns DN �S=�;C; �/ is a nearring of right quotients
of N with respect to S .

We prove a new result:

Corollary 1. Let Ns be a nearring of right quotients of N with respect to S . Then
h.n/h.s/�1 D h.n0/h.s0/�1 if and only if .n;s/� .n0; s0/ for all .n;s/ and .n0; s0/ in
N �S .

Proof. Let .n;s/; .n0; s0/ 2 N � S such that .n;s/ � .n0; s0/. Then there exists
.n1; s1/ 2N �S such that ss1 D s0n1 implies ns1 D n0n1. It follows that

h.s/h.s1/D h.s
0/h.n1/

h.n/h.s1/D h.n
0/h.n1/:

So, since for all s 2 S , h.s/ is invertible in Ns ,

h.n1/D h.s
0/�1h.s/h.s1/

h.n/D h.n0/h.n1/h.s1/
�1:

Therefore

h.n/D h.n0/h.s0/�1h.s/h.s1/h.s1/
�1

D h.n0/h.s0/�1h.s/:
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Thus h.n/h.s/�1 D h.n0/h.s0/�1:
Now we show the converse. Let .n;s/; .n0; s0/ 2 N �S such that h.n/h.s/�1 D

h.n0/h.s0/�1: Then there exists .n1; s1/ 2 N � S such that h.s0/�1h.s/ D

h.n1/h.s1/
�1, by property 4 in the definition of a nearring of right quotients with re-

spect to S . So h.ss1/D h.s0n1/. Since h is a monomorphism, ss1D s0n1. Also, since
h.s/h.s1/ D h.s0/h.n1/, h.s0/�1h.s/h.s1/ D h.n1/. So h.s0/�1 D

h.n1/h.s1/
�1h.s/�1. Using the fact that h.n/h.s/�1 D h.n0/h.s0/�1, we get

h.n/h.s/�1 D h.n0/h.n1/h.s1/
�1h.s/�1: So h.n/h.s1/ D h.n0/h.n1/. Therefore

h.ns1/ D h.n0n1/ and ns1 D n0n1, since h is a monomorphism. Thus .n;s/ �
.n0; s0/. �

The use of this corollary allows us to give an alternate proof to that found in [11],
of the following theorem:

Theorem 4 ([11] Theorem 1.65, p.27). LetN be a nearring and S a subsemigroup
of .N; �/. N has a nearring of right quotients with respect to S is equivalent to

(1) for all s 2 S , s is cancellable (on both sides),
(2) N satisfies the right Ore condition with respect to S .

Proof. Let S be a subsemigroup of .N; �/. Suppose that N has a nearring Ns of
right quotients with respect to S . So N is embeddable in Ns , by a homomorphism h.
Since S is a subsemigroup, S ¤¿: Let s 2 S and n;n0 2N , such that n0sD ns. Then
h.n0/h.s/ D h.n/h.s/: Since h.s/ is invertible in .Ns; �/, h.n0/ D h.n/. It follows
that n0 D n, since h is a monomorphism. Also if sn0 D sn, we have n0 D n. Thus
for all s 2 S , s is cancellable on both sides. Now, let n 2 N and s 2 S . Then
h.s/�1h.n/2Ns . So by property 4 of Definition 3, there exists .s1;n1/2S�N , such
that h.s/�1h.n/D h.n1/h.s1/�1:Hence h.ns1/D h.sn1/, and ns1D sn1. Therefore
N satisfies the right Ore condition with respect to S .

To show the converse, we suppose that S is not empty, for all s 2S , s is cancellable
(on both sides) and thatN satisfies the right Ore condition with respect to S . So from
the discussion following Definition 4 there exists a nearring of right quotients of N
with respect to S , namely .N �S=�;C; �/. �

Remark 1. We note that there is a printing error in the statement of the above
theorem in [11](Theorem 1.65, p.27), the left Ore condition should be replaced with
the right Ore condition.

Example 2. Let us consider the nearring .M.R/;C;ı/. An element f 2M.R/ is
cancellable if and only if f is bijective. In fact if f is bijective, then f is cancellable.
So let us suppose f is cancellable. That implies that for all g;g0 2M.R/, f ıg D
f ıg0 implies g D g0, also g ıf D g0 ıf implies g D g0. It is not difficult to see
that f ıgD f ıg0 implies gD g0, implies that f is injective. Also if g ıf D g0 ıf
implies g D g0, then f is surjective.
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So now let us consider N D .RŒx�;C;ı/ �M.R/, the set of polynomials defined
from RC, and S the set of all monomials in N with co-domain in RC (in other words
monomials of the form axn, with a > 0 and n 2N). Since each monomial is defined
on RC, every element of S is bijective, then cancellable. Also the composition of
two monomials is a monomial. Thus S is a subsemigroup of .N;ı/. Moreover for
.f;g/ 2N �S , f ı id D g ı .g�1 ıf /. But .g�1 ıf; id/ 2N �S , so N satisfies the
right Ore condition with respect to S . Hence N has a nearring of right quotients with
respect to S .

The quotient is a set .Ns;C;ı/, where Ns is the set of all summations of all power
functions f .x/D x˛, with ˛ 2QC and f defined from RC to R.

We prove a new corollary:

Corollary 2. Let N be a nearring and S a subsemigroup of .N; �/. If N has a
nearring of right quotients with respect to S , Ns , then there exists .n1; s1/ 2 N �S
such that h.n/h.s/�1C h.n0/h.s0/�1 D h.ns1C n0n1/h.ss1/�1, where ss1 D s0n1
and h is the embedding homomorphism from N to Ns . Also, there exists .n2; s2/ 2
N �S such that h.n/h.s/�1h.n0/h.s0/�1 D h.nn2/h.s0s2/�1, where n0s2 D sn2.

Proof. Since N has a nearring of right quotients with respect to S , N satisfies
the right Ore condition with respect to S . So there exists .n1; s1/ 2 N �S such that
ss1 D s

0n1. Then h.s0/�1 D h.n1/h.s1/�1h.s/�1. We have

h.ns1Cn
0n1/h.ss1/

�1
D h.n/h.s1/h.s1/

�1h.s/�1Ch.n0/h.n1/h.s1/
�1h.s/�1:

Hence h.ns1Cn0n1/h.ss1/�1 D h.n/h.s/�1Ch.n0/h.s0/�1:
Also, since .n0; s/ 2N �S , there exists .n2; s2/ 2N �S such that n0s2D sn2, by the
right Ore condition. So h.n2/D h.s/�1h.n0/h.s2/.
We have

h.nn2/h.s
0s2/
�1
D h.n/h.n2/h.s2/

�1h.s0/�1

D h.n/h.s/�1h.n0/h.s2/h.s2/
�1h.s0/�1:

Hence h.nn2/h.s0s2/�1 D h.n/h.s/�1h.n0/h.s0/�1. �

We will use the above corollary to give an alternate proof of the following result
found in [11]:

Theorem 5 ([11] Theorem 1.66, p.28). Let N be a nearring. If Ns and N 0s are
nearrings of right quotients with respect to S , then

Ns ŠN
0
s:

Proof. Since Ns and N 0s are nearrings of right quotients, there exist monomorph-
isms h and h0, from N to Ns and N to N 0s , respectively. Let us define the mapping f



892 K.-T. HOWELL AND S. P. SANON

by

f W Ns!N 0s

h.n/h.s/�1 7! h0.n/h0.s/�1:

The mapping f is well-defined. To show this suppose that h.n/h.s/�1 D
h.n0/h.s0/�1: Then by Corollary 1 .n;s/ � .n0; s0/. Also by the same Corollary
1 h0.n/h0.s/�1 D h0.n0/h0.s0/�1: So f .h.n/h.s/�1/ D f .h.n0/h.s0/�1/: Thus f is
well-defined. Let h.n/h.s/�1;h.n0/h.s0/�1 2Ns . Then by Corollary 2 we have

f .h.n/h.s/�1Ch.n0/h.s0/�1/D f .h.ns1Cn
0n1/h.ss1/

�1/ .n1; s1/ 2N �S

fulfilling s0n1 D ss1

D h0.ns1Cn
0n1/h

0.ss1/
�1

D h0.n/h0.s/�1Ch0.n0/h0.s0/�1 since s0n1 D ss1

D f .h.n/h.s/�1/Cf .h.n0/h.s0/�1/:

Also by Corollary 2 again, we have

f .h.n/h.s/�1h.n0/h.s0/�1/D f .h.nn2/h.s
0s2/
�1/; where .n2; s2/ 2N �S

fulfills n0s2 D sn2

D h0.nn2/h
0.s0s2/

�1

D h0.n/h0.s/�1h0.n0/h0.s0/�1; since n0s2 D sn2

D f .h.n/h.s/�1/f .h.n0/h.s0/�1/:

Thus f is a homomorphism. Now, let h.n/h.s/�1;h.n0/h.s0/�1 2 Ns such that
h0.n/h0.s/�1D h0.n0/h0.s0/�1: Then .s;n/� .s0;n0/. So h.n/h.s/�1D h.n0/h.s0/�1:
Hence f is injective. Let h0.n/h0.s/�1 2 N 0s . For .n;s/ 2 N �S , h.n/h.s/�1 2 Ns
and f .h.n/h.s/�1/D h0.n/h0.s/�1: Hence f is a surjection. Therefore f is a bijec-
tion. Thus Ns ŠN 0s: �

Theorem 5 allow us to speak of the nearring of right quotients, Ns , with respect to
S , for a particular nearring.

2.4. Integral nearrings and near domains

Recall that a nearring .N;C; �/ is said to be integral if it has no non-zero divisors
of zero and

Definition 5. ([5] Definition 1.4, p.34) A near domain is a nearringN that satisfies
the right Ore condition and the left cancellation law.

Then we have the following:
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Theorem 6. Let N be a nearring and S a subsemigroup of .N; �/. Suppose that
N has a nearring of right quotients with respect to S , Ns . If N is integral, then Ns
is integral.

Proof. Let h.n/h.s/�1;h.n0/h.s0/�1 2 Ns with h the monomorphism from N to
Ns . We have

h.n/h.s/�1h.n0/h.s0/�1 D h.nn2/h.s
0s2/
�1;

with sn2 D n0s2 for .n2; s2/ 2N �S:

Suppose that h.nn2/h.s0s2/D 0. Then h.nn2/h.s0s2/�1D h.0/h.t/�1, for some t 2
S . This implies that .nn2; s0s2/ � .0; t/. It follows that there exits .n1; s1/ 2 N �S
such that nn2s2 D 0. s2 ¤ 0 because h.s2/ is invertible. Hence nn2 D 0, since N is
integral. Moreover, sinceN is integral, nD 0 or n2D 0. n2D 0 implies that n0s2D 0
and so n0 D 0. Therefore nD 0 or n0 D 0. Thus h.n/.s/�1 D 0 or h.n0/h.s0/�1 D 0.
Thus Ns is integral. �

Proposition 3. Let N be a near domain. Then
(1) 0nD n0D 0, for all n 2N
(2) N is integral
(3) N satisfies the right cancellation law.

Proof. Let N be a near domain and n;n1;n2 2N .
(1) It is straightforward to show that 0nD 0. We have .n0/.n0/D n.0n/0D n0.

So .n0/.n0/0D .n0/0. Using the left cancellation law we have n0D 0.
(2) Suppose n1n2 D 0. If n1 ¤ 0 we have n1n2 D n10. It follows that n2 D 0

from the left cancellation law.
(3) If n1nD n2n, with n¤ 0, then .n1�n2/nD 0. Hence by 2. n1 D n2.

�

Corollary 3. LetN be a near domain. Let S be the set of all cancellable elements
of N . Then Ns is a nearfield.

Proof.
Since N is a near domain, every non-zero element is cancellable. So S D N �f0g.
We know from Definition 3 that h.s/ is invertible for every s 2 S . Let q 2Ns . Then
there exist .n;s/ 2N �S such that q D h.n/h.s/�1: Suppose q ¤ 0. Then n¤ 0. So
n 2 S . Hence h.n/ is invertible. Therefore h.n/h.s/�1 is invertible and its inverse is
h.s/h.n/�1. �

2.5. An application to Near-vector spaces

In this last section we use the results of the previous sections to give a first applic-
ation of the theory of nearrings of quotients. We construct a new class of near-vector
spaces from near domains and completely describe the quasi-kernel.
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If N is a nearfield and S D N �f0g, then Ns is a nearfield. In fact, we can show
that N 'Ns . From the definition of a nearring of quotients we know that there is an
embedding map h defined by

h WN !Ns

n 7!
n

1

with 1 the multiplicative identity of N . We just have to show that h is surjective. Let
.n;s/2N �S . We have that n

s
D
ns�1

1
. So h.ns�1/D n

s
. Hence h is an isomorphism

and soN 'Ns . Therefore qD h.n/2Ns is distributive if and only if n is distributive.
Thus if N is a nearfield then

Ns˚ : : :˚Ns 'N ˚ : : :˚N

and the study of constructions of the form N ˚ : : :˚N has been discussed in [6].
We now look at the case where N is a near domain, not necessarily a nearfield.

Let us consider Ns (with identity 1) with S the set of all cancellable elements. We
take V D Ns

L
: : :
L
Ns with the scalar multiplication defined for .x1; : : : ;xn/ 2 V

and ˛ 2Ns by
.x1; : : : ;xn/˛ D .x1˛; : : : ;xn˛/:

We now look at the quasi-kernel Q.V /. We know from [6] that the quasi-kernel
Q.V / D V1 [ : : :[Vn, where Vi D f.d1; : : : ;di�1;1;diC1; : : : ;dn/Nsjdi 2 Nsd g,
with Nsd representing the distributive elements of Ns . Thus in order to describe
Q.V /, we need to find the elements of Nsd .

Theorem 7. Nsd D fh.n/h.s/�1j if 9a;b;c 2N; such that saC sb D sc; then
naCnb D nc for s 2 S; n 2N g

Proof.
Let q D h.n/h.s/�1;q1 D h.n1/h.s1/�1;q2 D h.n2/h.s2/�1 2 Ns . First suppose
that q is distributive and that there are a;b;c 2 N such that saC sb D sc. We prove
that naCnb D nc. We have

h.n/h.s/�1.h.saC sb//D h.n/h.s/�1.h.sc//:

But

h.n/h.s/�1.h.saC sb//D h.n/h.s/�1.h.s/h.a/Ch.s/h.b//

D h.n/h.a/Ch.n/h.b/; since h.n/h.s/�1 is distributive.

D h.naCnb/;

and
h.n/h.s/�1.h.sc//D h.nc/:

Hence, since h is injective, naC nb D nc. To show the converse, suppose that if
there exist a;b;c 2N such that saC sb D sc, then naCnb D nc. We have to prove
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that h.n/h.s/�1 is distributive in Ns . So we have to show q.q1Cq2/D qq1Cqq2:

We have

q.q1Cq2/D h.n/h.s/
�1h.n1s

�
Cn2n

�/h.s1s
�/�1 where s1s� D s2n�

D h.nn�1/h.s1s
�s�1 /

�1 where sn�1 D .n1s
�
Cn2n

�/s�1 ;

and

qq1Cqq2 D h.nn
�0/h.s1s

�0/�1Ch.nn�
0

1 /h.s2s
�0

1 /
�1

where sn�
0

D n1s
�0 ; sn�

0

1 D n2s
�0

1

D h.nn�
0

s�
0

2 Cnn
�0

1 n
�0

2 /h.s1s
�0s�

0

2 /
�1 where s1s�

0

s�
0

2 D s2s
�0

1 n
�0

2 :

To show that h.nn�1/h.s1s
�s�1 /

�1D h.nn�
0

s�
0

2 Cnn
�0

1 n
�0

2 /h.s1s
�0s�

0

2 /
�1, we have to

find .n��; s
�
�/ 2N �S such that s1s�s�1 s

�
� D s1s

�0s�
0

2 n
�
� implies nn�1s

�
� D .nn

�0s�
0

2 C

nn�
0

1 n
�0

2 /n
�
�. Since Ns is a nearring of right quotients with respect to S , we have the

right Ore condition with respect to S . Thus, since s1s�s�1 2 N;s1s
�0s�

0

2 2 S , there
exist .n��; s

�
�/ 2N �S such that s1s�s�1 s

�
� D s1s

�0s�
0

2 n
�
�. But s1s�s�1 s

�
� D s1s

�0s�
0

2 n
�
�

implies s2n�s�1 s
�
� D s2s

�0

1 n
�0

2 n
�
�, because s1s�

0

s�
0

2 D s2s
�0

1 n
�0

2 and s1s� D s2n�. So
we get s�s�1 s

�
� D s

�0s�
0

2 n
�
� and n�s�1 s

�
� D s

�0

1 n
�0

2 n
�
�, since s1 and s2 are cancellable.

Also we have

sn�
0

s�
0

2 n
�
� D n1s

�0s�
0

2 n
�
�; since sn�

0

D n1s
�0

D n1s
�s�1 s

�
� ; since s�s�1 s

�
� D s

�0s�
0

2 n
�
�

and
sn�

0

1 n
�0

2 n
�
� D n2s

�0

1 n
�0

2 n
�
�; since sn�

0

1 D n2s
�0

1

D n2n
�s�1 s

�
� ; since n�s�1 s

�
� D s

�0

1 n
�0

2 n
�
�:

So we get

sn�
0

s�
0

2 n
�
�C sn

�0

1 n
�0

2 n
�
� D n1s

�s�1 s
�
�Cn2n

�s�1 s
�
�

D .n1s
�
Cn2n

�/s�1 s
�
�

D sn�1s
�
� ; since sn�1 D .n1s

�
Cn2n

�/s�1 :

Hence s1s�s�1 s
�
� D s1s

�0s�
0

2 n
�
� implies sn�

0

s�
0

2 n
�
�C sn

�0

1 n
�0

2 n
�
� D sn

�
1s
�
� . If we take

aD n�
0

s�
0

2 n
�
�;bD n

�0

1 n
�0

2 n
�
�; c D n

�
1s
�
� , from our assumption we have naCnbD nc.

So nn�
0

s�
0

2 n
�
�Cnn

�0

1 n
�0

2 n
�
�D nn

�
1s
�
� . Therefore h.nn�1/h.s1s

�s�1 /
�1D h.nn�

0

s�
0

2 C

nn�
0

1 n
�0

2 /h.s1s
�0s�

0

2 /
�1. Thus h.n/h.s/�1 is distributive. �

Using Theorem 7 we can describe the quasi-kernel Q.V / of the near vector space
V defined above just by considering the elements of N . So we can construct a near
vector space over a nearfield from a near domain.

In closing we can now describe Q.V / for the above near-vector space.
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Corollary 4. Let us consider the near vector space V defined above, and let
N1 D f.n;s/ 2 N �N

�j if 9a;b;c 2 N; such that saC sb D sc; then naC nb D
nc for s 2 S; n 2N g. Then we have

QD V1[ : : :[Vn;

where

Vi D f.d1; : : : ;di�1;1;diC1; : : : ;dn/Nsjdi D h.ni /h.si /
�1; .n;s/ 2N1g:

Moreover, by Lemma 3.5 [6], this near-vector space is regular.
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