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CONTINUOUS SPECTRUM FOR SOME CLASSES OF
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Abstract. We are concerned with two classes of nonlinear eigenvalue problems involving equa-
tions driven by the sum of the p-Laplace (p > 2) and Laplace operators. The main results of
this paper establish the existence of a continuous spectrum consisting in an unbounded interval,
which is described by using the principal eigenvalue of the Laplace operator.
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1. INTRODUCTION

Let ˝ � RN (N � 2) be an open bounded set with smooth boundary. A central
result in elementary functional analysis and in the linear theory of partial differen-
tial equations asserts that the spectrum of the Laplace operator .��/ in H 1

0 .˝/ is
discrete. More precisely, the problem�

��uD �u in ˝
uD 0 on ˝ (1.1)

admits a sequence of eigenvalues 0 < �1 < �2 � �3 � � � � ! C1. The proof of this
result relies on the Riesz-Fredholm theory for compact self-adjoint operators (see,
e.g., H. Brezis [6, Ch. VI]).

The anisotropic linear eigenvalue problem�
��uD �V.x/u in ˝
uD 0 on ˝ (1.2)

was studied starting with the pioneering papers of M. Bocher [5] and P. Hess and
T. Kato [11]. We also refer to S. Minakshisundaram and A. Pleijel [14] who proved
that problem (1.2) admits an unbounded sequence .�n/ of eigenvalues, provided that
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V is nonnegative, V 2L1.˝/ and V > 0 in ! �˝ with j!j> 0. The case where the
weight function V may change sign (that is, V is indefinite) and may have singular
points was studied by A. Szulkin and M. Willem [20] who established sufficient
conditions for the existence of an unbounded sequence of eigenvalues.

Fix p 2 .1;1/. The quasilinear eigenvalue problem�
��puD �juj

p�2u in ˝
uD 0 on ˝

(1.3)

was studied by several mathematicians (see, e.g., A. Anane [1], J. Garcia Azorero and
I. Peral Alonso [9], P. Lindqvist [12], A. Szulkin and M. Willem [20]). For instance,
A. Anane [1] and P. Lindqvist [12] proved that the first eigenvalue �D �1 of problem
(1.3) is simple and isolated in any bounded domain˝. By combining topological and
variational arguments, A. Szulkin and M. Willem [20] established the existence of a
countable family of eigenvalues for a class of quasilinear eigenvalue problems with
indefinite weight.

The analysis developed in these papers can be extended to homogeneous eigen-
value problems of the type�

�divA.x;ru/uD �V.x/jujp�2u in ˝
uD 0 on ˝;

where A.x;�/' j�jp�2� fulfills restrictive structural conditions and V � 0, V 6D 0.
In the present paper, we are concerned with the spectral analysis of two classes

of .p;2/-equations, that is, equations driven by the sum of the p-Laplace (p > 2)
and Laplace operators. These equations describe phenomena arising in mathem-
atical physics. We refer to V. Benci, P. D’Avenia, D. Fortunato and L. Pisani [4]
(quantum physics) and L. Cherfils and Y. Ilyasov [7] (plasma physics). Problems in-
volving Laplace operators with different homogeneity have been studied recently by
S. Barile and G. Figueiredo [2], D. Motreanu and M. Tanaka [15], N. Papageorgiou
and V. Rădulescu [17], N. Papageorgiou, V. Rădulescu and D. Repovš [16], etc.

In comparison with the results described in the first part of this section, the proper-
ties established in the present paper deal with a continuous spectrum that concentrates
at infinity.

2. MAIN RESULTS

Consider the eigenvalue problem�
�a�u�b�puD �u in ˝
uD 0 on ˝; (2.1)

where a, b are positive real numbers and p > 2.
We say that u 2W 1;p

0 .˝/n f0g is a solution of problem (2.1) if

a

Z
˝

rurvdxCb

Z
˝

jrujp�2rurvdx D �

Z
˝

uvdx
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whenever v 2W 1;p
0 .˝/.

In such a case, the corresponding � is called an eigenvalue of problem (2.1). Since
a and b are positive real numbers, it follows that any eigenvalue � is positive, too.

Let �1 be the first eigenvalue (or the principal frequency) of the Laplace oper-
ator in H 1

0 .˝/, namely the smallest eigenvalue of problem (1.1). The first result
of this paper establishes the striking property that the spectrum of problem (2.1) is
continuous. This description will be performed in terms of �1 and does not take into
account any contribution of the p-Laplace operator that arises in problem (2.1). More
precisely, we prove the following property.

Theorem 1. Assume that a, b are positive real numbers and p > 2.
Then � is an eigenvalue of problem (2.1) if and only if � > a�1.

This result shows that the eigenvalues of the nonlinear operator �a�u� b�pu
depend only on a and �1. The spectrum is continuous even for b ! 0C, which
corresponds to the case when this operator is “close” to the Laplace operator (hence,
with a discrete spectrum).

The right-hand side of problem (2.1) is linear. We establish a related continuity
property of the spectrum in the case of a suitable linear or sublinear perturbation. In
such a case it is not possible to describe the whole spectrum (as done in Theorem 1)
but we can assert two facts:
(i) any � < a�1 cannot be an eigenvalue;
(ii) all � sufficiently large is an eigenvalue.
We refer to [13] and [18] for related concentration properties of the spectrum.

Consider the nonlinear problem�
�a�u�b�puD �f .x;u/ in ˝
uD 0 on ˝; (2.2)

where a, b are positive real numbers and p > 2.
We assume that f W˝! R! R is a Carathéodory function and we set F.x; t/ WDR t

0 f .x;s/ds.
We suppose that the following hypotheses are fulfilled:
(f1) we have jf .x; t/j � jt j for a.a. x 2˝, all t 2 R;
(f2) there exists t0 2 R such that F.x; t0/ > 0 for all x 2˝;
(f3) we have f .x; t/D o.t/ as jt j !1 uniformly for a.a. x 2˝.
The following functions satisfy the above assumptions:
(i) f .x; t/D V.x/sin.˛t/, ˛ > 0, V 2 L1.˝/, V > 0, jjV jjL1 � 1;
(ii) f .x; t/D V.x/ log.1Cjt j/, V 2 L1.˝/, V > 0, jjV jjL1 � 1;
(iii) f .x; t/D V.x/.jt jr �jt jq/, 0 < q < r < 1, V 2L1.˝/, V > 0, jjV jjL1 � 1.

We say that u 2W 1;p
0 .˝/n f0g is a solution of problem (2.1) if

a

Z
˝

rurvdxCb

Z
˝

jrujp�2rurvdx D �

Z
˝

f .x;u/vdx (2.3)



820 NEJMEDDINE CHORFI AND VICENŢIU D. RĂDULESCU

whenever v 2W 1;p
0 .˝/.

In such a case, the corresponding � is called an eigenvalue of problem (2.2).

Theorem 2. Assume that a, b are positive real numbers, p > 2 and hypotheses
(f1)-(f3) are fulfilled.

Then any 0< �� a�1 is not an eigenvalue of problem (2.2). Moreover, there exists
�� > 0 such that all � > �� is an eigenvalue of problem (2.2).

We do not have any estimate on the value of ��. We consider that this is an
interesting subject, which should be considered in accordance with the behavior of
the nonlinear term f .

The methods developed in this paper allow to consider several classes of differen-
tial operators in the left-hand side of problem (2.1), for instance

�a�u�b div
�

ru

.1Cjruj2/.p�2/=2

�
or

�a�u�b�pu�b div
�

ru

.1Cjruj2/.p�2/=2

�
:

We refer for more details to S. Barile and G. Figueiredo [2].
The approach used in this paper can be applied to the abstract framework de-

veloped by Mingione et al. [3, 8] and corresponding to differential operators of the
form

�a�pu�b div.a.x/jrujq�2ru/ with 1 < p < q;
where 0� a.�/ 2 C 0;˛.˝/.

Notation: for all u 2W 1;p
0 .˝/ we denote

u˙.x/ WDmaxf˙u.x/;0g; for x 2˝:

By [10, Theorem 7.6] we have u˙ 2W
1;p
0 .˝/ and

ruC D

�
ru on Œu > 0�
0 on Œu� 0� ru� D

�
ru on Œu < 0�
0 on Œu� 0�:

3. PROOF OF THEOREM 1

We first argue that any �� a�1 is not an eigenvalue of problem (2.1). Arguing by
contradiction, let u 2W 1;p

0 .˝/ n f0g denote the eigenfunction corresponding to the
eigenvalue �� a�1. Then

a

Z
˝

jruj2dxCb

Z
˝

jrujpdx D �

Z
˝

u2dx � a�1

Z
˝

u2dx: (3.1)

Since p > 2, it follows that u 2H 1
0 .˝/n f0g, hence the variational characterization

of �1 yields

�1

Z
˝

u2dx �

Z
˝

jruj2dx: (3.2)
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Combining relations (3.1) and (3.2) we deduce that

a�1

Z
˝

u2dxCab

Z
˝

jrujpdx � a�1

Z
˝

u2dx;

a contradiction.
It remains to show that any � > a�1 is an eigenvalue of problem (2.1).
The energy functional E WW

1;p
0 .˝/!R associated to problem (2.1) is defined by

E.u/D
a

2

Z
˝

jruj2dxC
b

p

Z
˝

jrujpdx�
�

2

Z
˝

u2dx:

We have

E.u/�
b

p
jjujj

p

W
1;p
0 .˝/

�
��a�1

2�1
jjujj2

H1
0 .˝/

:

Our assumption p > 2 implies that

lim
jjujj

W
1;p
0

.˝/
!1

E.u/DC1;

hence E is coercive.
Consider the minimization problem

inffE.u/I u 2W 1;p
0 .˝/g (3.3)

and let .un/ be a minimizing sequence of (3.3). Since E is coercive, it follows that
.un/ is bounded. Thus, up to a subsequence,

un*u in W 1;p
0 .˝/�H 1

0 .˝/:

Since H 1
0 .˝/ is compactly embedded into L2.˝/, we can also assume that

un! u in L2.˝/:

Next, using the weakly lower semicontinuity of E , we deduce that u 2 W 1;p
0 .˝/

minimizes E . In order to show that u is nontrivial (hence, an eigenvalue of problem
(2.1)), we argue by contradiction and assume that u D 0. This implies that E takes
only nonnegative values, so it is enough to prove that

inffE.v/I v 2W 1;p
0 .˝/g< 0:

For this purpose we first choose w 2 C10 .˝/ such that

�1 <

R
˝ jrwj

2dxR
˝w

2dx
<
�

a
: (3.4)

This choice is possible due to the hypothesis � > a�1 combined with the density of
C10 .˝/ in H 1

0 .˝/. We also observe that we have w 2 W 1;p
0 .˝/ n f0g. So, for all

t > 0, we have

E.tw/D
at2

2

Z
˝

jrwj2dxC
btp

p

Z
˝

jrwjpdx�
�t2

2

Z
˝

w2dx
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D
btp

p

Z
˝

jrwjpdxC
t2

2

�
a

Z
˝

jrwj2dx��

Z
˝

w2dx

�
D A

t2

2
CB

btp

p
;

where

A WD a

Z
˝

jrwj2dx��

Z
˝

w2dx < 0

and

B WD

Z
˝

jrwjpdx > 0:

Moreover, by the choice of w, cf. (3.4), we have A < 0.
In order to obtain E.tw/ < 0 it is enough to choose

0 < t <

�
�
pA

2B

�1=.p�2/
:

This completes the proof of Theorem 1. �

4. PROOF OF THEOREM 2

We first establish that all positive eigenvalues of problem (2.2) are bigger than
a�1. Let us observe that relation (2.3) can be rewritten as

a

Z
˝

.ruC�ru�/rvdxCb

Z
˝

jrujp�2.ruC�ru�/rvdx D

�

Z
˝

.f .x;uC/Cf .x;�u�//vdx

(4.1)

whenever v 2W 1;p
0 .˝/.

In particular, relation (4.1) shows that u D e1 (namely, the first eigenfunction of
the Laplace operator in H 1

0 .˝/) cannot be an eigenvalue of problem (2.2), provided
that �� a�1.

Taking v D uC in (4.1) we obtain

a

Z
˝

jruCj
2dxCb

Z
˝

jrujp�2jruCj
2dx D �

Z
˝

f .uC/uCdx: (4.2)

Taking v D u� in (4.1) we obtain

a

Z
˝

jru�j
2dxCb

Z
˝

jrujp�2jru�j
2dx D��

Z
˝

f .u�/u�dx: (4.3)

Relations (4.2) and (4.3) in combination with hypothesis (f1) yield, respectively,

a�1

Z
˝

u2Cdx � a

Z
˝

jruCj
2dx � �

Z
˝

f .uC/uCdx � �

Z
˝

u2Cdx
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and

a�1

Z
˝

u2�dx � a

Z
˝

jru�j
2dx � ��

Z
˝

f .uC/uCdx � �

Z
˝

u2�dx:

Since u is nontrivial, at least one of uC or u� is nontrivial. Thus, the above
relations imply that � � a�1. Moreover, as we have already observed, � D a�1
cannot be an eigenvalue of problem (2.2), since this would imply that u D e1 is an
eigenfunction of problem (2.2), which is impossible. In conclusion, if problem (2.2)
admits a solution then � > a�1.

It remains to show that problem (2.2) has a solution for all � large enough.
The energy functional associated to problem (2.2) is J WW

1;p
0 .˝/!R defined by

J.u/D
a

2

Z
˝

jruj2dxC
b

p

Z
˝

jrujpdx��

Z
˝

F.x;u/dx:

Fix �> a�1 (which is a necessary condition for the existence of solutions to prob-
lem (2.2)).

Hypothesis (f3) implies that there is a positive constant C D C.�/ such that

�F.x;u/�
a�1

2
u2CC for all .x;u/ 2˝ �R:

It follows that

J.u/�
a

2

Z
˝

jruj2dxC
b

p

Z
˝

jrujpdx�
a�1

2

Z
˝

u2dx�C j˝j

�
b

p
jjujj

p

W
1;p
0

�C j˝j;

hence J is coercive.
Next, we show that there exists �� > 0 such that

inffJ.u/I u 2W 1;p
0 .˝/g< 0:

For this purpose we use our assumption (f2) and fix t0 2 R such that

F.x; t0/ > 0 for all x 2˝:

Fix arbitrarily a compact setK �˝ and let w 2W 1;p
0 .˝/ such that wD t0 inK and

0� w � t0 in ˝.
Using hypotheses (f1) it follows thatZ

˝

F.x;w/dx D

Z
K

F.x;w/dxC

Z
˝nK

F.x;w/dx

�

Z
K

F.x; t0/dx�
1

2

Z
˝nK

w2dx

�

Z
K

F.x; t0/dx�
t20
2
j˝ nKj:

(4.4)
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Relation (4.4) shows that increasing eventually the size ofK (in order to have j˝ nKj
small enough) we can assume thatZ

˝

F.x;w/dx > 0:

We deduce that

J.w/D
a

2

Z
˝

jrwj2dxC
b

p

Z
˝

jrwjpdx��

Z
˝

F.x;w/dx < 0;

provided that �>0 is large enough. For these values of �, the energy functional J has
a negative global minimum, hence problem (2.2) admits a solution. This completes
the proof. �

The proof of Theorem 2 shows that we can assume the growth imposed by hypo-
thesis (f3) only on one side, say atC1:

f .x; t/D o.t/ as t !C1 uniformly for a.a. x 2˝:

In such a case, the final part of the proof of Theorem 2 (the existence of ��) follows
by considering the auxiliary problem�

�a�u�b�puD �f .x;uC/ in ˝
uD 0 on ˝: (4.5)

Let u be a solution of problem (4.5). By taking vD u� as test function we deduce
that u� D 0, hence u� 0. This implies that any solution of (4.5) is also a solution of
problem (2.2).

From now on, we follow the same arguments as those developed in the second part
of the proof of Theorem 2 by replacing the energy functional J with J WW 1;p

0 .˝/!

R defined by

J.u/D
a

2

Z
˝

jruj2dxC
b

p

Z
˝

jrujpdx��

Z
˝

F.x;uC/dx:

The main result of this paper can be extended in the framework of differential
operators with variable exponent; we refer to Rădulescu and Repovš [19] for related
results.
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